Robot's dynamic motion error and on-line compensation based on multi-axis force sensor are dealt with.It is revealed that the reasons of the error are formed and the relations of the error are delivered.A motion equa...Robot's dynamic motion error and on-line compensation based on multi-axis force sensor are dealt with.It is revealed that the reasons of the error are formed and the relations of the error are delivered.A motion equation of robot's termination with the error is established,and then,an error matrix and an error compensation matrix of the motion equation are also defined.An on-line error's compensation method is put forward to decrease the displacement error,which is a degree of millimeter,shown by the result of simulation of PUMA562 robot.展开更多
In the study of intelligent space oriented to home service robot, an important technology is how to construct an communication network which has the characters of high reliability and easy building. In this paper, bas...In the study of intelligent space oriented to home service robot, an important technology is how to construct an communication network which has the characters of high reliability and easy building. In this paper, based on the characteristics of ZigBee protocol, ZigBee technology is used to construct a wireless sensor and actor network. Several intelligent services based on ZigBee wireless sensor and actor network are shown to certify the reliability of this communication network. ZigBee wireless sensor and actor network builds an information bridge for the components in the intelligent space, the spatially distributed devices are connected together seamlessly. With this network, robot can share the mass information in the intelligent space and improve its performance with 'light-packs', devices in intelligent space, such as lamp, curtain can be controlled autonomously.展开更多
A wireless sensor network (WSN) is spatially distributing independent sensors to monitor physical and environmental characteristics such as temperature, sound, pressure and also provides different applications such as...A wireless sensor network (WSN) is spatially distributing independent sensors to monitor physical and environmental characteristics such as temperature, sound, pressure and also provides different applications such as battlefield inspection and biological detection. The Constrained Motion and Sensor (CMS) Model represents the features and explain k-step reach ability testing to describe the states. The description and calculation based on CMS model does not solve the problem in mobile robots. The ADD framework based on monitoring radio measurements creates a threshold. But the methods are not effective in dynamic coverage of complex environment. In this paper, a Localized Coverage based on Shape and Area Detection (LCSAD) Framework is developed to increase the dynamic coverage using mobile robots. To facilitate the measurement in mobile robots, two algorithms are designed to identify the coverage area, (i.e.,) the area of a coverage hole or not. The two algorithms are Localized Geometric Voronoi Hexagon (LGVH) and Acquaintance Area Hexagon (AAH). LGVH senses all the shapes and it is simple to show all the boundary area nodes. AAH based algorithm simply takes directional information by locating the area of local and global convex points of coverage area. Both these algorithms are applied to WSN of random topologies. The simulation result shows that the proposed LCSAD framework attains minimal energy utilization, lesser waiting time, and also achieves higher scalability, throughput, delivery rate and 8% maximal coverage connectivity in sensor network compared to state-of-art works.展开更多
This paper is concerned with constructing a prototype intelligent home environment for home service robot. In this environment, multi-pattern information can be represented by some intelligent artificial marks. Light-...This paper is concerned with constructing a prototype intelligent home environment for home service robot. In this environment, multi-pattern information can be represented by some intelligent artificial marks. Light-packs service robots can provide reliable and intelligent service by interacting with the environment through the wireless sensor networks. The intelligent space consists the following main components: smart devices with intelligent artificial mark;home server that connects the smart device and maintains the information through wireless sensor network;and the service robot that perform tasks in collaboration with the environment. In this paper, the multi-pattern information model is built, the construction of wireless sensor networks is presented, the smart and agilely home service is introduced. Fi- nally, the future direction of intelligent space system is discussed.展开更多
