In the reliability designing procedure of the vehicle components, when the distribution styles of the random variables are unknown or non-normal distribution, the result evaluated contains great error or even is wrong...In the reliability designing procedure of the vehicle components, when the distribution styles of the random variables are unknown or non-normal distribution, the result evaluated contains great error or even is wrong if the reliability value R is larger than 1 by using the existent method, in which case the formula is necessary to be revised. This is obviously inconvenient for programming. Combining reliability-based optimization theory, robust designing method and reliability based sensitivity analysis, a new method for reliability robust designing is proposed. Therefore the influence level of the designing parameters’ changing to the reliability of vehicle components can be obtained. The reliability sensitivity with respect to design parameters is viewed as a sub-objective function in the multi-objective optimization problem satisfying reliability constraints. Given the first four moments of basic random variables, a fourth-moment technique and the proposed optimization procedure can obtain reliability-based robust design of automobile components with non-normal distribution parameters accurately and quickly. By using the proposed method, the distribution style of the random parameters is relaxed. Therefore it is much closer to the actual reliability problems. The numerical examples indicate the following: (1) The reliability value obtained by the robust method proposed increases (】0.04%) comparing to the value obtained by the ordinary optimization algorithm; (2) The absolute value of reliability-based sensitivity decreases (】0.01%), and the robustness of the products’ quality is improved accordingly. Utilizing the reliability-based optimization and robust design method in the reliability designing procedure reduces the manufacture cost and provides the theoretical basis for the reliability and robust design of the vehicle components.展开更多
A surrogate based particle swarm optimization (SBPSO) algorithm which combines the surrogate modeling technique and particle swarm optimization is applied to the reliability- based robust design (RBRD) of composit...A surrogate based particle swarm optimization (SBPSO) algorithm which combines the surrogate modeling technique and particle swarm optimization is applied to the reliability- based robust design (RBRD) of composite pressure vessels. The algorithm and efficiency of SBPSO are displayed through numerical examples. A model for filament-wound composite pressure vessels with metallic liner is then studied by netting analysis and its responses are analyzed by using Finite element method (performed by software ANSYS). An optimization problem for maximizing the performance factor is formulated by choosing the winding orientation of the helical plies in the cylindrical portion, the thickness of metal liner and the drop off region size as the design variables. Strength constraints for composite layers and the metal liner are constructed by using Tsai-Wu failure criterion and Mises failure criterion respectively. Numerical examples show that the method proposed can effectively solve the RBRD problem, and the optimal results of the proposed model can satisfy certain reliability requirement and have the robustness to the fluctuation of design variables.展开更多
Recently,reliability-based design is a universal method to quantify negative influence of uncertainty in geotechnical engineering.However,for deep foundation pit,evaluating the system safety of retaining structures an...Recently,reliability-based design is a universal method to quantify negative influence of uncertainty in geotechnical engineering.However,for deep foundation pit,evaluating the system safety of retaining structures and finding cost-effective design points are main challenges.To address this,this study proposes a novel system reliability-based robust design method for retaining system of deep foundation pit and illustrated this method via a simplified case history in Suzhou,China.The proposed method included two parts:system reliability model and robust design method.Back Propagation Neural Network(BPNN)is used to fit limit state functions and conduct efficient reliability analysis.The common source random variable(CSRV)model are used to evaluate correlation between failure modes and determine the system reliability.Furthermore,based on the system reliability model,a robust design method is developed.This method aims to find cost-effective design points.To solve this problem,the third generation non-dominated genetic algorithm(NSGA-III)is adopted.The efficiency and accuracy of whole computations are improved by involving BPNN models and NSGA-III algorithm.The proposed method has a good performance in locating the balanced design point between safety and construction cost.Moreover,the proposed method can provide design points with reasonable stiffness distribution.展开更多
The study presents the results of over 30,000 numerical analyses on the stability of lava tubes under lunar conditions.The research considered random irregularities in cave geometry and their impact on stability,with ...The study presents the results of over 30,000 numerical analyses on the stability of lava tubes under lunar conditions.The research considered random irregularities in cave geometry and their impact on stability,with a particular focus on the geometric characteristics of identified collapses.We propose a procedure for extracting the collapse areas and integrating it into the stability analysis results.The results were examined to assess the possibility of describing the geometry characteristics of collapses using commonly applied probability density distributions,such as normal or lognormal distribution.Our aim is to facilitate future risk assessment of lunar caves.Such an assessment will be essential prior to robotically exploring caves beneath the lunar surface and can be extended to be used for planetary caves beyond the Moon.Our findings indicate that several collapse characteristics can be represented by unimodal probability density distributions,which could significantly simplify the candidate selection process.Based on our results,we also highlight several key directions for future research and suggested implications related to their future exploration.展开更多
Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonun...Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design.展开更多
The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the effi...The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.展开更多
The reliability-based optimization, the relia- bility-based sensitivity analysis and robust design method are employed to propose an effective approach for reliability-based robust design optimization of vehicle compo...The reliability-based optimization, the relia- bility-based sensitivity analysis and robust design method are employed to propose an effective approach for reliability-based robust design optimization of vehicle components in Part I. Applications of the method are further discussed for reliability-based robust optimization of vehicle components in this paper. Examples of axles, torsion bar, coil and composite springs are illustrated for numerical investigations. Results have shown the proposed method is an efficient method for reliability-based robust design optimization of vehicle components.展开更多
Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orienta...Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orientation,often neglecting the potential of microstructural design,constraints in the layup process,and performance reliability.This study,therefore,introduces a multiscale reliability-based design optimization method for carbon fiber-reinforced plastic(CFRP)drive shafts.Initially,parametric modeling of the microscale cell was performed,and its elastic performance parameters were predicted using two homogenization methods,examining the impact of fluctuations in microscale cell parameters on composite material performance.A finite element model of the CFRP drive shaft was then constructed,achieving parameter transfer between microscale and macroscale through Python programming.This enabled an investigation into the influence of both micro and macro design parameters on the CFRP drive shaft’s performance.The Multi-Objective Particle Swarm Optimization(MOPSO)algorithm was enhanced for particle generation and updating strategies,facilitating the resolution of multi-objective reliability optimization problems,including composite material layup process constraints.Case studies demonstrated that this approach leads to over 30%weight reduction in CFRP drive shafts compared to metallic counterparts while satisfying reliability requirements and offering insights for the lightweight design of other vehicle components.展开更多
Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to ...Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy.In this case,by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory,a random forest(RF)model is presented to enhance the computing efficiency of reliability degree;moreover,by embedding the RF model into multilevel optimization model,an efficient RF-assisted fatigue reliability-based design optimization framework is developed.Regarding the low-cycle fatigue reliability-based design optimization of aeroengine turbine disc as a case,the effectiveness of the presented framework is validated.The reliabilitybased design optimization results exhibit that the proposed framework holds high computing accuracy and computing efficiency.The current efforts shed a light on the theory/method development of reliability-based design optimization of complex engineering structures.展开更多
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
Advances in software and hardware technologies have facilitated the production of quadrotor unmanned aerial vehicles(UAVs).Nowadays,people actively use quadrotor UAVs in essential missions such as search and rescue,co...Advances in software and hardware technologies have facilitated the production of quadrotor unmanned aerial vehicles(UAVs).Nowadays,people actively use quadrotor UAVs in essential missions such as search and rescue,counter-terrorism,firefighting,surveillance,and cargo transportation.While performing these tasks,quadrotors must operate in noisy environments.Therefore,a robust controller design that can control the altitude and attitude of the quadrotor in noisy environments is of great importance.Many researchers have focused only on white Gaussian noise in their studies,whereas researchers need to consider the effects of all colored noises during the operation of the quadrotor.This study aims to design a robust controller that is resistant to all colored noises.Firstly,a nonlinear quadrotormodel was created with MATLAB.Then,a backstepping controller resistant to colored noises was designed.Thedesigned backstepping controller was tested under Gaussian white,pink,brown,blue,and purple noises.PID and Lyapunov-based controller designswere also carried out,and their time responses(rise time,overshoot,settling time)were compared with those of the backstepping controller.In the simulations,time was in seconds,altitude was in meters,and roll,pitch,and yaw references were in radians.Rise and settling time values were in seconds,and overshoot value was in percent.When the obtained values are examined,simulations prove that the proposed backstepping controller has the least overshoot and the shortest settling time under all noise types.展开更多
