期刊文献+
共找到889篇文章
< 1 2 45 >
每页显示 20 50 100
Effects of soil moisture on cotton root length density and yield under drip irrigation with plastic mulch in Aksu Oasis farmland 被引量:10
1
作者 Yilihamu Yimamu 《Journal of Arid Land》 SCIE 2010年第4期243-249,共7页
Effects of soil moisture on cotton root length density (total root length per unit soil volume) and yield under drip irrigation with plastic mulch were studied through field experiments. The results indicate that spat... Effects of soil moisture on cotton root length density (total root length per unit soil volume) and yield under drip irrigation with plastic mulch were studied through field experiments. The results indicate that spatial distributions of root length density of cotton under various water treatments were basically similar. Horizontally, both root length densities of cotton in wide and narrow rows were similar, and higher than that between mulches. Vertically, root length density of cotton decreased with increasing soil depth. The distribution of root length density is different under different irrigation treatments. In conditions of over-irrigation, the root length density of cotton between mulches would increase. However, it would decrease in both the wide rows and narrow rows. The mean root length density of cotton increased with increasing irrigation water. Water stress caused the root length density to increase in lower soil layers. There is a significant correlation between root length density and yields of cotton at the flower-boll and wadding stages. The regression between irrigation amount and yield of cotton can be expressed as y = -0.0026x2+18.015x-24845 (R2 = 0.959). It showed that the irrigation volume of 3,464.4 m3/hm2 led to op-timal root length density. The yield of cotton was 6,360 .8 kg/hm2 under that amount of irrigation. 展开更多
关键词 drip irrigation under plastic mulch soil moisture COTTON root length density
在线阅读 下载PDF
Root length density distribution and associated soil water dynamics for tomato plants under furrow irrigation in a solar greenhouse 被引量:3
2
作者 QIU Rangjian DU Taisheng KANG Shaozhong 《Journal of Arid Land》 SCIE CSCD 2017年第5期637-650,共14页
Furrow irrigation is a traditional widely-used irrigation method in the world. Understanding the dynamics of soil water distribution is essential to developing effective furrow irrigation strategies, especially in wat... Furrow irrigation is a traditional widely-used irrigation method in the world. Understanding the dynamics of soil water distribution is essential to developing effective furrow irrigation strategies, especially in water-limited regions. The objectives of this study are to analyze root length density distribution and to explore soil water dynamics by simulating soil water content using a HYDRUS-2D model with consideration of root water uptake for furrow irrigated tomato plants in a solar greenhouse in Northwest China. Soil water contents were also in-situ observed by the ECH_2O sensors from 4 June to 19 June and from 21 June to 4 July, 2012. Results showed that the root length density of tomato plants was concentrated in the 0–50 cm soil layers, and radiated 0–18 cm toward the furrow and 0–30 cm along the bed axis. Soil water content values simulated by the HYDRUS-2D model agreed well with those observed by the ECH_2O sensors, with regression coefficient of 0.988, coefficient of determination of 0.89, and index of agreement of 0.97. The HYDRUS-2D model with the calibrated parameters was then applied to explore the optimal irrigation scheduling. Infrequent irrigation with a large amount of water for each irrigation event could result in 10%–18% of the irrigation water losses. Thus we recommend high irrigation frequency with a low amount of water for each irrigation event in greenhouses for arid region. The maximum high irrigation amount and the suitable irrigation interval required to avoid plant water stress and drainage water were 34 mm and 6 days, respectively, for given daily average transpiration rate of 4.0 mm/d. To sum up, the HYDRUS-2D model with consideration of root water uptake can be used to improve irrigation scheduling for furrow irrigated tomato plants in greenhouses in arid regions. 展开更多
关键词 root length density distribution HYDRUS-2D model soil water content irrigation scheduling greenhouse
在线阅读 下载PDF
Flavonoid scutellarin positively regulates root length through NUTCRACKER
3
作者 Xing Huang Weiqi Li Xudong Zhang 《Plant Diversity》 SCIE CAS CSCD 2021年第3期248-254,共7页
