CALCINEURIN B-LIKE PROTEINS(CBLs)function in osmotic stress responses,root morphogenesis and ion uptake in various plants such as Arabidopsis.However,the roles of Os CBLs in regulating root growth in rice(Oryza sativa...CALCINEURIN B-LIKE PROTEINS(CBLs)function in osmotic stress responses,root morphogenesis and ion uptake in various plants such as Arabidopsis.However,the roles of Os CBLs in regulating root growth in rice(Oryza sativa),whose root morphology and growth environment strongly differ from those of Arabidopsis,are unknown.Here,we demonstrated that Os CBL3 functioned as a calcium sensor to regulate primary and lateral root development in rice.Os CBL3 interacted with Os CIPK31 in vivo and in vitro,and the loss of function of Os CBL3 or Os CIPK31 resulted in shorter roots and diminished lateral root growth.Overexpression of Os CIPK31 compensated for the root growth defects of Os CBL3 knockout mutants.These results demonstrated that the Os CBL3–Os CIPK31 module coordinated root development via the abscisic acid(ABA)and auxin pathways,as ABA inhibitors and low auxin concentrations partially rescued the short-root phenotype of their respective knockout lines.CYCLOPHYLIN 2(Os CYP2),a key factor in lateral root initiation and root growth maintenance,was phosphorylated by Os CIPK31,and knockout of Os CYP2 in Os CIPK31 overexpression lines resulted in a phenotype similar to that of Os CYP2 single knockout lines.Therefore,the Os CBL3–Os CIPK31 module functioned in ABA and auxin signal transduction,ensuring proper root growth.Os CIPK31,activated by Os CBL3,then phosphorylated Os CYP2,which drove primary and lateral root development.These results establish a new module regulating primary and lateral root development in rice.展开更多
Poplar is one of the fastest-growing temperate trees in the world and is widely used in ornamental horticulture for shade.The root is essential for tree growth and development and its utilization potential is huge.Cal...Poplar is one of the fastest-growing temperate trees in the world and is widely used in ornamental horticulture for shade.The root is essential for tree growth and development and its utilization potential is huge.Calcium(Ca),as a signaling molecule,is involved in the regulation of plant root development.However,the detailed underlying regulatory mechanism is elusive.In this study,we analyzed the morphological and transcriptomic variations of 84K poplar(Populus alba×P.glandulosa)in response to different calcium concentrations and found that low Ca^(2+)(1 mmol·L^(-1))promoted lateral root development,while deficiency(0.1 mmol·L^(-1)Ca^(2+))inhibited lateral root development.Co-expression analysis showed that Ca^(2+)channel glutamate receptors(GLRs)were present in various modules with significance for root development.Two GLR paralogous genes,PagGLR3.3a and Pag GLR3.3b,were mainly expressed in roots and up-regulated under Ca^(2+)deficiency.The CRISPR/Cas9-mediated signal gene(crispr-PagGLR3.3a,PagGLR3.3b)and double gene(crispr-PagGLR3.3ab)mutants presented more and longer lateral roots.Anatomical analysis showed that crispr-PagGLR3.3ab plants had more xylem cells and promoted the development of secondary vascular tissues.Further transcriptomic analysis suggested that knockout of PagGLR3.3a and PagGLR3.3b led to the up-regulation of several genes related to protein phosphorylation,auxin efflux,lignin and hemicellulose biosynthesis as well as transcriptional regulation,which might contribute to lateral root growth.This study not only provides novel insight into how the Ca^(2+)channels mediated root growth and development in trees,but also provides a directive breeding of new poplar species for biofuel and bioenergy production.展开更多
Drought is a main abiotic stress factor hindering plant growth,development,and crop productivity.Therefore,it is crucial to understand the mechanisms by which plants cope with drought stress.Here,the function of the m...Drought is a main abiotic stress factor hindering plant growth,development,and crop productivity.Therefore,it is crucial to understand the mechanisms by which plants cope with drought stress.Here,the function of the maize peroxidase gene ZmPRX1 in drought stress tolerance was investigated by measurement of its expression in response to drought treatment both in a ZmPRX1 overexpression line and a mutant line.The higher root lignin accumulation and seedling survival rate of the overexpression line than that of the wild type or mutant support a role for ZmPRX1 in maize drought tolerance by regulating root development and lignification.Additionally,yeast one-hybrid,Dule luciferase and ChIP-qPCR assays showed that ZmPRX1 is negatively regulated by a nuclear-localized ZmWRKY86 transcription factor.The gene could potentially be used for breeding of drought-tolerant cultivars.展开更多
Polar auxin transport (PAT) is critical in plant growth and development, especially polar differentiation and pattern formation. Lots of studies have been performed in dicots while relative less in monocots. Using two...Polar auxin transport (PAT) is critical in plant growth and development, especially polar differentiation and pattern formation. Lots of studies have been performed in dicots while relative less in monocots. Using two kinds of PAT inhibitors, 2, 3, 5-triiodobenzoic acid (TIBA) and 9-hydroxyfluorene-9-carboxylic acid (HFCA), it was shown that PAT is important for rice (Oryza sativa L. cv. Zhonghua 11) root development, including elongation of the primary roots, initiation and elongation of lateral roots, and formation of adventitious roots. Inhibition of PAT resulted in the shortened primary roots, less and shortened lateral and adventitious roots. Exogenously supplemented NAA can partially rescue the formation of adventitious roots but not lateral roots, while low concentration of NAA (0.1 mumol/L) could not rescue either of them, suggesting the possible different mechanisms of lateral and adventitious root initiations. Treatment of 30 mumol/L TIBA did not completely inhibit the initiation of lateral roots, and survival capacities of which were demonstrated through cross section experiments revealing the presence of primordial of lateral roots at different stages. Further studies through localized application of PAT inhibitors indicated that auxin flow, transported from coleoptiles to the base, is not only responsible for the auxin contents in stem nodes but also critical for initiation and elongation of adventitious roots.展开更多
The root is crucial for the physiological function of the tooth, and a healthy root allows an artificial crown to function as required clinically. Tooth crown development has been studied intensively during the last f...The root is crucial for the physiological function of the tooth, and a healthy root allows an artificial crown to function as required clinically. Tooth crown development has been studied intensively during the last few decades, but root development remains not well understood. Here we review the root development processes, including cell fate determination, induction of odontoblast and cementoblast differentiation, interaction of root epithelium and mesenchyme, and other molecular mechanisms. This review summarizes our current understanding of the signaling cascades and mechanisms involved in root development. It also sets the stage for de novo tooth regeneration.展开更多