While in the past the robustness of transportation networks was studied considering the cyber and physical space as isolated environments this is no longer the case.Integrating the Internet of Things devices in the se...While in the past the robustness of transportation networks was studied considering the cyber and physical space as isolated environments this is no longer the case.Integrating the Internet of Things devices in the sensing area of transportation infrastructure has resulted in ubiquitous cyber-physical systems and increasing interdependen-cies between the physical and cyber networks.As a result,the robustness of transportation networks relies on the uninterrupted serviceability of physical and cyber networks.Current studies on interdependent networks overlook the civil engineering aspect of cyber-physical systems.Firstly,they rely on the assumption of a uniform and strong level of interdependency.That is,once a node within a network fails its counterpart fails immedi-ately.Current studies overlook the impact of earthquake and other natural hazards on the operation of modern transportation infrastructure,that now serve as a cyber-physical system.The last is responsible not only for the physical operation(e.g.,flow of vehicles)but also for the continuous data transmission and subsequently the cy-ber operation of the entire transportation network.Therefore,the robustness of modern transportation networks should be modelled from a new cyber-physical perspective that includes civil engineering aspects.In this paper,we propose a new robustness assessment approach for modern transportation networks and their underlying in-terdependent physical and cyber network,subjected to earthquake events.The novelty relies on the modelling of interdependent networks,in the form of a graph,based on their interdependency levels.We associate the service-ability level of the coupled physical and cyber network with the damage states induced by earthquake events.Robustness is then measured as a degradation of the cyber-physical serviceability level.The application of the approach is demonstrated by studying an illustrative transportation network using seismic data from real-world transportation infrastructure.Furthermore,we propose the integration of a robustness improvement indicator based on physical and cyber attributes to enhance the cyber-physical serviceability level.Results indicate an improvement in robustness level(i.e.,41%)by adopting the proposed robustness improvement indicator.The usefulness of our approach is highlighted by comparing it with other methods that consider strong interdepen-dencies and key node protection strategies.The approach is of interest to stakeholders who are attempting to incorporate cyber-physical systems into civil engineering systems.展开更多
Reliability design of braced excavation is still a challenge for geotechnical community.Optimization design is a normal method to control the safety and cost of braced excavations.This study presents an advanced relia...Reliability design of braced excavation is still a challenge for geotechnical community.Optimization design is a normal method to control the safety and cost of braced excavations.This study presents an advanced reliability-based robust geotechnical design method,which can consider multiple failures and uncertainty of statistical information.A universal design sample was conducted to verify the necessity of considering the uncertainty of statistical information.Ultimate limit state and serviceability limit state of braced excavations were defined,and point estimating method was used to evaluate the standard deviation of failure probabilities.Two-objective and three-objective optimization models were developed to illustrate the application of proposed methods in detail.In addition,the performance of optimization algorithms and further application of multiple-objective models were discussed.The results from this study indicate that the proposed method has a good performance in determining the optimal design with reasonable robustness and cost.New algorithms have higher efficiency in solving nonlinear and multiple-objective optimization problems than the 2nd Non-dominated sorting genetic algo-rithm.This study can guide the design of retaining systems of braced excavations in clay.展开更多
Numerous uncertainties in practical production and operation can seriously affect the drive performance of permanent magnet synchronous machines(PMSMs).Various robust control methods have been developed to mitigate or...Numerous uncertainties in practical production and operation can seriously affect the drive performance of permanent magnet synchronous machines(PMSMs).Various robust control methods have been developed to mitigate or eliminate the effects of these uncertainties.However,the robustness to uncertainties of electrical drive systems has not been clearly defined.No systemic procedures have been proposed to evaluate a control system's robustness(how robust it is).This paper proposes a systemic method for evaluating control systems'robustness to uncertainties.The concept and fundamental theory of robust control are illustrated by considering a simple uncertain feedback control system.The effects of uncertainties on the control performance and stability are analyzed and discussed.The concept of design for six-sigma(a robust design method)is employed to numerically evaluate the robustness levels of control systems.To show the effectiveness of the proposed robustness evaluation method,case studies are conducted for second-order systems,DC motor drive systems,and PMSM drive systems.Besides the conventional predictive control of PMSM drive,three different robust predictive control methods are evaluated in terms of two different parametric uncertainty ranges and three application requirements against parametric uncertainties.展开更多