Exploring approaches to regulate meristem is of special importance and broad interest.In this study,we found that the flavonoid scutellarin,which has a 6-hydroxyl and a 7-glucoside,increased root length through the tr... Exploring approaches to regulate meristem is of special importance and broad interest.In this study,we found that the flavonoid scutellarin,which has a 6-hydroxyl and a 7-glucoside,increased root length through the transcription factor NUTCRACKER(NUC).This root lengthening disappeared in NUCknockout and reappeared in NUC-rescue plants.Scutellarin induced NUC expression and promoted the division of cortex/endodermal initials.In contrast,naringenin,which has same chemical backbone but without 6-hydroxyl and with 7-hydroxyl group,showed the opposite or no effects.Our results demonstrate that scutellarin promotes root length through NUC-mediated regulatory pathways and reveal that flavonoids with and without the 6-hydroxyl and 7-glucoside have positive and negative effects on meristem size,respectively。 展开更多
关键词 root length Meristem size Flavonoid SCUTELLARIN NARINGENIN NUTCRACKER
在线阅读 下载PDF
Root Length Density in Maize/Cowpea Intercropping under a Basin Tillage System in a Semi-Arid Area of Zimbabwe 被引量:1
4
作者 E. D. N. Dube T. Madanzi +1 位作者 A. Kapenzi E. Masvaya 《American Journal of Plant Sciences》 2014年第11期1499-1507,共9页
A study to assess the effect of intercropping maize (Zea mays L.) and cowpea (Vigna unguiculata L.) within the same basin or outside the basin on root length density (RLD) was conducted at the International Crop Resea... A study to assess the effect of intercropping maize (Zea mays L.) and cowpea (Vigna unguiculata L.) within the same basin or outside the basin on root length density (RLD) was conducted at the International Crop Research Institute for Semi-Arid Tropics (ICRISAT) Matopos Research Station from December 2009 to April 2010. The experiment was laid out in a Randomised Complete Block Design (RCBD) with four treatments replicated four times namely;sole maize, sole cowpea, maize-cowpea intercrop with cowpea and maize planted within the same basin and maize-cowpea intercrop with cowpea planted 20 cm outside the maize basin. There was significant difference (P < 0.001) in RLD, grain yield and stover yield. Maize-cowpea intercropped within the same basin achieved higher RLD, grain yield and stover yield than cowpea that was intercropped outside the basin and the sole crops. The land equivalent ratio (LER) in both intercrop designs showed that intercropping had better grain yield performance when compared to sole cropping. It can be concluded that intercropping maize and cowpeas within the same basin can result in an environment around the crop achieving higher RLD which translates to better grain yield compared to the sole cropping and intercropping cowpeas outside the basin. 展开更多
关键词 INTERCROPPING COMPETITION root length Density GRAIN Yield
在线阅读 下载PDF
Seasonal dynamics of fine root biomass, root length density, specific root length, and soil resource availability in a Larix gmelinii plantation 被引量:2
5
作者 CHENG Yunhuan HAN Youzhi +1 位作者 WANG Qingcheng WANG Zhengquan 《Frontiers in Biology》 CSCD 2006年第3期310-317,共8页
Fine root turnover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors.Despite the importance of fine root turnover in plant C alloca... Fine root turnover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors.Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past,our understanding of it remains limited.This is because the dynamics processes associated with soil resources availability are still poorly understood.Soil moisture,temperature,and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level.In temperate forest ecosystems,seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground.Therefore,fine root biomass,root length density(RLD)and specific root length(SRL)vary during the growing season.Studying seasonal changes of fine root biomass,RLD,and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover.The objective of this study was to understand whether seasonal variations of fine root biomass,RLD and SRL were associated with soil resource availability,such as moisture,temperature,and nitrogen,and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation.We used a soil coring method to obtain fine root samples(≤2 mm in diameter)every month from May to October in 2002 from