Formation of the periodontium begins following onset of tooth-root formation in a coordinated manner after birth. Dental follicle progenitor cells are thought to form the cementum, alveolar bone and Sharpey's fibers ...Formation of the periodontium begins following onset of tooth-root formation in a coordinated manner after birth. Dental follicle progenitor cells are thought to form the cementum, alveolar bone and Sharpey's fibers of the periodontal ligament (PDL). However, little is known about the regulatory morphogens that control differentiation and function of these progenitor cells, as well as the progenitor cells involved in crown and root formation. We investigated the role of bone morphogenetic protein-2 (Bmp2) in these processes by the conditional removal of the Bmp2 gene using the Sp7-Cre-EGFP mouse model. Sp7-Cre-EGFP first becomes active at E18 in the first molar, with robust Cre activity at postnatal day 0 (PO), followed by Cre activity in the second molar, which occurs after P0. There is robust Cre activity in the periodontium and third molars by 2 weeks of age. When the Bmp2gene is removed from Sp7+ (Osterix+) cells, major defects are noted in root, cellular cementum and periodontium formation. First, there are major cell autonomous defects in root-odontoblast terminal differentiation. Second, there are major alterations in formation of the PDLs and cellular cementum, correlated with decreased nuclear factor IC (Nfic), periostin and α-SMA+ cells. Third, there is a failure to produce vascular endothelial growth factor A (VEGF-A) in the periodontium and the pulp leading to decreased formation of the microvascular and associated candidate stem cells in the Bmp2-cKOsp7-cre'EGFe. Fourth, ameloblast function and enamel formation are indirectly altered in the Bmp2-cKOsp7-cre'EGFe. These data demonstrate that the Bmp2 gene has complex roles in postnatal tooth development and periodontium formation.展开更多
Strigolactones(SLs),which are biosynthesized mainly in roots,modulate various aspects of plant growth and development.Here,we review recent research on the role of SLs and their cross-regulation with auxin,cytokinin,a...Strigolactones(SLs),which are biosynthesized mainly in roots,modulate various aspects of plant growth and development.Here,we review recent research on the role of SLs and their cross-regulation with auxin,cytokinin,and ethylene in the modulation of root growth and development.Under nutrientsufficient conditions,SLs regulate the elongation of primary roots and inhibit adventitious root formation in eudicot plants.SLs promote the elongation of seminal roots and increase the number of adventitious roots in grass plants in the short term,while inhibiting lateral root development in both grass and eudicot plants.The effects of SLs on the elongation of root hairs are variable and depend on plant species,growth conditions,and SL concentration.Nitrogen or phosphate deficiency induces the accumulation of endogenous SLs,modulates root growth and development.Genetic analyses indicate cross-regulation of SLs with auxin,cytokinin,and ethylene in regulation of root growth and development.We discuss the implications of these studies and consider their potential for exploiting the components of SL signaling for the design of crop plants with more efficient soil-resource utilization.展开更多
Coal mining often cause serious land degradation, soil erosion, and desertification affecting growth of the local vegetation, especially the roots. Arbuscular mycorrhizal fungi (AMF) inoculation is considered a pote...Coal mining often cause serious land degradation, soil erosion, and desertification affecting growth of the local vegetation, especially the roots. Arbuscular mycorrhizal fungi (AMF) inoculation is considered a potential biotechnological tool for mined soil remediation because mycorrhizal fungi could improve plant growth environment, especially under adverse conditions due to their good symbiosis. A field experiment was conducted to study the ecological effects of AMF (Funneliformis mosseae, Rhizophagus intraradices) on the growth of Amygdalus pedunculata Pall. and their root development in the regenerated mining subsidence sandy land. The reclamation experiment included four treatments: inoculation of Funneliformis mosseae (F.m), inoculation of Rhizophagus intraradices (R.i), combined inoculation of F.m and R.i and non-inoculated treatment. Root mycorrhizal colonization, plant height, crown width, soil moisture, root morphology and certain soil properties were assessed. The results showed that AMF improved the shoot and root growth of Amygdalus pedunculata Pall., and significantly increased root colonization after 1 year of inoculation. Available phosphorus content, activities of phosphatase as well as electrical conductivity in soil rhizosphere of all the three inoculation treatments were higher than that of the non-inoculated treatment. AMF increased the quantity of bacteria and fungi in soil rhizosphere compared with the non-inoculated treatment. Our study indicates that revegetation with AMF inoculum could influence plant growth and root development as well as soil properties, suggesting that AMF inoculation can be effective method for further ecological restoration in coal mine subsided areas.展开更多
INDETERMINATE-DOMAIN proteins(IDDs)are a plant-specific transcription factor family characterized by a conserved ID domain with four zinc finger motifs.Previous studies have demonstrated that IDDs coordinate a diversi...INDETERMINATE-DOMAIN proteins(IDDs)are a plant-specific transcription factor family characterized by a conserved ID domain with four zinc finger motifs.Previous studies have demonstrated that IDDs coordinate a diversity of physiological processes and functions in plant growth and development,including floral transition,plant architecture,seed and root development,and hormone signaling.In this review,we especially summarized the latest knowledge on the functions and working models of IDD members in Arabidopsis,rice,and maize,particularly focusing on their role in the regulatory network of biotic and abiotic environmental responses,such as gravity,temperature,water,and pathogens.Understanding these mechanisms underlying the function of IDD proteins in these processes is important for improving crop yields by manipulating their activity.Overall,the review offers valuable insights into the functions and mechanisms of IDD proteins in plants,providing a foundation for further research and potential applications in agriculture.展开更多