This paper tackles uncertainties between planning and actual models.It extends the concept of RCI(robust control invariant)tubes,originally a parameterized representation of closed-loop control robustness in tradition...This paper tackles uncertainties between planning and actual models.It extends the concept of RCI(robust control invariant)tubes,originally a parameterized representation of closed-loop control robustness in traditional feedback control,to the domain of motion planning for autonomous vehicles.Thus,closed-loop system uncertainty can be preemptively addressed during vehicle motion planning.This involves selecting collision-free trajectories to minimize the volume of robust invariant tubes.Furthermore,constraints on state and control variables are translated into constraints on the RCI tubes of the closed-loop system,ensuring that motion planning produces a safe and optimal trajectory while maintaining flexibility,rather than solely optimizing for the open-loop nominal model.Additionally,to expedite the solving process,we were inspired by L2gain to parameterize the RCI tubes and developed a parameterized explicit iterative expression for propagating ellipsoidal uncertainty sets within closedloop systems.Furthermore,we applied the pseudospectral orthogonal collocation method to parameterize the optimization problem of transcribing trajectories using high-order Lagrangian polynomials.Finally,under various operating conditions,we incorporate both the kinematic and dynamic models of the vehicle and also conduct simulations and analyses of uncertainties such as heading angle measurement,chassis response,and steering hysteresis.Our proposed robust motion planning framework has been validated to effectively address nearly all bounded uncertainties while anticipating potential tracking errors in control during the planning phase.This ensures fast,closed-loop safety and robustness in vehicle motion planning.展开更多
Dear Editor,H_(∞)This letter develops a new framework for the robust stability and performance conditions as well as the relevant controller synthesis with respect to uncertain robot manipulators.There often exist mo...Dear Editor,H_(∞)This letter develops a new framework for the robust stability and performance conditions as well as the relevant controller synthesis with respect to uncertain robot manipulators.There often exist model uncertainties between the nominal model and the real robot manipulator and disturbances. Hence, dealing with their effects plays a crucial role in leading to high tracking performances, as discussed in [1]–[5].展开更多
Superhydrophobic glass has inspiring development prospects in endoscopes,solar panels and other engineering and medical fields.However,the surface topography required to achieve superhydrophobicity will inevitably aff...Superhydrophobic glass has inspiring development prospects in endoscopes,solar panels and other engineering and medical fields.However,the surface topography required to achieve superhydrophobicity will inevitably affect the surface transparency and limit the application of glass materials.To resolve the contradiction between the surface transparency and the robust superhydrophobicity,an efficient and low-cost laser-chemical surface functionalization process was utilized to fabricate superhydrophobic glass surface.The results show that the air can be effectively trapped in surface micro/nanostructure induced by laser texturing,thus reducing the solid-liquid contact area and interfacial tension.The deposition of hydrophobic carbon-containing groups on the surface can be accelerated by chemical treatment,and the surface energy is significantly reduced.The glass surface exhibits marvelous robust superhydrophobicity with a contact angle of 155.8°and a roll-off angle of 7.2°under the combination of hierarchical micro/nanostructure and low surface energy.Moreover,the surface transparency of the prepared superhydrophobic glass was only 5.42%lower than that of the untreated surface.This superhydrophobic glass with high transparency still maintains excellent superhydrophobicity after durability and stability tests.The facile fabrication of superhydrophobic glass with high transparency and robustness provides a strong reference for further expanding the application value of glass materials.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 51135003, U1234208, 51205050)New Teachers' Fund for Doctor Stations of Ministry of Education of China (Grant No.20110042120020)+1 种基金Fundamental Research Funds for the Central Universities, China (Grant No. N110303003)China Postdoctoral Science Foundation (Grant No. 2011M500564)
文摘In the reliability designing procedure of the vehicle components, when the distribution styles of the random variables are unknown or non-normal distribution, the result evaluated contains great error or even is wrong if the reliability value R is larger than 1 by using the existent method, in which case the formula is necessary to be revised. This is obviously inconvenient for programming. Combining reliability-based optimization theory, robust designing method and reliability based sensitivity analysis, a new method for reliability robust designing is proposed. Therefore the influence level of the designing parameters’ changing to the reliability of vehicle components can be obtained. The reliability sensitivity with respect to design parameters is viewed as a sub-objective function in the multi-objective optimization problem satisfying reliability constraints. Given the first four moments of basic random variables, a fourth-moment technique and the proposed optimization procedure can obtain reliability-based robust design of automobile components with non-normal distribution parameters accurately and quickly. By using the proposed method, the distribution style of the random parameters is relaxed. Therefore it is much closer to the actual reliability problems. The numerical examples indicate the following: (1) The reliability value obtained by the robust method proposed increases (】0.04%) comparing to the value obtained by the ordinary optimization algorithm; (2) The absolute value of reliability-based sensitivity decreases (】0.01%), and the robustness of the products’ quality is improved accordingly. Utilizing the reliability-based optimization and robust design method in the reliability designing procedure reduces the manufacture cost and provides the theoretical basis for the reliability and robust design of the vehicle components.