a 17-year-old L.gmelinii plantation in Maoershan Experiment Station,Northeast Forestry University,China.Seventy-two soil cores(inside diameter 60 mm;depth intervals:0-10 cm,10-20 cm,20-30 cm)were sampled randomly from three replicates 25 m×30 m plots to estimate fine root biomass(live and dead),and calculate RLD and SRL.Soil moisture,temperature,and nitrogen(ammonia and nitrates)at three depth intervals were also analyzed in these plots.Results showed that the average standing fine root biomass(live and dead)was 189.1 g·m^(-2)·a^(-1),50%(95.4 g·m^(-2)·a^(-1))in the surface soil layer(0-10 cm),33%(61.5 g·m^(-2)·a^(-1)),17%(32.2 g·m^(-2)·a^(-1))in the middle(10-20 cm)and deep layer(20-30cm),respectively.Live and dead fine root biomass was the highest from May to July and in September,but lower in August and October.The live fine root biomass decreased and dead biomass increased during the growing season.Mean RLD(7,411.56 m·m^(-3)·a^(-1))and SRL(10.83 m·g^(-1)·a^(-1))in the surface layer were higher than RLD(1474.68 m·m^(-3)·a^(-1))and SRL(8.56 m·g^(-1)·a^(-1))in the deep soil layer.RLD and SRL in May were the highest(10621.45 m·m^(-3) and 14.83m·g^(-1))compared with those in the other months,and RLD was the lowest in September(2198.20 m·m^(-3))and SRL in October(3.77 m·g^(-1)).Seasonal dynamics of fine root biomass,RLD,and SRL showed a close relationship with changes in soil moisture,temperature,and nitrogen availability.To a lesser extent,the temperature could be determined by regression analysis.Fine roots in the upper soil layer have a function of absorbing moisture and nutrients,while the main function of deeper soil may be moisture uptake rather than nutrient acquisition.Therefore,carbon allocation to roots in the upper soil layer and deeper soil layer was different.Multiple regression analysis showed that variation in soil resource availability could explain 71-73%of the seasonal variation of RLD and SRL and 58%of the variation in fine root biomass.These results suggested a greater metabolic activity of fine roots living in soil with higher resource availability,which resulted in an increased allocation of carbohydrate to these roots,but a lower allocation of carbohydrate to those in soil with lower resource availability. 展开更多
关键词 Larix gmelinii fine root biomass root length density specific root length soil resource availability seasonal dynamics
原文传递
Characterization of alpine meadow surface crack and its correlation with root-soil properties 被引量:1
6
作者 WU Yuechen ZHU Haili +5 位作者 ZHANG Yu ZHANG Hailong LIU Guosong LIU Yabin LI Guorong HU Xiasong 《Journal of Arid Land》 SCIE CSCD 2024年第6期834-851,共18页
Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex c... Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex cracks,serving as vital factors in assessing the degree of cracking and the development morphology.So far,research on evaluating the degree of grassland degradation through crack characterization indices is rare,especially the quantitative analysis of the development of surface cracks in alpine meadows is relatively scarce.Therefore,based on the phenomenon of surface cracking during the degradation of alpine meadows in some regions of the Qinghai-Tibet Plateau,we selected the alpine meadow in the Huangcheng Mongolian Township,Menyuan Hui Autonomous County,Qinghai Province,China as the study area,used unmanned aerial vehicle(UAV)sensing technology to acquire low-altitude images of alpine meadow surface cracks at different degrees of degradation(light,medium,and heavy degradation),and analyzed the representative metrics characterizing the degree of crack development by interpreting the crack length,length density,branch angle,and burrow(rat hole)distribution density and combining them with in situ crack width and depth measurements.Finally,the correlations between the crack characterization indices and the soil and root parameters of sample plots at different degrees of degradation in the study area were analyzed using the grey relation analysis.The results revealed that with the increase of degradation,the physical and chemical properties of soil and the mechanical properties of root-soil composite changed significantly,the vegetation coverage reduced,and the root system aggregated in the surface layer of alpine meadow.As the degree of degradation increased,the fracture morphology developed from"linear"to"dendritic",and eventually to a complex and irregular"polygonal"pattern.The crack length,width,depth,and length density were identified as the crack characterization indices via analysis of variance.The results of grey relation analysis also revealed that the crack length,width,depth,and length density were all highly correlated with root length density,and as the degradation of alpine meadows intensified,the underground biomass increased dramatically,forming a dense layer of grass felt,which has a significant impact on the formation and expansion of cracks. 展开更多