Traditional sensor network and robot navigation are based on the map of detecting fields available in advance. The optimal algorithms are explored to solve the energy saving, shortest path problems, etc. However, in p...Traditional sensor network and robot navigation are based on the map of detecting fields available in advance. The optimal algorithms are explored to solve the energy saving, shortest path problems, etc. However, in practical environment, there are many fields, whose map is difficult to get, and need to detect. This paper explores a kind of ad-hoc navigation algorithm based on the hybrid sensor network without the prior map. The system of navigation is composed of static nodes and mobile nodes. The static nodes monitor events occurring and broadcast. In the system, a kind of cluster broadcast method is adopted to determine the robot localization. The mobile nodes detect the adversary or dangerous fields and broadcast warning message. Robot gets the message and follows ad-hoc routine to arrive the events occurring place. In the whole process, energy saving has taken into account. The algorithms of nodes and robot are given in this paper. The simulate and practical results are available as well.展开更多
Aiming at the former formalized methods of robot planning should give the environment state, can not obtain the new knowledge of the environment. In order to improve the reason ability for obtaining new knowledge of t...Aiming at the former formalized methods of robot planning should give the environment state, can not obtain the new knowledge of the environment. In order to improve the reason ability for obtaining new knowledge of the environment state, the actions in the process of planning such as external action and sensing action are formalized. A formalized reasoning method—CPNI (Colored Petri Net for Planning in incomplete environment) based on two kinds of actions is proposed, and the reasoning rule as Fluent Calculus in incomplete environment is applied. Robot planning experiment is modeled and simulated by using the tool CPNTools and the result shows the state knowledge of the door and the action sequence to reach the goal can be generated automatically in the CPNI net system.展开更多
Wireless sensor and actuator network is the key technology of service robot intelligent space. This paper is concerned with design and implementation of a ZigBee based wireless sensor and actuator network (hereinafter...Wireless sensor and actuator network is the key technology of service robot intelligent space. This paper is concerned with design and implementation of a ZigBee based wireless sensor and actuator network (hereinafter referred to as ZWSAN), which has been applied in our service robot intelligent space successfully. Firstly, a simplified ZigBee stack applied to ZWSAN is proposed and the primitives of the stack are illustrated after a short overview of ZigBee protocols. Then the implementation of hardware module and software stack is introduced in detail as well as several representative devices integrated into ZWSAN, including environmental sensors for environmental perception, home devices controllers for device control, embedded speech recognition module for speech control, IMU module for abnormal behaviors detection and laser robot control for service robot navigation. An application example is described to demonstrate how the devices in ZWSAN to provide service cooperatively. Finally, we conclude this paper and discuss the future directions.展开更多
In this study, “homeostasis”, the function by which living things keep their constancy, was emulated as a lighting control for a building space. The algorithm we developed mimics the mechanisms of the endocrine and ...In this study, “homeostasis”, the function by which living things keep their constancy, was emulated as a lighting control for a building space. The algorithm we developed mimics the mechanisms of the endocrine and immune systems. The endocrine system transmits information entirely, whereas the immune system transmits information with a concentration gradient. A lighting control system using the proposed algorithm was evaluated in a simulation and experiment using a sensor agent robot. In this algorithm, a robot recognizes a person’s behavior and uses it to decide his or her preference as to the illuminance. The results indicate that the algorithm can be used to realize a comfortable lighting control in several situations.展开更多
This study aims to identify the causes of sensor jams and its impact on the operation of vending machines. The vending machine is a machine that automatically dispenses products such as drinks, tickets, sandwiches and...This study aims to identify the causes of sensor jams and its impact on the operation of vending machines. The vending machine is a machine that automatically dispenses products such as drinks, tickets, sandwiches and biscuits, by inserting change or credit card into the machine. This technological feat is due to the advent of sensors. A sensor is a part of the measurement chain, it receives the quantity to be measured and provides information directly linked to this quantity. However, these vending robots are faced with malfunctions linked to sensor jams. The identification of the jam phenomenon was possible thanks to the inspection and monitoring of the various sensors installed on the vending robot. And Cadence software was used to model, control and locate the jammed sensor(s). The various tests were carried out by setting the robot in motion to better understand the causes of the phenomenon. The jam is therefore the phenomenon which triggers the sensors permanently, which causes the automatic vending robot to stop functioning. And this jam was due to the presence of water droplets on the sensor or dirt. This presence of water droplets on the sensor is linked to an increase in temperature. Controlling the temperature and locating the jammed sensor has made it possible to considerably reduce jamming and its harmful effects on the vending machine robot.展开更多
