期刊文献+
共找到26,169篇文章
< 1 2 250 >
每页显示 20 50 100
Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization
1
作者 Songsong Zhang Huazhong Jin +5 位作者 Zhiwei Ye Jia Yang Jixin Zhang Dongfang Wu Xiao Zheng Dingfeng Song 《Computers, Materials & Continua》 2026年第1期1141-1159,共19页
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal... Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics. 展开更多
关键词 Multi-label feature selection federated learning manifold regularization sparse constraints hybrid breeding optimization algorithm particle swarm optimizatio algorithm privacy protection
在线阅读 下载PDF
Gamma-ray spectral energy resolution calibration based on locally constrained regularization for scintillation detector response:methodology,numerical,and experimental analysis
2
作者 Guo-Feng Yang Wen-Zheng Peng +3 位作者 Dong-Ming Liu Xiao-Long Wu Meng Chen Xiang-Jun Liu 《Nuclear Science and Techniques》 2025年第4期92-104,共13页
Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration para... Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration parameters.First,a Monte Carlo simulation model consistent with an actual measurement system was constructed to obtain the energy deposition distribution in the scintillation crystal.Subsequently,the regularization objective function is established based on weighted least squares and additional constraints.Additional constraints were designed using a special weighting scheme based on the incident gamma-ray energies.Subsequently,an intelligent algorithm was introduced to search for the optimal resolution calibration parameters by minimizing the objective function.The most appropriate regularization parameter was determined through mathematical experiments.When the regularization parameter was 30,the calibrated results exhibited the minimum RMSE.Simulations and test pit experiments were conducted to verify the performance of the proposed method.The simulation results demonstrate that the proposed algorithm can determine resolution calibration parameters more accurately than the traditional weighted least squares,and the test pit experimental results show that the R-squares between the calibrated and measured spectra are larger than 0.99.The accurate resolution calibration parameters determined by the proposed method lay the foundation for gamma-ray spectral processing and simulation benchmarking. 展开更多
关键词 Energy resolution regularization Gaussian broadening Spectral analysis Scintillation detector
在线阅读 下载PDF
Absorption compensation via structure tensor regularization multichannel inversion
3
作者 Liang Bing Zhao Dong-feng +4 位作者 Xia Lian-jun Tang Guo-song Luo Zhen Guan Wen-hua Wang Xue-jing 《Applied Geophysics》 2025年第3期635-646,892,893,共14页
Absorption compensation is a process involving the exponential amplification of reflection amplitudes.This process amplifies the seismic signal and noise,thereby substantially reducing the signal-tonoise ratio of seis... Absorption compensation is a process involving the exponential amplification of reflection amplitudes.This process amplifies the seismic signal and noise,thereby substantially reducing the signal-tonoise ratio of seismic data.Therefore,this paper proposes a multichannel inversion absorption compensation method based on structure tensor regularization.First,the structure tensor is utilized to extract the spatial inclination of seismic signals,and the spatial prediction filter is designed along the inclination direction.The spatial prediction filter is then introduced into the regularization condition of multichannel inversion absorption compensation,and the absorption compensation is realized under the framework of multichannel inversion theory.The spatial predictability of seismic signals is also introduced into the objective function of absorption compensation inversion.Thus,the inversion system can effectively suppress the noise amplification effect during absorption compensation and improve the recovery accuracy of high-frequency signals.Synthetic and field data tests are conducted to demonstrate the accuracy and effectiveness of the proposed method. 展开更多
关键词 Absorption compensation Structure tensor RESOLUTION Signal-to-noise ratio regularization
在线阅读 下载PDF
Robust visual tracking using temporal regularization correlation filter with high-confidence strategy
4
作者 Xiao-Gang Dong Ke-Xuan Li +2 位作者 Hong-Xia Mao Chen Hu Tian Pu 《Journal of Electronic Science and Technology》 2025年第2期81-96,共16页