关键词 alpine meadow grassland degradation grassland cracks crack characterization index crack morphology root length density grey relation analysis
在线阅读 下载PDF
Tooth anatomy risk factors influencing root canal working length accessibility 被引量:9
7
作者 Lu Tang Tuo-qi Sun +2 位作者 Xiao-jie Gao Xue-dong Zhou Ding-ming Huang 《International Journal of Oral Science》 SCIE CAS CSCD 2011年第3期135-140,共6页
The aim of this study was to analyze the specific influence of root canal anatomy on the accessibility of working length during root canal therapy. Four hundred seventy-six root canal therapy cases (amounting to a to... The aim of this study was to analyze the specific influence of root canal anatomy on the accessibility of working length during root canal therapy. Four hundred seventy-six root canal therapy cases (amounting to a total of 1 005 root canals) were examined. The anatomy risk factors assessed in each case included: tooth type (tooth location), root canal curvature, and root canal calcification, as well as endodontic retreatment. The investigation examined the correlation between each of these anatomic factors and the working length, with statistical analysis consisting of Chi-square tests and multiple logistic regression analysis. In an independent factor analysis, tooth type (tooth iocation), root canal curvature, canal calcification, and endodontic retreatment were determined to be the primary risk factors. In a multiple-factor regression model, root curvature and canal calcification were found to most significantly influence root canal working length accessibility (P〈0.05). Root canal anatomy increases the difficulty of root canal preparation. Appropriate consideration of tooth anatomy will assist in accurate determination of preparation difficulty before instrumentation. This study alerts clinical therapists to anatomical factors influencing the working length accessibility, and allows for a direct estimate of success rate given in situ measurements of tooth factors during the root canal treatment procedure. 展开更多
关键词 root canal anatomy root canal preparation root canal treatment working length
在线阅读 下载PDF
Determination of the Root Canal Length of Teeth of Bantu Patients Attending the Teaching Hospital of Kinshasa University 被引量:3
8
作者 Jean Marie Kayembe Bukama Jean Paul Sekele Issourdi +6 位作者 Fidele Nyimi Bushabu Augustin Mantshumba Milolo Steve Sekele Masin M. A. Agbor Dieudonne Nyembue Tshipukana Alain Nyengele Kayembe Hubert Ntumba Mulumba 《Open Journal of Stomatology》 2018年第1期16-23,共8页
Background: There is paucity of literature on the determination of the root canal length of Bantu subjects in dental professional practicing in Africa and Democratic Republic of Congo in particular. Aims: The aim of t... Background: There is paucity of literature on the determination of the root canal length of Bantu subjects in dental professional practicing in Africa and Democratic Republic of Congo in particular. Aims: The aim of the present study was to determine the root canal length of teeth of Bantu patients extracts attending the Teaching Hospital of Kinshasa University. Methods and Material: Prospective cross-sectional study was carried out in the service of Conservative Dentistry. The patients suffering with pulpitis of permanent teeth which were selected for root canal treatment during the period of January 2014 to December 2016 were included. All patients whose main root canals were inaccessible, teeth carrying prosthesis, teeth with large coronal decay, teeth having periapical periodontitis, supernumerary teeth, wisdom and primary teeth were excluded. Results: The upper canines presented some significant longer canals compared to the lower canine (23.4 ± 2.3 mm and 21.6 ± 1.8 mm). Palatal canals of the first and second molar were respectively longer as compared to the superior teeth canals (21.5 ± 1 mm, 21.3 ± 2 mm). The distal canals of the first and second molar were the longest in the mandibular arch respectively measuring 20.7 ± 2.0 mm and 21.5 ± 1.7 mm. Conclusion: Data obtained from Bantu patients show slightly shorter roots compared to some European populations, but longer than some Asian populations. 展开更多
