期刊文献+
共找到6,019篇文章
< 1 2 250 >
每页显示 20 50 100
LATITUDES Network:提升证据合成稳健性的效度(偏倚风险)评价工具库
1
作者 廖明雨 熊益权 +7 位作者 赵芃 郭金 陈靖文 刘春容 贾玉龙 任燕 孙鑫 谭婧 《中国循证医学杂志》 北大核心 2025年第5期614-620,共7页
证据合成是对现有研究证据进行系统收集、分析和整合的过程,其结果依赖于纳入原始研究的质量,而效度评价(validity assessment,又称偏倚风险评价)则是评估这些原始研究质量的重要手段。现有效度评价工具种类繁多,但部分工具缺乏严格的... 证据合成是对现有研究证据进行系统收集、分析和整合的过程,其结果依赖于纳入原始研究的质量,而效度评价(validity assessment,又称偏倚风险评价)则是评估这些原始研究质量的重要手段。现有效度评价工具种类繁多,但部分工具缺乏严格的开发过程和评估,证据合成过程中应用不恰当的效度评价工具开展文献质量评价,可能会影响研究结论的准确性,误导临床实践。为解决这一困境,2023年9月英国Bristol大学学者牵头成立了效度评价工具一站式资源站LATITUDES Network。该网站致力于收集、整理和推广研究效度评价工具,以促进原始研究效度评价的准确性,提升证据合成的稳健性和可靠性。本文对LATITUDES Network成立背景、收录的效度评价工具,以及评价工具使用的培训资源等内容进行了详细介绍,以期为国内学者更多地了解LATITUDES Network,更好地运用恰当的效度评价工具开展文献质量评价,以及为开发效度评价工具等提供参考。 展开更多
关键词 效度评价 偏倚风险 证据合成 LATITUDES network
原文传递
National Comprehensive Cancer Network (NCCN) riSK classification in predicting biochemical recurrence after radical prostatectomy: a retrospective cohort study in Chinese prostate cancer patients 被引量:6
2
作者 Hua Xu Yao Zhu +1 位作者 Bo Dai Ding-Wei Ye 《Asian Journal of Andrology》 SCIE CAS CSCD 2018年第6期551-554,共4页
This study aimed to assess the role of the National Comprehensive Cancer Network (NCCN) risk classification in predicting biochemical recurrence (BCR) after radical prostatectomy (RP) in Chinese prostate cancer ... This study aimed to assess the role of the National Comprehensive Cancer Network (NCCN) risk classification in predicting biochemical recurrence (BCR) after radical prostatectomy (RP) in Chinese prostate cancer patients. We included a consecutive cohort of 385 patients with prostate cancer who underwent RP at Fudan University Shanghai Cancer Center (Shanghai, China) from March 2011 to December 2014. Gleason grade groups were applied at analysis according to the 2014 International Society of Urological Pathology Consensus. Risk groups were stratified according to the NCCN Clinical Practice Guidelines in Oncology: Prostate Cancer version 1, 2017. All 385 patients were divided into BCR and non-BCR groups. The clinicopathological characteristics were compared using an independent sample t-test, Chi-squared test, and Fisher's exact test. BCR-free survival was compared using the log-rank test and multivariable Cox proportional hazard analysis. During median follow-up of 48 months (range: 1-78 months), 31 (8.05%) patients experienced BCR. The BCR group had higher prostate-specific antigen level at diagnosis (46.54 ± 39.58 ng m1-1 vs 21.02 ± 21.06 ng ml-1, P= 0.001), more advanced pT stage (P= 0.002), and higher pN1 rate (P〈 0.001). NCCN risk classification was a significant predictor of BCR {P = 0.0006) and BCR-free survival (P = 0.003) after RP. As NCCN risk level increased, there was a significant decreasing trend in BCR-free survival rate (Ptrend = 0.0002). This study confirmed and validated that NCCN risk classification was a significant predictor of BCR and BCR-free survival after RP. 展开更多
关键词 biochemical recurrence prostate cancer radical prostatectomy National Comprehensive Cancer network risk classification
原文传递
NEURAL NETWORK ASSESSMENT OF ROCKBURST RISKS FOR DEEP GOLD MINES IN SOUTH AFRICA 被引量:8
3
作者 Feng XiatingCollege of Resources and Civil Engineering,Northeastern University, Shenyang 110006, P. R. ChinaS. WebberCSIR Mining Technology, Johannesburg, South AfricaM. U. OzbayDepartment of Mining Engineering,University of the Witwatersr 《中国有色金属学会会刊:英文版》 CSCD 1998年第2期160-166,共7页
NEURALNETWORKASSESSMENTOFROCKBURSTRISKSFORDEEPGOLDMINESINSOUTHAFRICA①FengXiatingColegeofResourcesandCivilEng... NEURALNETWORKASSESSMENTOFROCKBURSTRISKSFORDEEPGOLDMINESINSOUTHAFRICA①FengXiatingColegeofResourcesandCivilEnginering,Northeast... 展开更多
关键词 NEURAL network ROCKBURST risk SOUTH AFRICA
在线阅读 下载PDF
Risk Index Prediction of Civil Aviation Based on Deep Neural Network 被引量:2
4
作者 NI Xiaomei WANG Huawei CHE Changchang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第2期313-319,共7页
Safety is the foundation of sustainable development in civil aviation.Although catastrophic accidents are rare,indicators of potential incidents and unsafe events frequently materialize.Therefore,a history of unsafe d... Safety is the foundation of sustainable development in civil aviation.Although catastrophic accidents are rare,indicators of potential incidents and unsafe events frequently materialize.Therefore,a history of unsafe data are considered in predicting safety risks.A deep learning method is adopted for extracting reactions in safety risks.The deep neural network(DNN)model for safety risk prediction is shown to extract complex data characteristics better than a shallow network model.Using extended unsafe data and monthly risk indices,hidden layers and iterations are determined.The effectiveness of DNN is also revealed in comparison with the traditional neural network.Through early risk detection using the method in the paper,airlines and the government can mitigate potential risk and take proactive measures to improve civil aviation safety. 展开更多
