A vehicle conflict detection and resolution method is proposed based on the concept of vehicle infrastructure integration (VII) system to prevent vehicle accident beforehand at blind cross- ing. After analyzing traf...A vehicle conflict detection and resolution method is proposed based on the concept of vehicle infrastructure integration (VII) system to prevent vehicle accident beforehand at blind cross- ing. After analyzing traffic conflict characteristics and vehicle collision scenarios at intersection, a vehicle dynamics model and an inter-vehicle communication method are discussed. In the inter-vehi- cle communication environment, the relative relationship between two encountered vehicles are de- signed. Then vehicle conflict detection and resolution algorithms under two conflict scenarios are put forward to represent the conflict-free movements of vehicles with adjusting vehicle velocity at cross- ing. Finally, simulation studies are carried out and the results prove that the proposed algorithms are effective for vehicle conflict resolution at blind crossing.展开更多
Based on the general geometric model of multi-baseline Synthetic Aperture Radar Tomography (TomoSAR), the three-dimensional (3-D) sampling criteria, the analytic expression of the 3-D Point Spread Function (PSF)...Based on the general geometric model of multi-baseline Synthetic Aperture Radar Tomography (TomoSAR), the three-dimensional (3-D) sampling criteria, the analytic expression of the 3-D Point Spread Function (PSF) and the 3-D resolution are derived in the 3-D wavenumber domain in this paper. Considering the relationship between the observation geometry and the size of illuminated scenario, a 3-D Range Migration Algorithm with Elevation Digital Spotlighting (RMA-EDS) is proposed. With this algorithm 3-D images of the area of interest can be directly and accurately reconstructed in the 3-D space avoiding the complex operations of 3-D geometric correction. Finally, theoretical analyses and simulation results are presented to demonstrate the shift-varying property of the 3-D PSF and the spatialvarying property of the 3-D resolution and to demonstrate the validity of the 3-D RMA-EDS.展开更多
基金Supported by the National High Technology Research and Development Program of China("863"Program) (2011AA1104032011AA110402)
文摘A vehicle conflict detection and resolution method is proposed based on the concept of vehicle infrastructure integration (VII) system to prevent vehicle accident beforehand at blind cross- ing. After analyzing traffic conflict characteristics and vehicle collision scenarios at intersection, a vehicle dynamics model and an inter-vehicle communication method are discussed. In the inter-vehi- cle communication environment, the relative relationship between two encountered vehicles are de- signed. Then vehicle conflict detection and resolution algorithms under two conflict scenarios are put forward to represent the conflict-free movements of vehicles with adjusting vehicle velocity at cross- ing. Finally, simulation studies are carried out and the results prove that the proposed algorithms are effective for vehicle conflict resolution at blind crossing.
基金Supported by the National Science Fund for Distinguished Young Scholars (Grant No. 60725103)the National Natural Science Foundation ofChina (Grant No. 60602015)+1 种基金the National Key Laboratory Foundation (Grant No. 9140C1903030603)the Knowledge Innovation Programof Chinese Academy of Sciences (Grant No. 07QNCX-1154)
文摘Based on the general geometric model of multi-baseline Synthetic Aperture Radar Tomography (TomoSAR), the three-dimensional (3-D) sampling criteria, the analytic expression of the 3-D Point Spread Function (PSF) and the 3-D resolution are derived in the 3-D wavenumber domain in this paper. Considering the relationship between the observation geometry and the size of illuminated scenario, a 3-D Range Migration Algorithm with Elevation Digital Spotlighting (RMA-EDS) is proposed. With this algorithm 3-D images of the area of interest can be directly and accurately reconstructed in the 3-D space avoiding the complex operations of 3-D geometric correction. Finally, theoretical analyses and simulation results are presented to demonstrate the shift-varying property of the 3-D PSF and the spatialvarying property of the 3-D resolution and to demonstrate the validity of the 3-D RMA-EDS.