Target tracking is an essential task in contemporary computer vision applications.However,its effectiveness is susceptible to model drift,due to the different appearances of targets,which often compromises tracking ro... Target tracking is an essential task in contemporary computer vision applications.However,its effectiveness is susceptible to model drift,due to the different appearances of targets,which often compromises tracking robustness and precision.In this paper,a universally applicable method based on correlation filters is introduced to mitigate model drift in complex scenarios.It employs temporal-confidence samples as a priori to guide the model update process and ensure its precision and consistency over a long period.An improved update mechanism based on the peak side-lobe to peak correlation energy(PSPCE)criterion is proposed,which selects high-confidence samples along the temporal dimension to update temporal-confidence samples.Extensive experiments on various benchmarks demonstrate that the proposed method achieves a competitive performance compared with the state-of-the-art methods.Especially when the target appearance changes significantly,our method is more robust and can achieve a balance between precision and speed.Specifically,on the object tracking benchmark(OTB-100)dataset,compared to the baseline,the tracking precision of our model improves by 8.8%,8.8%,5.1%,5.6%,and 6.9%for background clutter,deformation,occlusion,rotation,and illumination variation,respectively.The results indicate that this proposed method can significantly enhance the robustness and precision of target tracking in dynamic and challenging environments,offering a reliable solution for applications such as real-time monitoring,autonomous driving,and precision guidance. 展开更多
关键词 Appearance changes Correlation filter High-confidence strategy Temporal regularization Visual tracking
在线阅读 下载PDF
Mechanical response identification of local interconnections in board- level packaging structures under projectile penetration using Bayesian regularization
5
作者 Xu Long Yuntao Hu Irfan Ali 《Defence Technology(防务技术)》 2025年第7期79-95,共17页
Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to... Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to miniaturization of electronic components,it is challenging to directly measure or numerically predict the mechanical response of small-sized critical interconnections in board-level packaging structures to ensure the mechanical reliability of electronic devices in projectiles under harsh working conditions.To address this issue,an indirect measurement method using the Bayesian regularization-based load identification was proposed in this study based on finite element(FE)pre-dictions to estimate the load applied on critical interconnections of board-level packaging structures during the process of projectile penetration.For predicting the high-strain-rate penetration process,an FE model was established with elasto-plastic constitutive models of the representative packaging ma-terials(that is,solder material and epoxy molding compound)in which material constitutive parameters were calibrated against the experimental results by using the split-Hopkinson pressure bar.As the impact-induced dynamic bending of the printed circuit board resulted in an alternating tensile-compressive loading on the solder joints during penetration,the corner solder joints in the edge re-gions experience the highest S11 and strain,making them more prone to failure.Based on FE predictions at different structural scales,an improved Bayesian method based on augmented Tikhonov regulariza-tion was theoretically proposed to address the issues of ill-posed matrix inversion and noise sensitivity in the load identification at the critical solder joints.By incorporating a wavelet thresholding technique,the method resolves the problem of poor load identification accuracy at high noise levels.The proposed method achieves satisfactorily small relative errors and high correlation coefficients in identifying the mechanical response of local interconnections in board-level packaging structures,while significantly balancing the smoothness of response curves with the accuracy of peak identification.At medium and low noise levels,the relative error is less than 6%,while it is less than 10%at high noise levels.The proposed method provides an effective indirect approach for the boundary conditions of localized solder joints during the projectile penetration process,and its philosophy can be readily extended to other scenarios of multiscale analysis for highly nonlinear materials and structures under extreme loading conditions. 展开更多
关键词 Board-level packaging structure High strain-rate constitutive model Load identification Bayesian regularization Wavelet thresholding method
在线阅读 下载PDF
Full waveform inversion with fractional anisotropic total p-variation regularization
6
作者 Bo Li Xiao-Tao Wen +2 位作者 Yu-Qiang Zhang Zi-Yu Qin Zhi-Di An 《Petroleum Science》 2025年第8期3266-3278,共13页