关键词 unsafe EVENTS risk INDEX NEURAL network DENOISING AUTO ENCODER
在线阅读 下载PDF
An Artificial Neural Network Approach for Credit Risk Management 被引量:7
5
作者 Vincenzo Pacelli Michele Azzollini 《Journal of Intelligent Learning Systems and Applications》 2011年第2期103-112,共10页
The objective of the research is to analyze the ability of the artificial neural network model developed to forecast the credit risk of a panel of Italian manufacturing companies. In a theoretical point of view, this ... The objective of the research is to analyze the ability of the artificial neural network model developed to forecast the credit risk of a panel of Italian manufacturing companies. In a theoretical point of view, this paper introduces a litera-ture review on the application of artificial intelligence systems for credit risk management. In an empirical point of view, this research compares the architecture of the artificial neural network model developed in this research to an-other one, built for a research conducted in 2004 with a similar panel of companies, showing the differences between the two neural network models. 展开更多
关键词 CREDIT risk Forecasting Artificial NEURAL networkS
暂未订购
Assessing the Risk Situation of Network Security for Active Defense 被引量:2
6
作者 ZHANG Xiang YAO Shuping TANG Chenghua 《Wuhan University Journal of Natural Sciences》 CAS 2006年第6期1718-1722,共5页
The risk situation assessment and forecast technique of network security is a basic method of active defense techniques. In order to assess the risk of network security two methods were used to define the index of ris... The risk situation assessment and forecast technique of network security is a basic method of active defense techniques. In order to assess the risk of network security two methods were used to define the index of risk and forecast index in time series, they were analytical hierarchy process (AHP) and support vector regression (SVR). The module framework applied the methods above was also discussed. Experiment results showed the forecast values were so close to actual values and so it proved the approach is correct. 展开更多
关键词 network security risk situation assessment index FORECAST
在线阅读 下载PDF
Artificial Neural Network Modeling of Healthy Risk Level Induced by Aircraft Pollutant Impacts around Soekarno Hatta International Airport 被引量:1
7
作者 Salah Khardi Jermanto Setia Kurniawan +1 位作者 Irwan Katili Setyo Moersidik 《Journal of Environmental Protection》 2013年第8期28-39,共12页
Aircraft pollutant emissions are an important part of sources of pollution that directly or indirectly affect human health and ecosystems. This research suggests an Artificial Neural Network model to determine the hea... Aircraft pollutant emissions are an important part of sources of pollution that directly or indirectly affect human health and ecosystems. This research suggests an Artificial Neural Network model to determine the healthy risk level around Soekarno Hatta International Airport-Cengkareng Indonesia. This ANN modeling is a flexible method, which enables to recognize highly complex non-linear correlations. The network was trained with real measurement data and updated with new measurements, enhancing its quality and making it the ideal method for this research. Measurements of aircraft pollutant emissions are carried out with the aim to be used as input data and to validate the developed model. The obtained results concerned the improved ANN architecture model based on pollutant emissions as input variables. ANN model processes variables—hidden layers—and gives an output variable corresponding to a healthy risk level. This model is characterized by a 4-10-1 scheme. Based on ANN criteria, the best validation performance is achieved at epoch 28 from 34 epochs with the Mean Squared Error (MSE) of 9 × 10-3. The correlation between targets and outputs is confirmed. It validated a close relationship between targets and outputs. The network output errors value approaches zero. Further research is needed with the aim to enlarge the scheme of the ANN model by increasing its input variables. This is one of the major key defining environmental capacities of an airport that should be applied by Indonesian airport authorities. These would institute policies to manage or reduce pollutant emissions considering population and income growth to be socially positive. 展开更多