基金supported by the Natural Science Foundation of China(No.10772070)National Basic Research Program of China(No.2011CB013800)
文摘A surrogate based particle swarm optimization (SBPSO) algorithm which combines the surrogate modeling technique and particle swarm optimization is applied to the reliability- based robust design (RBRD) of composite pressure vessels. The algorithm and efficiency of SBPSO are displayed through numerical examples. A model for filament-wound composite pressure vessels with metallic liner is then studied by netting analysis and its responses are analyzed by using Finite element method (performed by software ANSYS). An optimization problem for maximizing the performance factor is formulated by choosing the winding orientation of the helical plies in the cylindrical portion, the thickness of metal liner and the drop off region size as the design variables. Strength constraints for composite layers and the metal liner are constructed by using Tsai-Wu failure criterion and Mises failure criterion respectively. Numerical examples show that the method proposed can effectively solve the RBRD problem, and the optimal results of the proposed model can satisfy certain reliability requirement and have the robustness to the fluctuation of design variables.
基金The authors are grateful to the financial support from National Natural Science Foundation of China(No.52078086)Postdoctoral innovative talents support program,Chongqing(Grant No.CQBX2021022)Financial support from China Southwest Geotechnical Investigation&Design Institute Co.,Ltd(C2021-0264).
文摘Recently,reliability-based design is a universal method to quantify negative influence of uncertainty in geotechnical engineering.However,for deep foundation pit,evaluating the system safety of retaining structures and finding cost-effective design points are main challenges.To address this,this study proposes a novel system reliability-based robust design method for retaining system of deep foundation pit and illustrated this method via a simplified case history in Suzhou,China.The proposed method included two parts:system reliability model and robust design method.Back Propagation Neural Network(BPNN)is used to fit limit state functions and conduct efficient reliability analysis.The common source random variable(CSRV)model are used to evaluate correlation between failure modes and determine the system reliability.Furthermore,based on the system reliability model,a robust design method is developed.This method aims to find cost-effective design points.To solve this problem,the third generation non-dominated genetic algorithm(NSGA-III)is adopted.The efficiency and accuracy of whole computations are improved by involving BPNN models and NSGA-III algorithm.The proposed method has a good performance in locating the balanced design point between safety and construction cost.Moreover,the proposed method can provide design points with reasonable stiffness distribution.
基金The work was performed based on the research project no.2023/51/D/ST10/01956,financed by the National Science Center,Poland.
文摘The study presents the results of over 30,000 numerical analyses on the stability of lava tubes under lunar conditions.The research considered random irregularities in cave geometry and their impact on stability,with a particular focus on the geometric characteristics of identified collapses.We propose a procedure for extracting the collapse areas and integrating it into the stability analysis results.The results were examined to assess the possibility of describing the geometry characteristics of collapses using commonly applied probability density distributions,such as normal or lognormal distribution.Our aim is to facilitate future risk assessment of lunar caves.Such an assessment will be essential prior to robotically exploring caves beneath the lunar surface and can be extended to be used for planetary caves beyond the Moon.Our findings indicate that several collapse characteristics can be represented by unimodal probability density distributions,which could significantly simplify the candidate selection process.Based on our results,we also highlight several key directions for future research and suggested implications related to their future exploration.
