期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Autonomous Kernel Based Models for Short-Term Load Forecasting
1
作者 Vitor Hugo Ferreira Alexandre Pinto Alves da Silva 《Journal of Energy and Power Engineering》 2012年第12期1984-1993,共10页
The application of support vector machines to forecasting problems is becoming popular, lately. Several comparisons between neural networks trained with error backpropagation and support vector machines have shown adv... The application of support vector machines to forecasting problems is becoming popular, lately. Several comparisons between neural networks trained with error backpropagation and support vector machines have shown advantage for the latter in different domains of application. However, some difficulties still deteriorate the performance of the support vector machines. The main one is related to the setting of the hyperparameters involved in their training. Techniques based on meta-heuristics have been employed to determine appropriate values for those hyperparameters. However, because of the high noneonvexity of this estimation problem, which makes the search for a good solution very hard, an approach based on Bayesian inference, called relevance vector machine, has been proposed more recently. The present paper aims at investigating the suitability of this new approach to the short-term load forecasting problem. 展开更多
关键词 Load forecasting artificial neural networks input selection kernel based models support vector machine relevancevector machine.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部