关键词 AIRCRAFT POLLUTANT Emissions Artificial Neural network HEALTHY risk Level
暂未订购
Reliability Risk Evaluation Method for Complex Mechanical System Based on Optimal Bayesian Network 被引量:4
8
作者 黄开启 古莹奎 梁玲强 《Journal of Donghua University(English Edition)》 EI CAS 2016年第2期177-182,共6页
In order to reduce the calculation of the failure probability in the complex mechanical system reliability risk evaluation,and to implement importance analysis of system components effectively,the system fault tree wa... In order to reduce the calculation of the failure probability in the complex mechanical system reliability risk evaluation,and to implement importance analysis of system components effectively,the system fault tree was converted into five different Bayesian network models. The Bayesian network with the minimum conditional probability table specification and the highest computation efficiency was selected as the optimal network. The two heuristics were used to optimize the Bayesian network. The fault diagnosis and causal reasoning of the system were implemented by using the selected Bayesian network. The calculation methods of Fussel-Vesely( FV),risk reduction worth( RRW),Birnbaum measure( BM) and risk achievement worth( RAW) importances were presented. A certain engine was taken as an application example to illustrate the proposed method. The results show that not only the correlation of the relevant variables in the system can be accurately expressed and the calculation complexity can be reduced,but also the relatively weak link in the system can be located accurately. 展开更多
关键词 Bayesian network fault tree risk evaluation importance measure conditional probability table
在线阅读 下载PDF
Risk Management of Clinical Reference Dosimetry of a Large Hospital Network Using Statistical Process Control 被引量:1
9
作者 Seng-Boh Lim Thomas LoSasso +2 位作者 Maria Chan Laura Cervino Dale Michael Lovelock 《International Journal of Medical Physics, Clinical Engineering and Radiation Oncology》 2021年第3期119-131,共13页
Managing TG-51 reference dosimetry in a large hospital network can be a challenging task. The objectives of this study are to investigate the effectiveness of using Statistical Process Control (SPC) to manage TG-51 wo... Managing TG-51 reference dosimetry in a large hospital network can be a challenging task. The objectives of this study are to investigate the effectiveness of using Statistical Process Control (SPC) to manage TG-51 workflow in such a network. All the sites in the network performed the annual reference dosimetry in water according to TG-51. These data were used to cross-calibrate the same ion chambers in plastic phantoms for monthly QA output measurements. An energy-specific dimensionless beam quality cross-calibration factor, <img src="Edit_6bfb9907-c034-4197-97a7-e8337a7fc21a.png" width="20" height="19" alt="" />, was derived to monitor the process across multiple sites. The SPC analysis was then performed to obtain the mean, <img src="Edit_c630a2dd-f714-4042-a46e-da0ca863cb41.png" width="30" height="20" alt="" /> , standard deviation, <span style="font-size:6.5pt;font-family:;" "=""><span style="white-space:normal;"><span style="font-size:6.5pt;font-family:"">&sigma;</span><span style="white-space:nowrap;"><sub><i>k</i></sub></span></span></span>, the Upper Control Limit (UCL) and Lower Control Limit (LCL) in each beam. This process was first applied to 15 years of historical data at the main campus to assess the effectiveness of the process. A two-year prospective study including all 30 linear accelerators spread over the main campus and seven satellites in the network followed. The ranges of the control limits (±3σ) were found to be in the range of 1.7% - 2.6% and 3.3% - 4.2% for the main campus and the satellite sites respectively. The wider range in the satellite sites was attributed to variations in the workflow. Standardization of workflow was also found to be effective in narrowing the control limits. The SPC is effective in identifying variations in the workflow and was shown to be an effective tool in managing large network reference dosimetry. 展开更多
关键词 TG-51 DOSIMETRY Process Control risk Management Large Hospital network
在线阅读 下载PDF
Network analysis using organizational risk analyzer 被引量:2
10