关键词 BANTU length root CANAL X-Ray
暂未订购
Root Growth of the Annual Tillering Grass Panicum miliaceum in Heterogeneous Nutrient Environments 被引量:2
9
作者 何维明 董鸣 《Acta Botanica Sinica》 CSCD 2001年第8期846-851,共6页
To study growth responses of the roots of Panicum miliaceum L. to heterogeneous supply of nutrients. The authors analyzed the effects of the nutrient levels in both original patches (O) and destination patches (D) on ... To study growth responses of the roots of Panicum miliaceum L. to heterogeneous supply of nutrients. The authors analyzed the effects of the nutrient levels in both original patches (O) and destination patches (D) on the root growth of P. miliaceum when its roots were allowed to extend from original patch into destination patch. When the nutrient levels in the original patches were low, coarse root biomass ratio (coarse root biomass in the D/total coarse root biomass), coarse root length ratio (coarse root length in the D/total coarse root length), coarse root surface area ratio (coarse root surface area in the D/total coarse root surface area) and fine root length ratio (fine root length in the D/total fine root length) were greater in the destination patches with lower nutrient levels than in the destination patches with higher nutrient levels, while fine root length, fine root length density, fine root surface index, and fine root surface area density were smaller in the former than in the latter. When the nutrient levels in the original patches were high, fine root length, fine root length density, fine root surface area index and fine root surface density were greater in the destination patches with lower nutrient levels than in the destination patches with higher nutrient levels, coarse roots did not respond to the nutrient levels in the destination patches significantly. When the roots extended from the original patches with the same nutrient level into the destination patches with contrasting nutrient levels, fine root biomass and its percentage allocation did not respond to the nutrient levels in the destination patches significantly, whereas both root length and root surface area did. This indicates that the fine roots of P. miliaceum responded to difference in nutrient supply by plasticity in their length and surface area, rather than in their root biomass. 展开更多
关键词 Panicum miliaceum nutrient patch root biomass root length root surface area root density
在线阅读 下载PDF
不同季节对11个绣球品种扦插生根的影响
10
作者 刘国宇 王庆 +1 位作者 王玮 李艳 《陕西农业科学》 2025年第6期27-31,51,共6页
为研究绣球的扦插繁殖,以11个大花绣球品种为试验材料,研究了不同季节对绣球一年生嫩枝和二年生半木质化枝条扦插生根情况的影响。结果表明,绣球2种枝条的扦插生根率、平均根数、平均根长及生根速率均在春、秋季节最佳,其次为夏季,冬季... 为研究绣球的扦插繁殖,以11个大花绣球品种为试验材料,研究了不同季节对绣球一年生嫩枝和二年生半木质化枝条扦插生根情况的影响。结果表明,绣球2种枝条的扦插生根率、平均根数、平均根长及生根速率均在春、秋季节最佳,其次为夏季,冬季的生根情况最差;二年生半木质化枝条生根率和平均根数均略高于一年生嫩枝。该研究明确了不同季节对大花绣球扦插生根的影响,为西安地区自然条件下大花绣球的生产繁殖提供了一定的参考。 展开更多
关键词 绣球 扦插 生根率 平均根数 平均根长 季节
在线阅读 下载PDF
Effects of Pb on Growth and Development of Broad Bean Roots
11
作者 张燕 《Agricultural Science & Technology》 CAS 2013年第4期595-597,共3页
[Objective] This study aimed to investigate the influence of Pb2+ on the growth and development of broad bean roots. [Method] The effects of Pb2+ solution of different concentrations on root length, color, bending a... [Objective] This study aimed to investigate the influence of Pb2+ on the growth and development of broad bean roots. [Method] The effects of Pb2+ solution of different concentrations on root length, color, bending and mitotic index frequency of root tip cells of broad bean were measured and observed. [Result] Pb2+ at concentration lower than 20 mg/L promoted the growth and development of roots, increased the cell mitotic indexes, but had little influence on root color and bending. When the Pb2+ concentration was higher than 20 mg/L, the root growth was inhibited; the root color gradually turned deeper; the roots bended, but the cell mitotic index was decreased. [Conclusion] Pb2+ promoted the growth of broad bean at low concentration but inhibited the growth at high concentration, and the influence was related to Pb2+ concentration and time. 展开更多
关键词 Pb2+ Broad bean root length BENDING COLOR MITOSIS
在线阅读 下载PDF
Contribution of reforestation to soil aggregate stability and shear strength in hilly red soil region of southern China