Rhizosphere colonization is a key requirement for the application of plant growth-promoting rhizobacteria(PGPR)as a bioferilizer.Signaling molecules are often exchanged between PGPR and plants,and genes in plants may ...Rhizosphere colonization is a key requirement for the application of plant growth-promoting rhizobacteria(PGPR)as a bioferilizer.Signaling molecules are often exchanged between PGPR and plants,and genes in plants may respond to the action of PGPR.Here,the luciferase luxAB gene was electrotransformed into Pseudomonas sp.strain TK35,a PGPR with an afinity for tobacco,and the labelled TK35(TK35-L)was used to monitor colonization dynamics in the tobacco rhizosphere and evaluate the effects of colonization on tobacco growth and root development.The transcript levels of the hydroxyproline rich glycoprotein HRGPnt3 gene,a lateral root induction indicator,in tobacco roots were examined by qPCR.The results showed that TK35-L could survive for long periods in the tobacco rhizosphere and colonize new spaces in the tobacco rhizosphere following tobacco root extension,exhibiting significant increases in root development,seedling growth and potassium accumulation in tobacco plants.The upregulation of HRGPnt3 transcription in the inoculated tobacco suggested that TK35-L can promote tobacco root development by upregulating the transcript levels of the HRGPnt3 gene,which promotes tobacco seedling growth.These findings lay a foundation for future studies on the molecular mechanism underlying the plant growth-promoting activities of PGPR.Futhermore,this work provided an ideal potential strain for biofertilizer production.展开更多
Root architecture development,an agronomic trait that influences crop yield,is regulated by multiple plant hormones.Abscisic acid(ABA)is a stress hormone that responds to multiple stresses,including salt,drought,and c...Root architecture development,an agronomic trait that influences crop yield,is regulated by multiple plant hormones.Abscisic acid(ABA)is a stress hormone that responds to multiple stresses,including salt,drought,and cold stress,and modulates various aspects of plant growth and development.In recent years,it has been found that ABA synthesized under mild stress or well-watered conditions can support plant growth and stress resistance by positively regulating root architecture development.In this review,we summarize the molecular,cellular,and organismal basis of ABA homeostasis in the root and how ABA signaling affects root architecture development both as an inhibitor and as an activator.We discuss the implications of these studies and the potential for exploiting the components of ABA signaling in designing crop plants with improved root system development and stress resistance.展开更多
Fresh leaves of tea cultivar Shuchazao were harvested from five different stages of shoot development including single-bud(SB),one leaf and one bud(BL1),two leaves and one bud(BL2),three leaves and one bud(BL3)and mat...Fresh leaves of tea cultivar Shuchazao were harvested from five different stages of shoot development including single-bud(SB),one leaf and one bud(BL1),two leaves and one bud(BL2),three leaves and one bud(BL3)and mature leaves(ML,including five leaves).The contents of tea-specific components,including caffeine,catechins and amino acids,in tea leaves were extracted and analyzed using the HPLC technique.The results showed that the content of caffeine in the buds in BL3 stage was generally the highest,while it did not change much in SB,BL1 and BL2 stages.The content of caffeine in the leaves at the same leaf-age was similar in five different development stages.The total contents of catechins in the first leaf were higher than that in the buds in all five development stages,and it was the highest in the first leaf at BL1 stage,but it decreased with the increase of the leaf-age.As far as the monomeric catechins were concerned,non-ester type catechins and ester type catechins can be detected in the buds or leaves in the five development stages.The majority of catechins were epigallocatechingallate(EGCG),which showed a similar variation tendency as that of total catechins.However,the contents of non-ester type catechins such as epicatechingallate(EGC),epicatechin(EC) and gallocatechin(GC) were higher in buds than in leaves,which were opposite to the content variation trends of ester type catechins in the course of shoot development.Theanine was the major amino acids in all development stages of tender shoots,and its content in the stage of single-bud was the highest.The content of theanine in buds was three or four times higher than in leaves,and the older the leaf-age was,the less theanine existed in the leaves.展开更多
Occlusion is commenced by contact of a tooth with an opposing tooth and is the mechanical force working against the periodontal ligament (PDL). Our recent study indicated that occlusion regulated tooth root elongation...Occlusion is commenced by contact of a tooth with an opposing tooth and is the mechanical force working against the periodontal ligament (PDL). Our recent study indicated that occlusion regulated tooth root elongation occurs during root development in rat molars. Using a non-occlusal model established to directly examine the effects of the absence of occlusion in developing first molars of upper jaw, histological analysis was performed to count the number of HERS cells, with Microarray used to analyse gene expression profiles. HERS cell numbers in normal molars decreased significantly more than those in experimental molars. In microarray data, a total of 59 genes showed significant differences (fold change > 2.0). Expressions of 55 genes in the experimental molars, which included PLAP-1/asporin and periostin, were significantly decreased than those in normal molars. These data indicate that occlusion during root development leads to a decrease in the number of HERS cells, and that the aforementioned genes may play an essential role in normal root formation.展开更多
Nanosilver(10−9 m)refers to particles comprising 20–15,000 silver atoms,exhibiting high stability and specific surface area.At present,nanosilver has been used in agricultural cultivation and production.This study ex...Nanosilver(10−9 m)refers to particles comprising 20–15,000 silver atoms,exhibiting high stability and specific surface area.At present,nanosilver has been used in agricultural cultivation and production.This study examined the effects of nanosilver on growth and development of rice root systems.Study results showed that fresh weight of rice belowground organs and root length both increased significantly by 5%and 25%,respectively,after rice radicles were treated with 2 ppm of nanosilver for three days.However,the H_(2)O_(2) level reached its peak at 2 days from treatment,but the activities of the antioxidant enzymes CAT,APX,and GR were inhibited by 2 ppm of nanosilver treatment.The results showed that nanosilver treatment inhibited the antioxidant enzyme activity of rice roots.The treatment of rice radicles with 5μM H_(2)O_(2) promoted root development and the same was observed when nanosilver was used for treatment.Moreover,ascorbic acid(AsA)is a H_(2)O_(2) scavenger and therefore rice root development was inhibited when AsA was added to rice radicles together with either treatment of nanosilver or H_(2)O_(2).In summary,nanosilver treatment of rice radicles promoted root growth and development via the regulation of H_(2)O_(2) and not the O2−pathway.展开更多