In order to restore force sensation to robot-assisted minimally invasive surgery(RMIS),design and performance evaluation of a miniature 6-axis force/torque sensor for force feedback is presented.Based on the resistive...In order to restore force sensation to robot-assisted minimally invasive surgery(RMIS),design and performance evaluation of a miniature 6-axis force/torque sensor for force feedback is presented.Based on the resistive sensing method,a flexural-hinged Stewart platform is designed as the flexible structure,and a straightforward optimization method considering the force and sensitivity isotropy of the sensor is proposed to determine geometric parameters which are best suited for the given external loads.The accuracy of this method is preliminarily discussed by finite element methods(FEMs).The sensor prototype is fabricated with the development of the electronic system.Calibration and dynamic loading tests for this sensor prototype are carried out.The working ranges of this sensor prototype are 30 N and 300 N·mm,and resolutions are 0.08 N in radial directions,0.25 N in axial direction,and 2.4 N·mm in rotational directions.It also exhibits a good capability for a typical dynamic force sensing at a frequency close to the normal heart rate of an adult.The sensor is compatible with surgical instruments for force feedback in RMIS.展开更多
Developing autonomous mobile robot system has been a hot topic in AI area. With recent advances in technology, autonomous robots are attracting more and more attention worldwide, and there are a lot of ongoing researc...Developing autonomous mobile robot system has been a hot topic in AI area. With recent advances in technology, autonomous robots are attracting more and more attention worldwide, and there are a lot of ongoing research and development activities in both industry and academia. In complex ground environment, obstacles positions are uncertain. Path finding for robots in such environment is very hot issues currently. In this paper, we present the design and implementation of a multi-sensor based object detecting and moving autonomous robot exploration system, 4RE, with the VEX robotics design system. With the goals of object detecting and removing in complex ground environment with different obstacles, a novel object detecting and removing algorithms is proposed and implemented. Experimental results indicate that our robot system with our object detecting and removing algorithm can effectively detect the obstacles on the path and remove them in complex ground environment and avoid collision with the obstacles.展开更多
水下同步定位与建图(Simultaneous Localization and Mapping,SLAM)技术使水下机器人能在未知水下环境中同时进行自我定位和环境地图构建,对海洋学研究、海底资源勘探等领域具有重要意义。本文综述了水下视觉SLAM技术最新研究进展、挑...水下同步定位与建图(Simultaneous Localization and Mapping,SLAM)技术使水下机器人能在未知水下环境中同时进行自我定位和环境地图构建,对海洋学研究、海底资源勘探等领域具有重要意义。本文综述了水下视觉SLAM技术最新研究进展、挑战与解决方案及未来研究方向,梳理了水下视觉SLAM的关键理论。水下环境的复杂性,如光线衰减、散射和水流影响,为水下SLAM的研究带来挑战。本文分析了水下视觉SLAM的最新研究进展,包括多传感器融合、深度学习技术及优化算法的应用,这些技术提高了水下SLAM系统的鲁棒性和精度。同时,本文还探讨了水下SLAM技术面临的主要挑战,并提出了可能的解决方案,如提高传感器数据的准确性、增强数据融合算法的实时性和鲁棒性、改进特征提取与匹配方法,以及提升定位与建图算法的精度和稳定性。最后,本文对水下SLAM的未来研究方向进行了展望,包括新型传感器技术、人工智能技术的应用和水下多机器人协同SLAM的发展,旨在提供该领域科研与技术发展的整体视角。展开更多
基金This project is supported by National Hi-tech Research and Development Program of China(863 Program,No.2001AAA423300)Provincial Natural Science Foundation of Anhui,China(No.00043310)
文摘Robot's dynamic motion error and on-line compensation based on multi-axis force sensor are dealt with.It is revealed that the reasons of the error are formed and the relations of the error are delivered.A motion equation of robot's termination with the error is established,and then,an error matrix and an error compensation matrix of the motion equation are also defined.An on-line error's compensation method is put forward to decrease the displacement error,which is a degree of millimeter,shown by the result of simulation of PUMA562 robot.
文摘In the study of intelligent space oriented to home service robot, an important technology is how to construct an communication network which has the characters of high reliability and easy building. In this paper, based on the characteristics of ZigBee protocol, ZigBee technology is used to construct a wireless sensor and actor network. Several intelligent services based on ZigBee wireless sensor and actor network are shown to certify the reliability of this communication network. ZigBee wireless sensor and actor network builds an information bridge for the components in the intelligent space, the spatially distributed devices are connected together seamlessly. With this network, robot can share the mass information in the intelligent space and improve its performance with 'light-packs', devices in intelligent space, such as lamp, curtain can be controlled autonomously.