基金National Natural Science Foundation of China under Grant Nos.51921006 and 51725801Fundamental Research Funds for the Central Universities under Grant No.FRFCU5710093320Heilongjiang Touyan Innovation Team Program。
文摘Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design.
基金supported by the Innovation Fund Project of the Gansu Education Department(Grant No.2021B-099).
文摘The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.
文摘The reliability-based optimization, the relia- bility-based sensitivity analysis and robust design method are employed to propose an effective approach for reliability-based robust design optimization of vehicle components in Part I. Applications of the method are further discussed for reliability-based robust optimization of vehicle components in this paper. Examples of axles, torsion bar, coil and composite springs are illustrated for numerical investigations. Results have shown the proposed method is an efficient method for reliability-based robust design optimization of vehicle components.
基金supported by the S&T Special Program of Huzhou(Grant No.2023GZ09)the Open Fund Project of the ShanghaiKey Laboratory of Lightweight Structural Composites(Grant No.2232021A4-06).
文摘Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orientation,often neglecting the potential of microstructural design,constraints in the layup process,and performance reliability.This study,therefore,introduces a multiscale reliability-based design optimization method for carbon fiber-reinforced plastic(CFRP)drive shafts.Initially,parametric modeling of the microscale cell was performed,and its elastic performance parameters were predicted using two homogenization methods,examining the impact of fluctuations in microscale cell parameters on composite material performance.A finite element model of the CFRP drive shaft was then constructed,achieving parameter transfer between microscale and macroscale through Python programming.This enabled an investigation into the influence of both micro and macro design parameters on the CFRP drive shaft’s performance.The Multi-Objective Particle Swarm Optimization(MOPSO)algorithm was enhanced for particle generation and updating strategies,facilitating the resolution of multi-objective reliability optimization problems,including composite material layup process constraints.Case studies demonstrated that this approach leads to over 30%weight reduction in CFRP drive shafts compared to metallic counterparts while satisfying reliability requirements and offering insights for the lightweight design of other vehicle components.
基金supported by the National Natural Science Foundation of China under Grant(Number:52105136)the Hong Kong Scholar program under Grant(Number:XJ2022013)China Postdoctoral Science Foundation under Grant(Number:2021M690290)Academic Excellence Foundation of BUAA under Grant(Number:BY2004103).
文摘Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy.In this case,by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory,a random forest(RF)model is presented to enhance the computing efficiency of reliability degree;moreover,by embedding the RF model into multilevel optimization model,an efficient RF-assisted fatigue reliability-based design optimization framework is developed.Regarding the low-cycle fatigue reliability-based design optimization of aeroengine turbine disc as a case,the effectiveness of the presented framework is validated.The reliabilitybased design optimization results exhibit that the proposed framework holds high computing accuracy and computing efficiency.The current efforts shed a light on the theory/method development of reliability-based design optimization of complex engineering structures.
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
文摘Advances in software and hardware technologies have facilitated the production of quadrotor unmanned aerial vehicles(UAVs).Nowadays,people actively use quadrotor UAVs in essential missions such as search and rescue,counter-terrorism,firefighting,surveillance,and cargo transportation.While performing these tasks,quadrotors must operate in noisy environments.Therefore,a robust controller design that can control the altitude and attitude of the quadrotor in noisy environments is of great importance.Many researchers have focused only on white Gaussian noise in their studies,whereas researchers need to consider the effects of all colored noises during the operation of the quadrotor.This study aims to design a robust controller that is resistant to all colored noises.Firstly,a nonlinear quadrotormodel was created with MATLAB.Then,a backstepping controller resistant to colored noises was designed.Thedesigned backstepping controller was tested under Gaussian white,pink,brown,blue,and purple noises.PID and Lyapunov-based controller designswere also carried out,and their time responses(rise time,overshoot,settling time)were compared with those of the backstepping controller.In the simulations,time was in seconds,altitude was in meters,and roll,pitch,and yaw references were in radians.Rise and settling time values were in seconds,and overshoot value was in percent.When the obtained values are examined,simulations prove that the proposed backstepping controller has the least overshoot and the shortest settling time under all noise types.