Two decades ago,an important development philosophy emerged that would redefine prosperity:“Lucid waters and lush mountains are invaluable assets.”Known as the“Two Mountains”theory,it challenged the conventional t...Two decades ago,an important development philosophy emerged that would redefine prosperity:“Lucid waters and lush mountains are invaluable assets.”Known as the“Two Mountains”theory,it challenged the conventional trade-off between development and the environment by arguing that they are inseparable.展开更多
There are 36 counties affirmed to be aid-poverty-development county in the early 21st century, which distribute around the circumferential mountain of Sichuan Basin, According to the topographic features and the distr...There are 36 counties affirmed to be aid-poverty-development county in the early 21st century, which distribute around the circumferential mountain of Sichuan Basin, According to the topographic features and the distribution of nationality, these aid-poverty-development counties can be classified into 4 depressed-regions. Study shows that regional poverty performance of 4 depressed-regions not only has many commons in the field of regional economic structure and industry structure, which is far behind the average development performance of Sichuan in the field of economic sum per capita such as GDP, farmer net income per capita as well as retail scale consumer goods, it is also quite different related to infrastructure and social development within 4 depressed-regions. Regional Poverty is chronically resulted in interaction of the multi-factors. Natural condition constraint is the basic factor contributed to regional poverty, policy influences play key role, the poor culture is inherent factor to regional poverty and the marginal locations play important role.展开更多
Root/shoot(R/S)ratio is an important index for assessing plant health,and has received increased attention in the last decades as a sensitive indicator of plant stress induced by chemical or physical agents.The R/S ra...Root/shoot(R/S)ratio is an important index for assessing plant health,and has received increased attention in the last decades as a sensitive indicator of plant stress induced by chemical or physical agents.The R/S ratio has been discussed in the context of ecological theory and its potential importance in ecological succession,where species follow different strategies for above-ground growth for light or below-ground competition for water and nutrients.We present evidence showing the R/S ratio follows a biphasic dose–response relationship under stress,typical of hormesis.The R/S ratio in response to stress has been widely compared among species and ecological succession classes.It is constrained by a variety of factors such as ontogeny.Furthermore,the current literature lacks dose-response studies incorporating the full dose–response continuum,hence limiting scientific understanding and possible valuable application.The data presented provide an important perspective for new-generation studies that can advance current ecological understanding and improve carbon storage estimates by R/S ratio considerations.Hormetic response of the R/S ratio can have an important role in forestry for producing seedlings with desired characteristics to achieve maximum health/productivity and resilience under plantation conditions.展开更多
A study was conducted at Akron, CO, USA, on a Weld silt loam in 2004 to quantify the effects of water deficit stress on corn (Zea mays, L.) root and shoot biomass. Corn plants were grown under a range of soil bulk den...A study was conducted at Akron, CO, USA, on a Weld silt loam in 2004 to quantify the effects of water deficit stress on corn (Zea mays, L.) root and shoot biomass. Corn plants were grown under a range of soil bulk density and water conditions caused by previous tillage, crop rotation, and irrigation management. Water deficit stress (Dstress) was quantified by the number of days when the water content in the surface 0.3 m deviated from the water content range determined by the Least Limiting Water Range (LLWR). Root and shoot samples were collected at the V6, V12, and R1 growth stages. There was no significant correlation between Dstress and shoot or root biomass at the V6 growth stage. At the V12 and R1 growth stages, there were negative, linear correlations among Dstress and both root biomass and shoot biomass. The proportional decrease of shoot biomass was greater than the proportional decrease in root biomass, leading to an increase in the root:shoot ratio as water deficit stress increased at all growth stages. Determining restrictive soil conditions using the LLWR may be useful for evaluating improvement or degradation of the soil physical environment caused by soil management.展开更多
Tree peony is well known and sought after for its large, colorful flowers. Its propagation is via vegetative methods. Mech- nisms of the adventitious rooting and the regulation of rooting processes are the principles ...Tree peony is well known and sought after for its large, colorful flowers. Its propagation is via vegetative methods. Mech- nisms of the adventitious rooting and the regulation of rooting processes are the principles and techniques of plant propagation and improvement. Microstructures and fluctuations of phytohormones in the adventitious rooting were studied with the etiolated soft- wood shoots of Paeonia suffkuticosa 'Yinfen Jinlin'. There are no pre-primordia in the shoots of the cultivar. Adventitious roots are produced in five stages: shoot selection, primordium initiation, primordium growth, conducting tissue differentiation and root protru- sion. Primordia initiated in the cortex. The contents of the endogenous hormones, IAA, ABA and GA, were 5.842, 0.873 and 1.043 nmol·g^-1 FW on the bases of shoots, respectively. CTKs which included isopentenyl adenine (iPA), zeatin riboside (ZR) and dihy- drozeatin riboside (DHZR) were 0.949, 0.695 and 2.034 nmol·g^-1 FW, respectively. DHZR is active among CTKs. The ratio of IAA to GA, CTK and ABA clearly increased at the stage of primordium initiation, while they showed low levels at the stages of primor- dium growth. The ratios were restored at the shoot levels at the stage of root protrusion. IBA provoked primordia initiation in the cortex, the vascular cambium, the pith and even in the callus induced on the base of shoots. ]AA levels in the treated shoots increased gradually to its highest level (three times of control) at the stage of conducting tissue differentiation. The ratios of IAA to GA, CTK and ABA clearly decreased at the stage of primordium initiation. The ratio of IAA to ABA is regulated at 10:1.展开更多