文摘A wireless sensor network (WSN) is spatially distributing independent sensors to monitor physical and environmental characteristics such as temperature, sound, pressure and also provides different applications such as battlefield inspection and biological detection. The Constrained Motion and Sensor (CMS) Model represents the features and explain k-step reach ability testing to describe the states. The description and calculation based on CMS model does not solve the problem in mobile robots. The ADD framework based on monitoring radio measurements creates a threshold. But the methods are not effective in dynamic coverage of complex environment. In this paper, a Localized Coverage based on Shape and Area Detection (LCSAD) Framework is developed to increase the dynamic coverage using mobile robots. To facilitate the measurement in mobile robots, two algorithms are designed to identify the coverage area, (i.e.,) the area of a coverage hole or not. The two algorithms are Localized Geometric Voronoi Hexagon (LGVH) and Acquaintance Area Hexagon (AAH). LGVH senses all the shapes and it is simple to show all the boundary area nodes. AAH based algorithm simply takes directional information by locating the area of local and global convex points of coverage area. Both these algorithms are applied to WSN of random topologies. The simulation result shows that the proposed LCSAD framework attains minimal energy utilization, lesser waiting time, and also achieves higher scalability, throughput, delivery rate and 8% maximal coverage connectivity in sensor network compared to state-of-art works.
文摘This paper is concerned with constructing a prototype intelligent home environment for home service robot. In this environment, multi-pattern information can be represented by some intelligent artificial marks. Light-packs service robots can provide reliable and intelligent service by interacting with the environment through the wireless sensor networks. The intelligent space consists the following main components: smart devices with intelligent artificial mark;home server that connects the smart device and maintains the information through wireless sensor network;and the service robot that perform tasks in collaboration with the environment. In this paper, the multi-pattern information model is built, the construction of wireless sensor networks is presented, the smart and agilely home service is introduced. Fi- nally, the future direction of intelligent space system is discussed.
文摘Traditional sensor network and robot navigation are based on the map of detecting fields available in advance. The optimal algorithms are explored to solve the energy saving, shortest path problems, etc. However, in practical environment, there are many fields, whose map is difficult to get, and need to detect. This paper explores a kind of ad-hoc navigation algorithm based on the hybrid sensor network without the prior map. The system of navigation is composed of static nodes and mobile nodes. The static nodes monitor events occurring and broadcast. In the system, a kind of cluster broadcast method is adopted to determine the robot localization. The mobile nodes detect the adversary or dangerous fields and broadcast warning message. Robot gets the message and follows ad-hoc routine to arrive the events occurring place. In the whole process, energy saving has taken into account. The algorithms of nodes and robot are given in this paper. The simulate and practical results are available as well.
文摘Aiming at the former formalized methods of robot planning should give the environment state, can not obtain the new knowledge of the environment. In order to improve the reason ability for obtaining new knowledge of the environment state, the actions in the process of planning such as external action and sensing action are formalized. A formalized reasoning method—CPNI (Colored Petri Net for Planning in incomplete environment) based on two kinds of actions is proposed, and the reasoning rule as Fluent Calculus in incomplete environment is applied. Robot planning experiment is modeled and simulated by using the tool CPNTools and the result shows the state knowledge of the door and the action sequence to reach the goal can be generated automatically in the CPNI net system.
文摘Wireless sensor and actuator network is the key technology of service robot intelligent space. This paper is concerned with design and implementation of a ZigBee based wireless sensor and actuator network (hereinafter referred to as ZWSAN), which has been applied in our service robot intelligent space successfully. Firstly, a simplified ZigBee stack applied to ZWSAN is proposed and the primitives of the stack are illustrated after a short overview of ZigBee protocols. Then the implementation of hardware module and software stack is introduced in detail as well as several representative devices integrated into ZWSAN, including environmental sensors for environmental perception, home devices controllers for device control, embedded speech recognition module for speech control, IMU module for abnormal behaviors detection and laser robot control for service robot navigation. An application example is described to demonstrate how the devices in ZWSAN to provide service cooperatively. Finally, we conclude this paper and discuss the future directions.