文摘While in the past the robustness of transportation networks was studied considering the cyber and physical space as isolated environments this is no longer the case.Integrating the Internet of Things devices in the sensing area of transportation infrastructure has resulted in ubiquitous cyber-physical systems and increasing interdependen-cies between the physical and cyber networks.As a result,the robustness of transportation networks relies on the uninterrupted serviceability of physical and cyber networks.Current studies on interdependent networks overlook the civil engineering aspect of cyber-physical systems.Firstly,they rely on the assumption of a uniform and strong level of interdependency.That is,once a node within a network fails its counterpart fails immedi-ately.Current studies overlook the impact of earthquake and other natural hazards on the operation of modern transportation infrastructure,that now serve as a cyber-physical system.The last is responsible not only for the physical operation(e.g.,flow of vehicles)but also for the continuous data transmission and subsequently the cy-ber operation of the entire transportation network.Therefore,the robustness of modern transportation networks should be modelled from a new cyber-physical perspective that includes civil engineering aspects.In this paper,we propose a new robustness assessment approach for modern transportation networks and their underlying in-terdependent physical and cyber network,subjected to earthquake events.The novelty relies on the modelling of interdependent networks,in the form of a graph,based on their interdependency levels.We associate the service-ability level of the coupled physical and cyber network with the damage states induced by earthquake events.Robustness is then measured as a degradation of the cyber-physical serviceability level.The application of the approach is demonstrated by studying an illustrative transportation network using seismic data from real-world transportation infrastructure.Furthermore,we propose the integration of a robustness improvement indicator based on physical and cyber attributes to enhance the cyber-physical serviceability level.Results indicate an improvement in robustness level(i.e.,41%)by adopting the proposed robustness improvement indicator.The usefulness of our approach is highlighted by comparing it with other methods that consider strong interdepen-dencies and key node protection strategies.The approach is of interest to stakeholders who are attempting to incorporate cyber-physical systems into civil engineering systems.
基金supported by the National Natural Science Foundation of China(Grant No.52078086)Program of Distinguished Young Scholars,Natural Science Foundation of Chongqing,China(Grant No.cstc2020jcyj-jq0087).
文摘Reliability design of braced excavation is still a challenge for geotechnical community.Optimization design is a normal method to control the safety and cost of braced excavations.This study presents an advanced reliability-based robust geotechnical design method,which can consider multiple failures and uncertainty of statistical information.A universal design sample was conducted to verify the necessity of considering the uncertainty of statistical information.Ultimate limit state and serviceability limit state of braced excavations were defined,and point estimating method was used to evaluate the standard deviation of failure probabilities.Two-objective and three-objective optimization models were developed to illustrate the application of proposed methods in detail.In addition,the performance of optimization algorithms and further application of multiple-objective models were discussed.The results from this study indicate that the proposed method has a good performance in determining the optimal design with reasonable robustness and cost.New algorithms have higher efficiency in solving nonlinear and multiple-objective optimization problems than the 2nd Non-dominated sorting genetic algo-rithm.This study can guide the design of retaining systems of braced excavations in clay.
文摘Numerous uncertainties in practical production and operation can seriously affect the drive performance of permanent magnet synchronous machines(PMSMs).Various robust control methods have been developed to mitigate or eliminate the effects of these uncertainties.However,the robustness to uncertainties of electrical drive systems has not been clearly defined.No systemic procedures have been proposed to evaluate a control system's robustness(how robust it is).This paper proposes a systemic method for evaluating control systems'robustness to uncertainties.The concept and fundamental theory of robust control are illustrated by considering a simple uncertain feedback control system.The effects of uncertainties on the control performance and stability are analyzed and discussed.The concept of design for six-sigma(a robust design method)is employed to numerically evaluate the robustness levels of control systems.To show the effectiveness of the proposed robustness evaluation method,case studies are conducted for second-order systems,DC motor drive systems,and PMSM drive systems.Besides the conventional predictive control of PMSM drive,three different robust predictive control methods are evaluated in terms of two different parametric uncertainty ranges and three application requirements against parametric uncertainties.