The aim of this study was to investigate the effects of concentration of different growth regulators (auxins and cytokinins) on growth and development of banana shoot tips cultured in vitro. Explants were taken from y...The aim of this study was to investigate the effects of concentration of different growth regulators (auxins and cytokinins) on growth and development of banana shoot tips cultured in vitro. Explants were taken from young suckers of field grown plants of var. “Yangambi”. The shoot tips were cultured on MS media supplemented with different concentrations of BAP (0, 2, 4, 6 and 8 mg/l) with or without IAA at concentration of 0.34 mg/l. At the rooting phase, the media was supplemented with different concentrations of IBA (0.1, 0.5, 1.0, 1.5 and 2.0 mg/l) with or without BAP at concentration of 0.2 mg/l. The results indicated that 6.0 mg/l BAP significantly increased the number of shoots formed and the interaction of 6 mg/l BAP with 0.35 mg/l IAA significantly increased the fresh weight. For rooting, 2.0 mg/l IBA was more efficient in number and length of roots produced than all other treatments.展开更多
基金the Sichuan Science and Technology Program(2023NSFSC1933,2022ZDZX0016,2021YFYZ0016)the Chengdu Science and Technology Bureau(2022-YF09-00036-SN)+1 种基金the free exploration project of the State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China(SKL-ZY202214)the Changde Science and Technology Bureau(changkehan 2021–59)。
文摘CALCINEURIN B-LIKE PROTEINS(CBLs)function in osmotic stress responses,root morphogenesis and ion uptake in various plants such as Arabidopsis.However,the roles of Os CBLs in regulating root growth in rice(Oryza sativa),whose root morphology and growth environment strongly differ from those of Arabidopsis,are unknown.Here,we demonstrated that Os CBL3 functioned as a calcium sensor to regulate primary and lateral root development in rice.Os CBL3 interacted with Os CIPK31 in vivo and in vitro,and the loss of function of Os CBL3 or Os CIPK31 resulted in shorter roots and diminished lateral root growth.Overexpression of Os CIPK31 compensated for the root growth defects of Os CBL3 knockout mutants.These results demonstrated that the Os CBL3–Os CIPK31 module coordinated root development via the abscisic acid(ABA)and auxin pathways,as ABA inhibitors and low auxin concentrations partially rescued the short-root phenotype of their respective knockout lines.CYCLOPHYLIN 2(Os CYP2),a key factor in lateral root initiation and root growth maintenance,was phosphorylated by Os CIPK31,and knockout of Os CYP2 in Os CIPK31 overexpression lines resulted in a phenotype similar to that of Os CYP2 single knockout lines.Therefore,the Os CBL3–Os CIPK31 module functioned in ABA and auxin signal transduction,ensuring proper root growth.Os CIPK31,activated by Os CBL3,then phosphorylated Os CYP2,which drove primary and lateral root development.These results establish a new module regulating primary and lateral root development in rice.
基金supported by the National Natural Science Foundation of China(Grant Nos.32371902,31901327)National Key Research and Development Program of China(Grant Nos.2019YFE0119100,2021YFD2200205)+1 种基金Overseas Expertise Introduction Project for Discipline Innovation(111 Project D18008)The researches foundation of Zhejiang A&F University(Grant No.2018FR013)。
文摘Poplar is one of the fastest-growing temperate trees in the world and is widely used in ornamental horticulture for shade.The root is essential for tree growth and development and its utilization potential is huge.Calcium(Ca),as a signaling molecule,is involved in the regulation of plant root development.However,the detailed underlying regulatory mechanism is elusive.In this study,we analyzed the morphological and transcriptomic variations of 84K poplar(Populus alba×P.glandulosa)in response to different calcium concentrations and found that low Ca^(2+)(1 mmol·L^(-1))promoted lateral root development,while deficiency(0.1 mmol·L^(-1)Ca^(2+))inhibited lateral root development.Co-expression analysis showed that Ca^(2+)channel glutamate receptors(GLRs)were present in various modules with significance for root development.Two GLR paralogous genes,PagGLR3.3a and Pag GLR3.3b,were mainly expressed in roots and up-regulated under Ca^(2+)deficiency.The CRISPR/Cas9-mediated signal gene(crispr-PagGLR3.3a,PagGLR3.3b)and double gene(crispr-PagGLR3.3ab)mutants presented more and longer lateral roots.Anatomical analysis showed that crispr-PagGLR3.3ab plants had more xylem cells and promoted the development of secondary vascular tissues.Further transcriptomic analysis suggested that knockout of PagGLR3.3a and PagGLR3.3b led to the up-regulation of several genes related to protein phosphorylation,auxin efflux,lignin and hemicellulose biosynthesis as well as transcriptional regulation,which might contribute to lateral root growth.This study not only provides novel insight into how the Ca^(2+)channels mediated root growth and development in trees,but also provides a directive breeding of new poplar species for biofuel and bioenergy production.
基金supported by the State Key Laboratory of North China Crop Improvement and Regulation(NCCIR2022ZZ-4)the Key Research and Development Projects of Hebei Province(21326319D)。
文摘Drought is a main abiotic stress factor hindering plant growth,development,and crop productivity.Therefore,it is crucial to understand the mechanisms by which plants cope with drought stress.Here,the function of the maize peroxidase gene ZmPRX1 in drought stress tolerance was investigated by measurement of its expression in response to drought treatment both in a ZmPRX1 overexpression line and a mutant line.The higher root lignin accumulation and seedling survival rate of the overexpression line than that of the wild type or mutant support a role for ZmPRX1 in maize drought tolerance by regulating root development and lignification.Additionally,yeast one-hybrid,Dule luciferase and ChIP-qPCR assays showed that ZmPRX1 is negatively regulated by a nuclear-localized ZmWRKY86 transcription factor.The gene could potentially be used for breeding of drought-tolerant cultivars.
文摘Polar auxin transport (PAT) is critical in plant growth and development, especially polar differentiation and pattern formation. Lots of studies have been performed in dicots while relative less in monocots. Using two kinds of PAT inhibitors, 2, 3, 5-triiodobenzoic acid (TIBA) and 9-hydroxyfluorene-9-carboxylic acid (HFCA), it was shown that PAT is important for rice (Oryza sativa L. cv. Zhonghua 11) root development, including elongation of the primary roots, initiation and elongation of lateral roots, and formation of adventitious roots. Inhibition of PAT resulted in the shortened primary roots, less and shortened lateral and adventitious roots. Exogenously supplemented NAA can partially rescue the formation of adventitious roots but not lateral roots, while low concentration of NAA (0.1 mumol/L) could not rescue either of them, suggesting the possible different mechanisms of lateral and adventitious root initiations. Treatment of 30 mumol/L TIBA did not completely inhibit the initiation of lateral roots, and survival capacities of which were demonstrated through cross section experiments revealing the presence of primordial of lateral roots at different stages. Further studies through localized application of PAT inhibitors indicated that auxin flow, transported from coleoptiles to the base, is not only responsible for the auxin contents in stem nodes but also critical for initiation and elongation of adventitious roots.