文摘In this study, “homeostasis”, the function by which living things keep their constancy, was emulated as a lighting control for a building space. The algorithm we developed mimics the mechanisms of the endocrine and immune systems. The endocrine system transmits information entirely, whereas the immune system transmits information with a concentration gradient. A lighting control system using the proposed algorithm was evaluated in a simulation and experiment using a sensor agent robot. In this algorithm, a robot recognizes a person’s behavior and uses it to decide his or her preference as to the illuminance. The results indicate that the algorithm can be used to realize a comfortable lighting control in several situations.
文摘This study aims to identify the causes of sensor jams and its impact on the operation of vending machines. The vending machine is a machine that automatically dispenses products such as drinks, tickets, sandwiches and biscuits, by inserting change or credit card into the machine. This technological feat is due to the advent of sensors. A sensor is a part of the measurement chain, it receives the quantity to be measured and provides information directly linked to this quantity. However, these vending robots are faced with malfunctions linked to sensor jams. The identification of the jam phenomenon was possible thanks to the inspection and monitoring of the various sensors installed on the vending robot. And Cadence software was used to model, control and locate the jammed sensor(s). The various tests were carried out by setting the robot in motion to better understand the causes of the phenomenon. The jam is therefore the phenomenon which triggers the sensors permanently, which causes the automatic vending robot to stop functioning. And this jam was due to the presence of water droplets on the sensor or dirt. This presence of water droplets on the sensor is linked to an increase in temperature. Controlling the temperature and locating the jammed sensor has made it possible to considerably reduce jamming and its harmful effects on the vending machine robot.
基金Project(SS2012AA041601)supported by National High Technology Research and Development Program of ChinaProject(81201150)supported by the National Natural Science Foundation of China
文摘In order to restore force sensation to robot-assisted minimally invasive surgery(RMIS),design and performance evaluation of a miniature 6-axis force/torque sensor for force feedback is presented.Based on the resistive sensing method,a flexural-hinged Stewart platform is designed as the flexible structure,and a straightforward optimization method considering the force and sensitivity isotropy of the sensor is proposed to determine geometric parameters which are best suited for the given external loads.The accuracy of this method is preliminarily discussed by finite element methods(FEMs).The sensor prototype is fabricated with the development of the electronic system.Calibration and dynamic loading tests for this sensor prototype are carried out.The working ranges of this sensor prototype are 30 N and 300 N·mm,and resolutions are 0.08 N in radial directions,0.25 N in axial direction,and 2.4 N·mm in rotational directions.It also exhibits a good capability for a typical dynamic force sensing at a frequency close to the normal heart rate of an adult.The sensor is compatible with surgical instruments for force feedback in RMIS.
文摘Developing autonomous mobile robot system has been a hot topic in AI area. With recent advances in technology, autonomous robots are attracting more and more attention worldwide, and there are a lot of ongoing research and development activities in both industry and academia. In complex ground environment, obstacles positions are uncertain. Path finding for robots in such environment is very hot issues currently. In this paper, we present the design and implementation of a multi-sensor based object detecting and moving autonomous robot exploration system, 4RE, with the VEX robotics design system. With the goals of object detecting and removing in complex ground environment with different obstacles, a novel object detecting and removing algorithms is proposed and implemented. Experimental results indicate that our robot system with our object detecting and removing algorithm can effectively detect the obstacles on the path and remove them in complex ground environment and avoid collision with the obstacles.
文摘水下同步定位与建图(Simultaneous Localization and Mapping,SLAM)技术使水下机器人能在未知水下环境中同时进行自我定位和环境地图构建,对海洋学研究、海底资源勘探等领域具有重要意义。本文综述了水下视觉SLAM技术最新研究进展、挑战与解决方案及未来研究方向,梳理了水下视觉SLAM的关键理论。水下环境的复杂性,如光线衰减、散射和水流影响,为水下SLAM的研究带来挑战。本文分析了水下视觉SLAM的最新研究进展,包括多传感器融合、深度学习技术及优化算法的应用,这些技术提高了水下SLAM系统的鲁棒性和精度。同时,本文还探讨了水下SLAM技术面临的主要挑战,并提出了可能的解决方案,如提高传感器数据的准确性、增强数据融合算法的实时性和鲁棒性、改进特征提取与匹配方法,以及提升定位与建图算法的精度和稳定性。最后,本文对水下SLAM的未来研究方向进行了展望,包括新型传感器技术、人工智能技术的应用和水下多机器人协同SLAM的发展,旨在提供该领域科研与技术发展的整体视角。