For more accurate fault detection and diagnosis, there is an increasing trend to use a large number of sensors and to collect data at high frequency. This inevitably produces large-scale data and causes difficulties i...For more accurate fault detection and diagnosis, there is an increasing trend to use a large number of sensors and to collect data at high frequency. This inevitably produces large-scale data and causes difficulties in fault classification. Actually, the classification methods are simply intractable when applied to high-dimensional condition monitoring data. In order to solve the problem, engineers have to resort to complicated feature extraction methods to reduce the dimensionality of data. However, the features transformed by the methods cannot be understood by the engineers due to a loss of the original engineering meaning. In this paper, other forms of dimensionality reduction technique(feature selection methods) are employed to identify machinery condition, based only on frequency spectrum data. Feature selection methods are usually divided into three main types: filter, wrapper and embedded methods. Most studies are mainly focused on the first two types, whilst the development and application of the embedded feature selection methods are very limited. This paper attempts to explore a novel embedded method. The method is formed by merging a sequential bidirectional search algorithm into scale parameters tuning within a kernel function in the relevance vector machine. To demonstrate the potential for applying the method to machinery fault diagnosis, the method is implemented to rolling bearing experimental data. The results obtained by using the method are consistent with the theoretical interpretation, proving that this algorithm has important engineering significance in revealing the correlation between the faults and relevant frequency features. The proposed method is a theoretical extension of relevance vector machine, and provides an effective solution to detect the fault-related frequency components with high efficiency.展开更多
Methanol to olefin(MTO)technology provides the opportunity to produce olefins from nonpetroleum sources such as coal,biomass and natural gas.More than 20 commercial MTO plants have been put into operation.Till now,con...Methanol to olefin(MTO)technology provides the opportunity to produce olefins from nonpetroleum sources such as coal,biomass and natural gas.More than 20 commercial MTO plants have been put into operation.Till now,contributions on optimal operation of industrial MTO plants from a process systems engineering perspective are rare.Based on relevance vector machine(RVM),a data-driven framework for optimal operation of the industrial MTO process is established to fully utilize the plentiful industrial data sets.RVM correlates the yield distribution prediction of main products and the operation conditions.These correlations then serve as the constraints for the multi-objective optimization model to pursue the optimal operation of the plant.Nondominated sorting genetic algorithmⅡis used to solve the optimization problem.Comprehensive tests demonstrate that the ethylene yield is effectively improved based on the proposed framework.Since RVM does provide the distribution prediction instead of point estimation,the established model is expected to provide guidance for actual production operations under uncertainty.展开更多
Coordinate descent method is a unconstrained optimization technique. When it is applied to support vector machine (SVM), at each step the method updates one component of w by solving a one-variable sub-problem while...Coordinate descent method is a unconstrained optimization technique. When it is applied to support vector machine (SVM), at each step the method updates one component of w by solving a one-variable sub-problem while fixing other components. All components of w update after one iteration. Then go to next iteration. Though the method converges and converges fast in the beginning, it converges slow for final convergence. To improve the speed of final convergence of coordinate descent method, Hooke and Jeeves algorithm which adds pattern search after every iteration in coordinate descent method was applied to SVM and a global Newton algorithm was used to solve one-variable subproblems. We proved the convergence of the algorithm. Experimental results show Hooke and Jeeves' method does accelerate convergence specially for final convergence and achieves higher testing accuracy more quickly in classification.展开更多
Classical machine learning algorithms seem to be totally incapable of processing tremendous data,while quantum machine learning algorithms could deal with big data unhurriedly and provide exponential acceleration over...Classical machine learning algorithms seem to be totally incapable of processing tremendous data,while quantum machine learning algorithms could deal with big data unhurriedly and provide exponential acceleration over classical counterparts.In this paper,we propose two quantum support vector machine algorithms for multi classification.One is the quantum version of the directed acyclic graph support vector machine.The other one is to use the Grover search algorithm before measurement,which amplifies the amplitude of the phase storing of the classification result.For k classification,the former provides quadratic reduction in computational complexity when classifying.The latter accelerates the training speed significantly and more importantly,the classification result can be read out with a probability of at least 50%using only one measurement.We conduct numerical simulations on two algorithms,and their classification success rates are 96%and 88.7%,respectively.展开更多