基金supported by grants from the NIDCR, NIH (DE012711 and DE014078) to Yang ChaiNational Natural Science Foundation of China (81170943)+1 种基金Beijing Natural Science Foundation (7122051)Funding for Talents in Beijing (D) (2010D003034000012) to Xiao-Feng Huang
文摘The root is crucial for the physiological function of the tooth, and a healthy root allows an artificial crown to function as required clinically. Tooth crown development has been studied intensively during the last few decades, but root development remains not well understood. Here we review the root development processes, including cell fate determination, induction of odontoblast and cementoblast differentiation, interaction of root epithelium and mesenchyme, and other molecular mechanisms. This review summarizes our current understanding of the signaling cascades and mechanisms involved in root development. It also sets the stage for de novo tooth regeneration.
基金partly supported by research grant funding:NIH-NIAMS R01- AR054616 (SEH), NIH-NIDCR T32-DE14318 (Rakian) and F32-DE018865 (Yang)supported by UTHSCSA, NIH-NCI P30-CA54174 (CTRC at UTHSCSA) and NIH-NIA P01-AG19316supported by Open Fund of State Key Laboratory of Oral Diseases, Sichuan University
文摘Formation of the periodontium begins following onset of tooth-root formation in a coordinated manner after birth. Dental follicle progenitor cells are thought to form the cementum, alveolar bone and Sharpey's fibers of the periodontal ligament (PDL). However, little is known about the regulatory morphogens that control differentiation and function of these progenitor cells, as well as the progenitor cells involved in crown and root formation. We investigated the role of bone morphogenetic protein-2 (Bmp2) in these processes by the conditional removal of the Bmp2 gene using the Sp7-Cre-EGFP mouse model. Sp7-Cre-EGFP first becomes active at E18 in the first molar, with robust Cre activity at postnatal day 0 (PO), followed by Cre activity in the second molar, which occurs after P0. There is robust Cre activity in the periodontium and third molars by 2 weeks of age. When the Bmp2gene is removed from Sp7+ (Osterix+) cells, major defects are noted in root, cellular cementum and periodontium formation. First, there are major cell autonomous defects in root-odontoblast terminal differentiation. Second, there are major alterations in formation of the PDLs and cellular cementum, correlated with decreased nuclear factor IC (Nfic), periostin and α-SMA+ cells. Third, there is a failure to produce vascular endothelial growth factor A (VEGF-A) in the periodontium and the pulp leading to decreased formation of the microvascular and associated candidate stem cells in the Bmp2-cKOsp7-cre'EGFe. Fourth, ameloblast function and enamel formation are indirectly altered in the Bmp2-cKOsp7-cre'EGFe. These data demonstrate that the Bmp2 gene has complex roles in postnatal tooth development and periodontium formation.
基金funded by the National Natural Science Foundation of China(31601821 and 31770300)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28110100)+1 种基金the National Key Research and Development Program of China(2018YFE0194000,2018YFD0100304,2016YFD0101006)the Special Fund for Henan Agriculture Research System(HARS-22-03-G3)。
文摘Strigolactones(SLs),which are biosynthesized mainly in roots,modulate various aspects of plant growth and development.Here,we review recent research on the role of SLs and their cross-regulation with auxin,cytokinin,and ethylene in the modulation of root growth and development.Under nutrientsufficient conditions,SLs regulate the elongation of primary roots and inhibit adventitious root formation in eudicot plants.SLs promote the elongation of seminal roots and increase the number of adventitious roots in grass plants in the short term,while inhibiting lateral root development in both grass and eudicot plants.The effects of SLs on the elongation of root hairs are variable and depend on plant species,growth conditions,and SL concentration.Nitrogen or phosphate deficiency induces the accumulation of endogenous SLs,modulates root growth and development.Genetic analyses indicate cross-regulation of SLs with auxin,cytokinin,and ethylene in regulation of root growth and development.We discuss the implications of these studies and consider their potential for exploiting the components of SL signaling for the design of crop plants with more efficient soil-resource utilization.
基金The study was financially supported by the National Natural Science Foundation of China (51574253) and the National Key Research and Development Program of China (2016YFC0501106).
文摘Coal mining often cause serious land degradation, soil erosion, and desertification affecting growth of the local vegetation, especially the roots. Arbuscular mycorrhizal fungi (AMF) inoculation is considered a potential biotechnological tool for mined soil remediation because mycorrhizal fungi could improve plant growth environment, especially under adverse conditions due to their good symbiosis. A field experiment was conducted to study the ecological effects of AMF (Funneliformis mosseae, Rhizophagus intraradices) on the growth of Amygdalus pedunculata Pall. and their root development in the regenerated mining subsidence sandy land. The reclamation experiment included four treatments: inoculation of Funneliformis mosseae (F.m), inoculation of Rhizophagus intraradices (R.i), combined inoculation of F.m and R.i and non-inoculated treatment. Root mycorrhizal colonization, plant height, crown width, soil moisture, root morphology and certain soil properties were assessed. The results showed that AMF improved the shoot and root growth of Amygdalus pedunculata Pall., and significantly increased root colonization after 1 year of inoculation. Available phosphorus content, activities of phosphatase as well as electrical conductivity in soil rhizosphere of all the three inoculation treatments were higher than that of the non-inoculated treatment. AMF increased the quantity of bacteria and fungi in soil rhizosphere compared with the non-inoculated treatment. Our study indicates that revegetation with AMF inoculum could influence plant growth and root development as well as soil properties, suggesting that AMF inoculation can be effective method for further ecological restoration in coal mine subsided areas.
基金the National Natural Science Foundation of China(31800225 and 32370363)the Natural Science Foundation of Shandong Province(ZR2020MC027 and ZR2021QC213).
文摘INDETERMINATE-DOMAIN proteins(IDDs)are a plant-specific transcription factor family characterized by a conserved ID domain with four zinc finger motifs.Previous studies have demonstrated that IDDs coordinate a diversity of physiological processes and functions in plant growth and development,including floral transition,plant architecture,seed and root development,and hormone signaling.In this review,we especially summarized the latest knowledge on the functions and working models of IDD members in Arabidopsis,rice,and maize,particularly focusing on their role in the regulatory network of biotic and abiotic environmental responses,such as gravity,temperature,water,and pathogens.Understanding these mechanisms underlying the function of IDD proteins in these processes is important for improving crop yields by manipulating their activity.Overall,the review offers valuable insights into the functions and mechanisms of IDD proteins in plants,providing a foundation for further research and potential applications in agriculture.