12
作者 ZHU Jinqi ZHANG Na +3 位作者 JIANG Yihui WANG Dan Glenn WILSON ZHENG Bofu 《Journal of Mountain Science》 2025年第7期2497-2511,共15页
In response to the effectiveness of reforestation in controlling soil erosion,there has been a dramatic increase in forest coverage in the hilly red soil region of southern China.Aggregate stability and soil shear str... In response to the effectiveness of reforestation in controlling soil erosion,there has been a dramatic increase in forest coverage in the hilly red soil region of southern China.Aggregate stability and soil shear strength are indicators that reflect soil resistance to erosion and its ability to prevent shallow landslides,respectively.However,limited research has focused on the response of soil aggregate stability and shear strength to reforestation.We selected three types of reforestations(Phyllostachys edulis forest,Cunninghamia lanceolata(Lamb.)Hook.forest,Citrus sinensis(L.)Osbeck.orchard),a natural forest(mixed coniferous and broadleaf forests),and a fallow land as study plots,and measured root traits,and soil physicochemical traits,i.e.,pH,soil organic matter(SOC),Soil water content(SWC),soil bulk density(BD),soil cohesion(c),soil internal friction angle(φ)and analyzed their multiple interactions.The soil aggregate stability traits,refer to the mean weight diameter(MWD)and geometric mean diameter(GMD),exhibited a significant increase in reforested plots,approximately 200%compared to fallow land and 50%compared to natural forests.For soil shear strength the values were approximately 20%higher than in fallow land and approximately 10%lower than in natural forests.Soil aggregate stability and soil shear strength did not exhibit a significant positive correlation across all plots,and the underlying drivers of these traits were variable.For instance,in natural forest and timber stands,soil aggregate stability was mainly influenced by soil organic carbon,while soil shear strength was primarily affected by root length density.In economic forest,aggregate stability and shear strength are mainly affected by organic carbon.Overall,we found that vegetation restoration enhances soil erosion resistance,however,the primary drivers for the improvement of aggregate stability(soil organic carbon)and shear strength(root length density)are different.Therefore,in future benefit assessments of vegetation restoration projects aimed at soil erosion control,different indicators should be considered based on specific conditions. 展开更多
关键词 Vegetation reforestation Soil aggregate stability Soil shear strength root length density
原文传递
凹脉金花茶的容器扦插育苗试验
13
作者 潘文 王华新 +3 位作者 杜铃 黄欣 孙开道 廖美兰 《热带农业科学》 2025年第4期55-59,共5页
为解决扦插凹脉金花茶新梢抽梢率和移栽成活率低的问题,从广西大新县野外剪取木质化的半年生及一年生凹脉金花茶枝条,开展凹脉金花茶的容器扦插育苗试验。用ABT2号生根粉(500 mg/L)浸泡3 h,研究比较4种基质对凹脉金花茶扦插生根和抽梢... 为解决扦插凹脉金花茶新梢抽梢率和移栽成活率低的问题,从广西大新县野外剪取木质化的半年生及一年生凹脉金花茶枝条,开展凹脉金花茶的容器扦插育苗试验。用ABT2号生根粉(500 mg/L)浸泡3 h,研究比较4种基质对凹脉金花茶扦插生根和抽梢的影响。结果表明:以泥炭土为基质扦插的效果较好,可获得最高的生根率95.63%、最长根长(15.86 cm)、最高抽梢率(65.71%)和最长梢长(10.43 cm)。从扦插生根和扦插后的抽梢情况来看,凹脉金花茶扦插可选用容器育苗,基质采用泥炭土,建议在生产上推广应用。 展开更多
关键词 凹脉金花茶 容器扦插 基质 生根率 抽梢率 梢长
在线阅读 下载PDF
融合多海浪谱的海表场景模拟参数选取准则
14
作者 赵强 许镇 +1 位作者 姜睿 朱鑫 《华中科技大学学报(自然科学版)》 北大核心 2025年第7期158-164,共7页
针对PM谱、Apel谱和Elfouhaily谱三种典型海浪谱,分析其均方根高度和相关长度等统计参数对风场的依赖性,提出了以风速为基准的海面场景仿真参数选取标准.研究结果表明:该标准不仅适用于不同风场条件下的三种受测海浪谱,还可扩展至强风... 针对PM谱、Apel谱和Elfouhaily谱三种典型海浪谱,分析其均方根高度和相关长度等统计参数对风场的依赖性,提出了以风速为基准的海面场景仿真参数选取标准.研究结果表明:该标准不仅适用于不同风场条件下的三种受测海浪谱,还可扩展至强风速海况下的Hwang谱.此外,采用该参数选取标准时,Elfouhaily谱在海面场景模拟精度上优于其他海浪谱,其均方根高度和有效波高仿真误差分别低于5.5%和1.9%,进一步拓展了适用于多浪谱海面场景模拟的通用仿真参数选取准则. 展开更多
关键词 海面模拟 海浪谱 均方根高度 相关长度 蒙特卡罗仿真
原文传递
生物炭对中重度盐胁迫下棉花苗期根系形态及根系分泌物的影响
15
作者 刘丹阳 王伯豪 +6 位作者 李君 马合巴丽·奥腊孜别克 张翰申 朱新萍 杨再磊 贾宏涛 徐万里 《农业环境科学学报》 北大核心 2025年第1期50-58,共9页
为了揭示生物炭对中重度盐胁迫下棉花苗期根系生长及其根系分泌物的调控作用,本试验利用盆栽,向中度和重度盐碱土壤中分别添加浓度为0(对照)、0.5%、1%、2%的棉秆炭和磷酸改性棉秆炭,测定了苗期棉花总根长、根表面积、根系体积以及根系... 为了揭示生物炭对中重度盐胁迫下棉花苗期根系生长及其根系分泌物的调控作用,本试验利用盆栽,向中度和重度盐碱土壤中分别添加浓度为0(对照)、0.5%、1%、2%的棉秆炭和磷酸改性棉秆炭,测定了苗期棉花总根长、根表面积、根系体积以及根系甲酸、乙酸和草酸等分泌物的量。结果表明:土壤盐度的增加显著抑制了苗期棉花根系的总根长、根表面积和根系体积。在中度和重度盐胁迫条件下,与对照相比添加2%的生物炭和磷酸改性生物炭处理的棉花总根长分别显著增加了55.92%和43.69%,根系体积分别显著增加了41.73%和55.88%,而0.5%的生物炭处理的棉花总根长降低了25.31%。使用未改性的生物炭主要增加了苗期棉花根系甲酸含量,而磷酸改性生物炭则显著增加了根系中草酸、甲酸和柠檬酸的含量。可溶性总糖与土壤pH和总盐呈显著正相关,棉花根系甲酸含量与土壤pH呈显著负相关,草酸、甲酸和柠檬酸含量分别与棉花根系生长指标呈显著正相关(P<0.05)。研究表明,在中度或重度盐分土壤中施用2%磷酸改性生物炭对提高棉花根系生长和耐盐生理特性方面的效果优于未改性生物炭。 展开更多
关键词 生物炭 盐胁迫 总根长 草酸 可溶性糖
在线阅读 下载PDF