基金Supported by Humanities and Social Science Programme in Hubei Province,China(Grant No.14Y035)National Natural Science Foundation of China(Grant No.71203170)National Special Research Project in Food Nonprofit Industry(Grant No.201413002-2)
文摘For more accurate fault detection and diagnosis, there is an increasing trend to use a large number of sensors and to collect data at high frequency. This inevitably produces large-scale data and causes difficulties in fault classification. Actually, the classification methods are simply intractable when applied to high-dimensional condition monitoring data. In order to solve the problem, engineers have to resort to complicated feature extraction methods to reduce the dimensionality of data. However, the features transformed by the methods cannot be understood by the engineers due to a loss of the original engineering meaning. In this paper, other forms of dimensionality reduction technique(feature selection methods) are employed to identify machinery condition, based only on frequency spectrum data. Feature selection methods are usually divided into three main types: filter, wrapper and embedded methods. Most studies are mainly focused on the first two types, whilst the development and application of the embedded feature selection methods are very limited. This paper attempts to explore a novel embedded method. The method is formed by merging a sequential bidirectional search algorithm into scale parameters tuning within a kernel function in the relevance vector machine. To demonstrate the potential for applying the method to machinery fault diagnosis, the method is implemented to rolling bearing experimental data. The results obtained by using the method are consistent with the theoretical interpretation, proving that this algorithm has important engineering significance in revealing the correlation between the faults and relevant frequency features. The proposed method is a theoretical extension of relevance vector machine, and provides an effective solution to detect the fault-related frequency components with high efficiency.
基金financial support for this work from National Natural Science Foundation of China(21978150,21706143)。
文摘Methanol to olefin(MTO)technology provides the opportunity to produce olefins from nonpetroleum sources such as coal,biomass and natural gas.More than 20 commercial MTO plants have been put into operation.Till now,contributions on optimal operation of industrial MTO plants from a process systems engineering perspective are rare.Based on relevance vector machine(RVM),a data-driven framework for optimal operation of the industrial MTO process is established to fully utilize the plentiful industrial data sets.RVM correlates the yield distribution prediction of main products and the operation conditions.These correlations then serve as the constraints for the multi-objective optimization model to pursue the optimal operation of the plant.Nondominated sorting genetic algorithmⅡis used to solve the optimization problem.Comprehensive tests demonstrate that the ethylene yield is effectively improved based on the proposed framework.Since RVM does provide the distribution prediction instead of point estimation,the established model is expected to provide guidance for actual production operations under uncertainty.
基金supported by the National Natural Science Foundation of China (6057407560705004)
文摘Coordinate descent method is a unconstrained optimization technique. When it is applied to support vector machine (SVM), at each step the method updates one component of w by solving a one-variable sub-problem while fixing other components. All components of w update after one iteration. Then go to next iteration. Though the method converges and converges fast in the beginning, it converges slow for final convergence. To improve the speed of final convergence of coordinate descent method, Hooke and Jeeves algorithm which adds pattern search after every iteration in coordinate descent method was applied to SVM and a global Newton algorithm was used to solve one-variable subproblems. We proved the convergence of the algorithm. Experimental results show Hooke and Jeeves' method does accelerate convergence specially for final convergence and achieves higher testing accuracy more quickly in classification.
基金supported by the Shandong Provincial Natural Science Foundation for Quantum Science(No.ZR2021LLZ002)the Fundamental Research Funds for the Central Universities(No.22CX03005A).
文摘Classical machine learning algorithms seem to be totally incapable of processing tremendous data,while quantum machine learning algorithms could deal with big data unhurriedly and provide exponential acceleration over classical counterparts.In this paper,we propose two quantum support vector machine algorithms for multi classification.One is the quantum version of the directed acyclic graph support vector machine.The other one is to use the Grover search algorithm before measurement,which amplifies the amplitude of the phase storing of the classification result.For k classification,the former provides quadratic reduction in computational complexity when classifying.The latter accelerates the training speed significantly and more importantly,the classification result can be read out with a probability of at least 50%using only one measurement.We conduct numerical simulations on two algorithms,and their classification success rates are 96%and 88.7%,respectively.