基金Supported by the National Natural Science Foundation of China(41401269)the Key Project of the University Natural Science Research Project of Anhui Province,China(KJ2019A0183)+1 种基金the Open Fund of Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention(FECPP201902)the Key Research Project of China National Tobacco Corporation Hubei Company(027Y2020-011).
文摘Rhizosphere colonization is a key requirement for the application of plant growth-promoting rhizobacteria(PGPR)as a bioferilizer.Signaling molecules are often exchanged between PGPR and plants,and genes in plants may respond to the action of PGPR.Here,the luciferase luxAB gene was electrotransformed into Pseudomonas sp.strain TK35,a PGPR with an afinity for tobacco,and the labelled TK35(TK35-L)was used to monitor colonization dynamics in the tobacco rhizosphere and evaluate the effects of colonization on tobacco growth and root development.The transcript levels of the hydroxyproline rich glycoprotein HRGPnt3 gene,a lateral root induction indicator,in tobacco roots were examined by qPCR.The results showed that TK35-L could survive for long periods in the tobacco rhizosphere and colonize new spaces in the tobacco rhizosphere following tobacco root extension,exhibiting significant increases in root development,seedling growth and potassium accumulation in tobacco plants.The upregulation of HRGPnt3 transcription in the inoculated tobacco suggested that TK35-L can promote tobacco root development by upregulating the transcript levels of the HRGPnt3 gene,which promotes tobacco seedling growth.These findings lay a foundation for future studies on the molecular mechanism underlying the plant growth-promoting activities of PGPR.Futhermore,this work provided an ideal potential strain for biofertilizer production.
基金funded by the National Natural Science Foundation of China(32171927,31900219)Natural Science Foundation of Hunan Province(2023JJ40318,2021JJ30349)+2 种基金Guangdong Basic and Applied Basic Research Foundation(2022A1515111230)Shenzhen Science and Technology Program(JCYJ20220531103803008)the Hong Kong Research Grant Council(Ao E/M-05/12,Ao E/M-403/16,GRF12101722,12103220,12103219)。
文摘Root architecture development,an agronomic trait that influences crop yield,is regulated by multiple plant hormones.Abscisic acid(ABA)is a stress hormone that responds to multiple stresses,including salt,drought,and cold stress,and modulates various aspects of plant growth and development.In recent years,it has been found that ABA synthesized under mild stress or well-watered conditions can support plant growth and stress resistance by positively regulating root architecture development.In this review,we summarize the molecular,cellular,and organismal basis of ABA homeostasis in the root and how ABA signaling affects root architecture development both as an inhibitor and as an activator.We discuss the implications of these studies and the potential for exploiting the components of ABA signaling in designing crop plants with improved root system development and stress resistance.
基金supported by national 973 plan (973 cb722903)Changjiang scholars and innovative team development plan (IRT1101)+1 种基金national natural science foundation of China (31170283)the specialized research fund for the doctoral program of institutions of higher learning (2011341830001)
文摘Fresh leaves of tea cultivar Shuchazao were harvested from five different stages of shoot development including single-bud(SB),one leaf and one bud(BL1),two leaves and one bud(BL2),three leaves and one bud(BL3)and mature leaves(ML,including five leaves).The contents of tea-specific components,including caffeine,catechins and amino acids,in tea leaves were extracted and analyzed using the HPLC technique.The results showed that the content of caffeine in the buds in BL3 stage was generally the highest,while it did not change much in SB,BL1 and BL2 stages.The content of caffeine in the leaves at the same leaf-age was similar in five different development stages.The total contents of catechins in the first leaf were higher than that in the buds in all five development stages,and it was the highest in the first leaf at BL1 stage,but it decreased with the increase of the leaf-age.As far as the monomeric catechins were concerned,non-ester type catechins and ester type catechins can be detected in the buds or leaves in the five development stages.The majority of catechins were epigallocatechingallate(EGCG),which showed a similar variation tendency as that of total catechins.However,the contents of non-ester type catechins such as epicatechingallate(EGC),epicatechin(EC) and gallocatechin(GC) were higher in buds than in leaves,which were opposite to the content variation trends of ester type catechins in the course of shoot development.Theanine was the major amino acids in all development stages of tender shoots,and its content in the stage of single-bud was the highest.The content of theanine in buds was three or four times higher than in leaves,and the older the leaf-age was,the less theanine existed in the leaves.
文摘Occlusion is commenced by contact of a tooth with an opposing tooth and is the mechanical force working against the periodontal ligament (PDL). Our recent study indicated that occlusion regulated tooth root elongation occurs during root development in rat molars. Using a non-occlusal model established to directly examine the effects of the absence of occlusion in developing first molars of upper jaw, histological analysis was performed to count the number of HERS cells, with Microarray used to analyse gene expression profiles. HERS cell numbers in normal molars decreased significantly more than those in experimental molars. In microarray data, a total of 59 genes showed significant differences (fold change > 2.0). Expressions of 55 genes in the experimental molars, which included PLAP-1/asporin and periostin, were significantly decreased than those in normal molars. These data indicate that occlusion during root development leads to a decrease in the number of HERS cells, and that the aforementioned genes may play an essential role in normal root formation.
文摘Nanosilver(10−9 m)refers to particles comprising 20–15,000 silver atoms,exhibiting high stability and specific surface area.At present,nanosilver has been used in agricultural cultivation and production.This study examined the effects of nanosilver on growth and development of rice root systems.Study results showed that fresh weight of rice belowground organs and root length both increased significantly by 5%and 25%,respectively,after rice radicles were treated with 2 ppm of nanosilver for three days.However,the H_(2)O_(2) level reached its peak at 2 days from treatment,but the activities of the antioxidant enzymes CAT,APX,and GR were inhibited by 2 ppm of nanosilver treatment.The results showed that nanosilver treatment inhibited the antioxidant enzyme activity of rice roots.The treatment of rice radicles with 5μM H_(2)O_(2) promoted root development and the same was observed when nanosilver was used for treatment.Moreover,ascorbic acid(AsA)is a H_(2)O_(2) scavenger and therefore rice root development was inhibited when AsA was added to rice radicles together with either treatment of nanosilver or H_(2)O_(2).In summary,nanosilver treatment of rice radicles promoted root growth and development via the regulation of H_(2)O_(2) and not the O2−pathway.