Combined Applications of Nitrogen and Phosphorus Fertilizers with Manure Increase Maize Yield and Nutrient Uptake via Stimulating Root Growth in a Long-Term Experiment 被引量:38
16
作者 WEN Zhihui SHEN Jianbo +3 位作者 Martin BLACKWELL LI Haigang ZHAO Bingqiang YUAN Huimin 《Pedosphere》 SCIE CAS CSCD 2016年第1期62-73,共12页
Imbalanced application of nitrogen(N) and phosphorus(P) fertilizers can result in reduced crop yield,low nutrient use efficiency,and high loss of nutrients and soil nitrate nitrogen(NO_3^--N) accumulation decreases wh... Imbalanced application of nitrogen(N) and phosphorus(P) fertilizers can result in reduced crop yield,low nutrient use efficiency,and high loss of nutrients and soil nitrate nitrogen(NO_3^--N) accumulation decreases when N is applied with P and/or manure;however,the effect of applications of N with P and/or manure on root growth and distribution in the soil profile is not fully understood.The aim of this study was to investigate the combined effects of different N and P fertilizer application rates with or without manure on maize(Zea mays L.) yield,N uptake,root growth,apparent N surplus,Olsen-P concentration,and mineral N(N_(min)) accumulation in a fluvo-aquic calcareous soil from a long-term(28-year) experiment.The experiment comprised twelve combinations of chemical N and P fertilizers,either with or without chicken manure,as treatments in four replicates.The yield of maize grain was 82%higher,the N uptake 100%higher,and the N_(min) accumulation 39%lower in the treatments with combined N and P in comparison to N fertilizer only.The maize root length density in the 30-60 cm layer was three times greater in the treatments with N and P fertilizers than with N fertilizer only.Manure addition increased maize yield by 50%and N uptake by 43%,and reduced N_(min)(mostly NO_3^--N) accumulation in the soil by 46%.The long-term application of manure and P fertilizer resulted in significant increases in soil Olsen-P concentration when no N fertilizer was applied.Manure application reduced the apparent N surplus for all treatments.These results suggest that combined N and P fertilizer applications could enhance maize grain yield and nutrient uptake via stimulating root growth,leading to reduced accumulation of potentially leachable NO_3^--N in soil,and manure application was a practical way to improve degraded soils in China and the rest of the world. 展开更多
关键词 apparent N surplus degraded soils chemical fertilizers nitrate nitrogen root length density soil mineral N soil Olson-P
原文传递
Root ZX和Raypex 5两种根管长度测量仪在老年人根管治疗中的应用 被引量:3
17
作者 郑蓉 潘玉霞 +2 位作者 章彦彦 章立群 杨旭 《实用口腔医学杂志》 CAS CSCD 北大核心 2011年第2期262-264,共3页
比较RootZX和Raypex5两种根管长度测量仪测量老年人后牙根管工作长度(root working length,RWL)的准确性;发现二者测量准确、简便,准确性差异没有显著性;不同牙髓状态时的测量结果差异亦无显著性。
关键词 根管长度测量仪 RWL 根尖狭窄
暂未订购
Root Physiological and Morphological Characteristics of Two Rice Cultivars with Different Nitrogen-Use Efficiency 被引量:38
18
作者 FAN Jian-Bo ZHANG Ya-Li +3 位作者 D. TURNER DUAN Yin-Hua WANG Dong-Sheng SHEN Qi-Rong 《Pedosphere》 SCIE CAS CSCD 2010年第4期446-455,共10页
The variation in nitrogen (N) uptake by rice has been widely studied but differences in rice root morphology that may contribute to this variation are not completely understood. Field and greenhouse experiments were... The variation in nitrogen (N) uptake by rice has been widely studied but differences in rice root morphology that may contribute to this variation are not completely understood. Field and greenhouse experiments were carried out to study N accumulation, root dry weights, total root lengths, root surface areas, and root bleeding rates of two rice cultivars, Elio with low N-use efficiency and Nanguang with high N-use efficiency. Low (1 mmol N L^-1) and high (5 mmol N L^-1) N applications were established in the greenhouse experiment, and the N rates were 0, 120, and 240 kg ha^-1 in the field experiments at Jiangning and Jiangpu farms, Nanjing, China. The results showed that the N accumulation, root dry weight, total root length, and root surface area increased with an increase in N application. At the heading stage, N accumulation in the shoots and roots of Nanguang was greater than that of Elio in the field experiments and that of Elio at 5 mmol N L^-1 in the greenhouse experiment. After the heading stage, N accumulation was higher for Nanguang at both 1 and 5 mmol N L^-1 in the greenhouse experiment. The total root length and root surface area were significantly different between the two cultivars. Over the range of the fertilizer application rates, the root lengths of Nanguang at Jiangning Farm were 49%-6170 greater at booting and 26%-39% greater at heading than those of Elio, and at Jiangpu Farm they were 22%-42% and 26%-38% greater, respectively. Nanguang had a greater root bleeding rate than Elio. It was concluded that the N-use efficiency of the two rice cultivars studied depended to a great extent on the root morphological parameters and root physiological characteristics at different growth stages. 展开更多