作者 Chen, Xiaodong Li, Jianfeng Huang, Yanbo 《Journal of Southeast University(English Edition)》 EI CAS 2008年第S1期104-108,共5页
The tool system of the organizational risk analyzer (ORA) to study the network of East Turkistan terrorists is selected. The model of the relationships among its personnel, knowledge, resources and task entities is re... The tool system of the organizational risk analyzer (ORA) to study the network of East Turkistan terrorists is selected. The model of the relationships among its personnel, knowledge, resources and task entities is represented by the meta-matrix in ORA, with which to analyze the risks and vulnerabilities of organizational structure quantitatively, and obtain the last vulnerabilities and risks of the organization. Case study in this system shows that it should be a shortcut to destroy effectively the network of terrorists by recognizing the caucus persons of the terrorism organization for the first and eliminating them when strikes the terror organization. It is vital to ensure effective use of the resources and control the risks of terrorist attacks. 展开更多
关键词 dynamic network analysis meta-matrix organization risk
在线阅读 下载PDF
A Software Risk Analysis Model Using Bayesian Belief Network 被引量:1
11
作者 Yong Hu Juhua Chen +2 位作者 Mei Liu Xang Yun Junbiao Tang 《南昌工程学院学报》 CAS 2006年第2期102-106,共5页
The uncertainty during the period of software project development often brings huge risks to contractors and clients. If we can find an effective method to predict the cost and quality of software projects based on fa... The uncertainty during the period of software project development often brings huge risks to contractors and clients. If we can find an effective method to predict the cost and quality of software projects based on facts like the project character and two-side cooperating capability at the beginning of the project,we can reduce the risk. Bayesian Belief Network(BBN) is a good tool for analyzing uncertain consequences, but it is difficult to produce precise network structure and conditional probability table.In this paper,we built up network structure by Delphi method for conditional probability table learning,and learn update probability table and nodes’confidence levels continuously according to the application cases, which made the evaluation network have learning abilities, and evaluate the software development risk of organization more accurately.This paper also introduces EM algorithm, which will enhance the ability to produce hidden nodes caused by variant software projects. 展开更多
关键词 software risk analysis Bayesian Belief network EM algorithm parameter learning
在线阅读 下载PDF
Nonhomogeneous Risk Rank Analysis Method for Security Network System
12
作者 Pubudu Kalpani Hitigala Kaluarachchilage Chris P. Tsokos Sasith M. Rajasooriya 《International Journal of Communications, Network and System Sciences》 2019年第1期1-10,共10页
Security measures for a computer network system can be enhanced with better understanding the vulnerabilities and their behavior over the time. It is observed that the effects of vulnerabilities vary with the time ove... Security measures for a computer network system can be enhanced with better understanding the vulnerabilities and their behavior over the time. It is observed that the effects of vulnerabilities vary with the time over their life cycle. In the present study, we have presented a new methodology to assess the magnitude of the risk of a vulnerability as a “Risk Rank”. To derive this new methodology well known Markovian approach with a transition probability matrix is used including relevant risk factors for discovered and recorded vulnerabilities. However, in addition to observing the risk factor for each vulnerability individually we have introduced the concept of ranking vulnerabilities at a particular time taking a similar approach to Google Page Rank Algorithm. New methodology is exemplified using a simple model of computer network with three recorded vulnerabilities with their CVSS scores. 展开更多
关键词 MARKOV Chain VULNERABILITY Non HOMOGENEOUS risk Analysis network SECURITY Google PAGE Rank
暂未订购
Waterlogging risk assessment based on self-organizing map(SOM)artificial neural networks:a case study of an urban storm in Beijing 被引量:4
13
作者 LAI Wen-li WANG Hong-rui +2 位作者 WANG Cheng ZHANG Jie ZHAO Yong 《Journal of Mountain Science》 SCIE CSCD 2017年第5期898-905,共8页
Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annu... Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annuallyinthe urban area of Beijing, the capital of China. Based on a selforganizing map(SOM) artificial neural network(ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product(GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANNis suitable for automatically and quantitatively assessing risks associated with waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors,producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. The points that were assigned risk grades of IV or Vwere located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng. 展开更多
关键词 Waterlogging risk assessment Self-organizing map(SOM) neural network Urban storm
原文传递
A Bayesian Network Approach for Offshore Risk Analysis Through Linguistic Variables 被引量:4
14
作者 Ren J. Wang J. +2 位作者 Jenkinson I. Xu D. L. Yang J. B. 《China Ocean Engineering》 SCIE EI 2007年第3期371-388,共18页
This paper presents a new approach for offshore risk analysis that is capable of dealing with linguistic probabilities in Bayesian networks ( BNs). In this paper, linguistic probabilities are used to describe occurr... This paper presents a new approach for offshore risk analysis that is capable of dealing with linguistic probabilities in Bayesian networks ( BNs). In this paper, linguistic probabilities are used to describe occurrence likelihood of hazardous events that may cause possible accidents in offshore operations. In order to use fuzzy information, an f-weighted valuation function is proposed to transform linguistic judgements into crisp probability distributions which can be easily put into a BN to model causal relationships among risk factors. The use of linguistic variables makes it easier for human experts to express their knowledge, and the transformation of linguistic judgements into crisp probabilities can significantly save the cost of computation, modifying and maintaining a BN model. The flexibility of the method allows for multiple forms of information to be used to quantify model relationships, including formally assessed expert opinion when quantitative data are lacking, or when only qualitative or vague statements can be made. The model is a modular representation of uncertain knowledge caused due to randomness, vagueness and ignorance. This makes the risk analysis of offshore engineering systems more functional and easier in many assessment contexts. Specifically, the proposed f-weighted valuation function takes into account not only the dominating values, but also the a-level values that are ignored by conventional valuation methods. A case study of the collision risk between a Floating Production, Storage and Off-loading (FPSO) unit and the anthorised vessels due to human elements during operation is used to illustrate the application of the proposed model. 展开更多
关键词 risk analysis fiweighted valuation function Bayesian networks fuzzy number linguistic probability off-shore engineering systems
在线阅读 下载PDF
The Risk Evaluation of Enterprise Technological Innovation Network Based on Extenics
15
作者 WeiweiDuan BinHu 《Journal of Zhouyi Research》 2014年第5期12-15,共4页
关键词 创新网络 构建技术 风险评估 可拓学 企业 危险因素 高科技园区 创新体系
在线阅读 下载PDF
P2P network lending in the credit risk rating of the individual
16
作者 Tang Guolei 《International English Education Research》 2015年第9期23-26,共4页
P2P lending network is person to person lending network, lnternet-based applications, individuals lending financial model to others through the network intermediary,' platform. Currently P2P lending network has devel... P2P lending network is person to person lending network, lnternet-based applications, individuals lending financial model to others through the network intermediary,' platform. Currently P2P lending network has developed rapidly, but the P2P network lending platform also are lacing increasing risks, the biggest risk is credit risk. This article from the credit rating perspective, comparative analysis of the existing credit rating methodology, Analysis to establish a relatively sound credit rating mechanisms, thus reducing credit risk. 展开更多
关键词 P2P network lending: credit risks: credit rating
在线阅读 下载PDF
Designing of Commercial Bank Loans Risk Early Warning System Based on BP Neural Networks 被引量:1
17
作者 杨保安 季海 《Journal of China Textile University(English Edition)》 EI CAS 2000年第4期110-113,共4页
According to the index early warning method, a commercial bank loans risk early warning system based on BP neural networks is proposed. The warning signal is mainly involved with the financial situation signal of loan... According to the index early warning method, a commercial bank loans risk early warning system based on BP neural networks is proposed. The warning signal is mainly involved with the financial situation signal of loaning corporation. Except the structure description of the system structure the demonstration of attemptive designing is also elaborated. 展开更多