文摘Two decades ago,an important development philosophy emerged that would redefine prosperity:“Lucid waters and lush mountains are invaluable assets.”Known as the“Two Mountains”theory,it challenged the conventional trade-off between development and the environment by arguing that they are inseparable.
基金Supported by Youth Funding of Sichuan Academy of Soclal Scienccs in 2003(YFSASS03-13)
文摘There are 36 counties affirmed to be aid-poverty-development county in the early 21st century, which distribute around the circumferential mountain of Sichuan Basin, According to the topographic features and the distribution of nationality, these aid-poverty-development counties can be classified into 4 depressed-regions. Study shows that regional poverty performance of 4 depressed-regions not only has many commons in the field of regional economic structure and industry structure, which is far behind the average development performance of Sichuan in the field of economic sum per capita such as GDP, farmer net income per capita as well as retail scale consumer goods, it is also quite different related to infrastructure and social development within 4 depressed-regions. Regional Poverty is chronically resulted in interaction of the multi-factors. Natural condition constraint is the basic factor contributed to regional poverty, policy influences play key role, the poor culture is inherent factor to regional poverty and the marginal locations play important role.
基金supported by JSPS KAKENHI Grant Number JP17F17102German Research Foundation(BE4189/1-3)+1 种基金the US Air Force [AFOSR FA9550-13-1-0047]Exxon Mobil Foundation [S18200000000256]
文摘Root/shoot(R/S)ratio is an important index for assessing plant health,and has received increased attention in the last decades as a sensitive indicator of plant stress induced by chemical or physical agents.The R/S ratio has been discussed in the context of ecological theory and its potential importance in ecological succession,where species follow different strategies for above-ground growth for light or below-ground competition for water and nutrients.We present evidence showing the R/S ratio follows a biphasic dose–response relationship under stress,typical of hormesis.The R/S ratio in response to stress has been widely compared among species and ecological succession classes.It is constrained by a variety of factors such as ontogeny.Furthermore,the current literature lacks dose-response studies incorporating the full dose–response continuum,hence limiting scientific understanding and possible valuable application.The data presented provide an important perspective for new-generation studies that can advance current ecological understanding and improve carbon storage estimates by R/S ratio considerations.Hormetic response of the R/S ratio can have an important role in forestry for producing seedlings with desired characteristics to achieve maximum health/productivity and resilience under plantation conditions.
文摘A study was conducted at Akron, CO, USA, on a Weld silt loam in 2004 to quantify the effects of water deficit stress on corn (Zea mays, L.) root and shoot biomass. Corn plants were grown under a range of soil bulk density and water conditions caused by previous tillage, crop rotation, and irrigation management. Water deficit stress (Dstress) was quantified by the number of days when the water content in the surface 0.3 m deviated from the water content range determined by the Least Limiting Water Range (LLWR). Root and shoot samples were collected at the V6, V12, and R1 growth stages. There was no significant correlation between Dstress and shoot or root biomass at the V6 growth stage. At the V12 and R1 growth stages, there were negative, linear correlations among Dstress and both root biomass and shoot biomass. The proportional decrease of shoot biomass was greater than the proportional decrease in root biomass, leading to an increase in the root:shoot ratio as water deficit stress increased at all growth stages. Determining restrictive soil conditions using the LLWR may be useful for evaluating improvement or degradation of the soil physical environment caused by soil management.
文摘Tree peony is well known and sought after for its large, colorful flowers. Its propagation is via vegetative methods. Mech- nisms of the adventitious rooting and the regulation of rooting processes are the principles and techniques of plant propagation and improvement. Microstructures and fluctuations of phytohormones in the adventitious rooting were studied with the etiolated soft- wood shoots of Paeonia suffkuticosa 'Yinfen Jinlin'. There are no pre-primordia in the shoots of the cultivar. Adventitious roots are produced in five stages: shoot selection, primordium initiation, primordium growth, conducting tissue differentiation and root protru- sion. Primordia initiated in the cortex. The contents of the endogenous hormones, IAA, ABA and GA, were 5.842, 0.873 and 1.043 nmol·g^-1 FW on the bases of shoots, respectively. CTKs which included isopentenyl adenine (iPA), zeatin riboside (ZR) and dihy- drozeatin riboside (DHZR) were 0.949, 0.695 and 2.034 nmol·g^-1 FW, respectively. DHZR is active among CTKs. The ratio of IAA to GA, CTK and ABA clearly increased at the stage of primordium initiation, while they showed low levels at the stages of primor- dium growth. The ratios were restored at the shoot levels at the stage of root protrusion. IBA provoked primordia initiation in the cortex, the vascular cambium, the pith and even in the callus induced on the base of shoots. ]AA levels in the treated shoots increased gradually to its highest level (three times of control) at the stage of conducting tissue differentiation. The ratios of IAA to GA, CTK and ABA clearly decreased at the stage of primordium initiation. The ratio of IAA to ABA is regulated at 10:1.
文摘The aim of this study was to investigate the effects of concentration of different growth regulators (auxins and cytokinins) on growth and development of banana shoot tips cultured in vitro. Explants were taken from young suckers of field grown plants of var. “Yangambi”. The shoot tips were cultured on MS media supplemented with different concentrations of BAP (0, 2, 4, 6 and 8 mg/l) with or without IAA at concentration of 0.34 mg/l. At the rooting phase, the media was supplemented with different concentrations of IBA (0.1, 0.5, 1.0, 1.5 and 2.0 mg/l) with or without BAP at concentration of 0.2 mg/l. The results indicated that 6.0 mg/l BAP significantly increased the number of shoots formed and the interaction of 6 mg/l BAP with 0.35 mg/l IAA significantly increased the fresh weight. For rooting, 2.0 mg/l IBA was more efficient in number and length of roots produced than all other treatments.