关键词 N accumulation root bleeding rate root dry weight root surface area total root length
在线阅读 下载PDF
Contribution of Root Proliferation in Nutrient-Rich Soil Patches to Nutrient Uptake and Growth of Maize 被引量:20
19
作者 LI Hong-Bo ZHANG Fu-Suo SHEN Jian-Bo 《Pedosphere》 SCIE CAS CSCD 2012年第6期776-784,共9页
Root proliferation can be stimulated in a heterogeneous nutrient patch; however, the functions of the root proliferation in the nutrient-rich soil patches are not fully understood. In the present study, a two-year fie... Root proliferation can be stimulated in a heterogeneous nutrient patch; however, the functions of the root proliferation in the nutrient-rich soil patches are not fully understood. In the present study, a two-year field experiment was conducted to examine the comparative effects of localized application of ammonium and phosphorus (P) at early or late stages on root growth, nutrient uptake, and biomass of maize (Zea mays L.) on a calcareous soil in an intensive farming system. Localized supply of ammonium and P had a more evident effect on shoot and root growth, and especially stimulated fine root development at the early seedling stage, with most of the maize roots being allocated to the nutrient-rich patch in the topsoil. Although localized ammonium and P supply at the late stage also enhanced the fine root growth, the plant roots in the patch accounted for a low proportion of the whole maize roots in the topsoil at the flowering stage. Compared with the early stage, fine root length in the short-lived nutrient patch decreased by 44%-62% and the shoot dry weight was not different between heterogeneous and homogeneous nutrient supply at the late growth stage. Localized supply of ammonium and P significantly increased N and P accumulation by maize at 35 and 47 days after sowing (DAS); however, no significant difference was found among the treatments at 82 DAS and the later growth stages. The increased nutrient uptake and plant growth was related to the higher proportion of root length in the localized nutrient-enriched patch. The results indicated that root proliferation in nutrient patches contributed more to maize growth and nutrient uptake at the early than late stages. 展开更多
关键词 biomass growth stage intensive farming system localized nutrient supply root length
原文传递
Effects of plant roots on soil preferential pathways and soil matrix in forest ecosystems 被引量:9
20
作者 Yinghu Zhang Jianzhi Niu +2 位作者 Weili Zhu Xiaoqing Du Jiao Li 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第2期397-404,共8页
To characterize effects of plant roots on preferential flow(PF),we measured root length density(RLD)and root biomass(RB) in Jiufeng National Forest Park,Beijing,China.Comparisons were made for RLD and RB between... To characterize effects of plant roots on preferential flow(PF),we measured root length density(RLD)and root biomass(RB) in Jiufeng National Forest Park,Beijing,China.Comparisons were made for RLD and RB between soil preferential pathways and soil matrices.RLD and RB declined with the increasing soil depth(0–10,10–20,20–30,30–40,40–50,50–60 cm) in all experimental plots.RLD was greater in soil preferential pathways than in the surrounding soil matrix and was 69.5,75.0 and72.2 % for plant roots of diameter(d) /1,1 / d / 3 and3 / d / 5 mm,respectively.Fine root systems had the most pivotal influence on soil preferential flow in this forest ecosystem.In all experimental plots,RB content was the sum of RB from soil preferential pathways and the soil matrix in each soil depth.With respect to 6 soil depth gradient(0–10,10–20,20–30,30–40,40–50,50–60 cm) in each plot,the number of soil depth gradient that RB content was greater in soil preferential pathways than in the soil matrix was characterized,and the proportion was68.2 % in all plots. 展开更多
关键词 Preferential flow Preferential pathways Soil matrix root length density root biomass
在线阅读 下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部