关键词 Index EARLY WARNING Method BP Neural networks BANK LOANS risk management FINANCIAL SITUATION EARLY WARNING Signal
在线阅读 下载PDF
基于LASSO-QVAR模型的中国金融机构尾部关联网络特征与系统性风险研究 被引量:1
18
作者 许启发 蒋翠侠 汤彬彬 《统计与信息论坛》 北大核心 2025年第3期56-72,共17页
基于LASSO-QVAR模型,筛选金融机构之间有效关联,构建有向加权尾部关联网络,可以从系统视角揭示系统性风险动态特征。一方面,通过尾部关联网络构造系统性风险计分及其贡献,以度量系统性风险水平与识别系统重要性金融机构,进一步从微观层... 基于LASSO-QVAR模型,筛选金融机构之间有效关联,构建有向加权尾部关联网络,可以从系统视角揭示系统性风险动态特征。一方面,通过尾部关联网络构造系统性风险计分及其贡献,以度量系统性风险水平与识别系统重要性金融机构,进一步从微观层面探究系统性风险贡献的影响机制;另一方面,将尾部关联网络区分为正关联网络与负关联网络,分别提取网络整体特征以及网络节点特征,考察不同关联关系下网络特征的系统性风险预测能力。以2011—2022年32家中国A股上市金融机构作为研究对象,开展了实证研究。研究结果显示:第一,尾部关联网络具有时变特征,能够较好地吻合一些危机事件,银行业和证券业呈现出更为紧密的关联性,具有行业异质性。进一步,发现银行业风险共振(正关联网络)与风险分散(负关联网络)功能相较其他金融行业更强。第二,系统性风险计分可以作为量化系统性风险动态性的重要指标,系统性风险贡献主要集中于银行业与保险业,进一步机制分析表明公司治理水平能够显著影响到系统性风险贡献。第三,尾部关联网络特征具有很好的预测能力,网络整体特征能够预测系统性风险大小,网络节点特征能够预测金融机构系统性风险贡献。 展开更多
关键词 系统性风险 尾部关联网络 风险计分 LASSO-QVAR模型 金融机构
在线阅读 下载PDF
Network security equipment evaluation based on attack tree with risk fusion
19
作者 CHENG Ran LU Yue-ming 《网络与信息安全学报》 2017年第7期70-77,共8页
Network security equipment is crucial to information systems, and a proper evaluation model can ensure the quality of network security equipment. However, there is only a few models of comprehensive models nowadays. A... Network security equipment is crucial to information systems, and a proper evaluation model can ensure the quality of network security equipment. However, there is only a few models of comprehensive models nowadays. An index system for network security equipment was established and a model based on attack tree with risk fusion was proposed to obtain the score of qualitative indices. The proposed model implements attack tree model and controlled interval and memory(CIM) model to solve the problem of quantifying qualitative indices, and thus improves the accuracy of the evaluation. 展开更多
关键词 网络安全 信息安全 网络技术 安全管理
在线阅读 下载PDF
Assessment and Countermeasures for Offshore Wind Farm Risks Based on a Dynamic Bayesian Network
20
作者 Chunhui Zhou Xin Liu +4 位作者 Langxiong Gan Yuanzhou Zheng Qingyun Zhong Kailiang Ge Lei Zhang 《Journal of Environmental Protection》 2018年第4期368-384,共17页
Wind power is a kind of clean energy promising significant social and environmental benefits, and in The Peoples Republic of China, the government supports and encourages the development of wind power as one element i... Wind power is a kind of clean energy promising significant social and environmental benefits, and in The Peoples Republic of China, the government supports and encourages the development of wind power as one element in a shift to renewable energy. In recent years however, maritime safety issues have arisen during offshore wind power construction and attendant production processes associated with the rapid promotion and development of offshore wind farms. Therefore, it is necessary to carry out risk assessment for phases in the life cycle of offshore wind farms. This paper reports on a risk assessment model based on a Dynamic Bayesian network that performs offshore wind farms maritime risk assessment. The advantage of this approach is the way in which a Bayesian model expresses uncertainty. Furthermore, such models permit simulations and reenactment of accidents in a virtual environment. There were several goals in this research. Offshore wind power project risk identification and evaluation theories and methods were explored to identify the sources of risk during different phases of the offshore wind farm life cycle. Based on this foundation, a dynamic Bayesian network model with Genie was established, and evaluated, in terms of its effectiveness for analysis of risk during different phases of the offshore wind farm life cycle. Research results show that a dynamic Bayesian network method can perform risk assessments effectively and flexibly, responding to the actual context of offshore wind power construction. Historical data and almost real-time information are combined to analyze the risk of the construction of offshore wind power. Our results inform a discussion of security and risk mitigation measures that when implemented, could improve safety. This work has value as a reference and guide for the safe development of offshore wind power. 展开更多
关键词 BAYESIAN network OFFSHORE Wind FARM risk ASSESSMENT COUNTERMEASURES
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部