基金Supported by National Natural Science Foundation of China(Grant Nos.52025121,52394263)National Key R&D Plan of China(Grant No.2023YFD2000301)+2 种基金Foundation of State Key Laboratory of Automobile Safety and Energy Saving of China(Grant No.KFZ2201)the Jiangsu Provincial Scientific Research Center of Applied Mathematics under(Grant No.BK20233002)Special Fund of Jiangsu Province for the Transformation of Scientific and Technological Achievements under(Grant No.BA2021023)。
文摘This paper tackles uncertainties between planning and actual models.It extends the concept of RCI(robust control invariant)tubes,originally a parameterized representation of closed-loop control robustness in traditional feedback control,to the domain of motion planning for autonomous vehicles.Thus,closed-loop system uncertainty can be preemptively addressed during vehicle motion planning.This involves selecting collision-free trajectories to minimize the volume of robust invariant tubes.Furthermore,constraints on state and control variables are translated into constraints on the RCI tubes of the closed-loop system,ensuring that motion planning produces a safe and optimal trajectory while maintaining flexibility,rather than solely optimizing for the open-loop nominal model.Additionally,to expedite the solving process,we were inspired by L2gain to parameterize the RCI tubes and developed a parameterized explicit iterative expression for propagating ellipsoidal uncertainty sets within closedloop systems.Furthermore,we applied the pseudospectral orthogonal collocation method to parameterize the optimization problem of transcribing trajectories using high-order Lagrangian polynomials.Finally,under various operating conditions,we incorporate both the kinematic and dynamic models of the vehicle and also conduct simulations and analyses of uncertainties such as heading angle measurement,chassis response,and steering hysteresis.Our proposed robust motion planning framework has been validated to effectively address nearly all bounded uncertainties while anticipating potential tracking errors in control during the planning phase.This ensures fast,closed-loop safety and robustness in vehicle motion planning.
基金support by “R&D Program for Forest Science Technology(RS-2024-0040 3460)” provided by Korea Forest Service(Korea Forestry Promotion Institute)
文摘Dear Editor,H_(∞)This letter develops a new framework for the robust stability and performance conditions as well as the relevant controller synthesis with respect to uncertain robot manipulators.There often exist model uncertainties between the nominal model and the real robot manipulator and disturbances. Hence, dealing with their effects plays a crucial role in leading to high tracking performances, as discussed in [1]–[5].
基金Projects(52105175,52305149)supported by the National Natural Science Foundation of ChinaProject(2242024RCB0035)supported by the Zhishan Young Scholar Program of Southeast University,China+5 种基金Project(BK20210235)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(2023MK042)supported by the State Administration for Market Regulation,ChinaProject(KJ2023003)supported by the Jiangsu Administration for Market Regulation,ChinaProjects(KJ(Y)202429,KJ(YJ)2023001)supported by the Jiangsu Province Special Equipment Safety Supervision Inspection Institute,ChinaProject(JSSCBS20210121)supported by the Jiangsu Provincial Innovative and Entrepreneurial Doctor Program,ChinaProject(1102002310)supported by the Technology Innovation Project for Returnees in Nanjing,China。
文摘Superhydrophobic glass has inspiring development prospects in endoscopes,solar panels and other engineering and medical fields.However,the surface topography required to achieve superhydrophobicity will inevitably affect the surface transparency and limit the application of glass materials.To resolve the contradiction between the surface transparency and the robust superhydrophobicity,an efficient and low-cost laser-chemical surface functionalization process was utilized to fabricate superhydrophobic glass surface.The results show that the air can be effectively trapped in surface micro/nanostructure induced by laser texturing,thus reducing the solid-liquid contact area and interfacial tension.The deposition of hydrophobic carbon-containing groups on the surface can be accelerated by chemical treatment,and the surface energy is significantly reduced.The glass surface exhibits marvelous robust superhydrophobicity with a contact angle of 155.8°and a roll-off angle of 7.2°under the combination of hierarchical micro/nanostructure and low surface energy.Moreover,the surface transparency of the prepared superhydrophobic glass was only 5.42%lower than that of the untreated surface.This superhydrophobic glass with high transparency still maintains excellent superhydrophobicity after durability and stability tests.The facile fabrication of superhydrophobic glass with high transparency and robustness provides a strong reference for further expanding the application value of glass materials.