Full waveform inversion is a precise method for parameter inversion,harnessing the complete wavefield information of seismic waves.It holds the potential to intricately characterize the detailed features of the model ... Full waveform inversion is a precise method for parameter inversion,harnessing the complete wavefield information of seismic waves.It holds the potential to intricately characterize the detailed features of the model with high accuracy.However,due to inaccurate initial models,the absence of low-frequency data,and incomplete observational data,full waveform inversion(FWI)exhibits pronounced nonlinear characteristics.When the strata are buried deep,the inversion capability of this method is constrained.To enhance the accuracy and precision of FWI,this paper introduces a novel approach to address the aforementioned challenges—namely,a fractional-order anisotropic total p-variation regularization for full waveform inversion(FATpV-FWI).This method incorporates fractional-order total variation(TV)regularization to construct the inversion objective function,building upon TV regularization,and subsequently employs the alternating direction multiplier method for solving.This approach mitigates the step effect stemming from total variation in seismic inversion,thereby facilitating the reconstruction of sharp interfaces of geophysical parameters while smoothing background variations.Simultaneously,replacing integer-order differences with fractional-order differences bolsters the correlation among seismic data and diminishes the scattering effect caused by integer-order differences in seismic inversion.The outcomes of model tests validate the efficacy of this method,highlighting its ability to enhance the overall accuracy of the inversion process. 展开更多
关键词 Full waveform inversion Anisotropic total p-variation Fractional-order differences Sparse regularization
原文传递
Deterministic Convergence Analysis for GRU Networks via Smoothing Regularization
7
作者 Qian Zhu Qian Kang +2 位作者 Tao Xu Dengxiu Yu Zhen Wang 《Computers, Materials & Continua》 2025年第5期1855-1879,共25页
In this study,we present a deterministic convergence analysis of Gated Recurrent Unit(GRU)networks enhanced by a smoothing L_(1)regularization technique.While GRU architectures effectively mitigate gradient vanishing/... In this study,we present a deterministic convergence analysis of Gated Recurrent Unit(GRU)networks enhanced by a smoothing L_(1)regularization technique.While GRU architectures effectively mitigate gradient vanishing/exploding issues in sequential modeling,they remain prone to overfitting,particularly under noisy or limited training data.Traditional L_(1)regularization,despite enforcing sparsity and accelerating optimization,introduces non-differentiable points in the error function,leading to oscillations during training.To address this,we propose a novel smoothing L_(1)regularization framework that replaces the non-differentiable absolute function with a quadratic approximation,ensuring gradient continuity and stabilizing the optimization landscape.Theoretically,we rigorously establish threekey properties of the resulting smoothing L_(1)-regularizedGRU(SL_(1)-GRU)model:(1)monotonic decrease of the error function across iterations,(2)weak convergence characterized by vanishing gradients as iterations approach infinity,and(3)strong convergence of network weights to fixed points under finite conditions.Comprehensive experiments on benchmark datasets-spanning function approximation,classification(KDD Cup 1999 Data,MNIST),and regression tasks(Boston Housing,Energy Efficiency)-demonstrate SL_(1)-GRUs superiority over baseline models(RNN,LSTM,GRU,L_(1)-GRU,L2-GRU).Empirical results reveal that SL_(1)-GRU achieves 1.0%-2.4%higher test accuracy in classification,7.8%-15.4%lower mean squared error in regression compared to unregularized GRU,while reducing training time by 8.7%-20.1%.These outcomes validate the method’s efficacy in balancing computational efficiency and generalization capability,and they strongly corroborate the theoretical calculations.The proposed framework not only resolves the non-differentiability challenge of L_(1)regularization but also provides a theoretical foundation for convergence guarantees in recurrent neural network training. 展开更多
关键词 Gated recurrent unit regularization convergence
在线阅读 下载PDF
Graph-Based Transform and Dual Graph Laplacian Regularization for Depth Map Denoising
8
作者 MENG Yaqun GE Huayong +2 位作者 HOU Xinxin JI Yukai LI Sisi 《Journal of Donghua University(English Edition)》 2025年第5期534-542,共9页
Owing to the constraints of depth sensing technology,images acquired by depth cameras are inevitably mixed with various noises.For depth maps presented in gray values,this research proposes a novel denoising model,ter... Owing to the constraints of depth sensing technology,images acquired by depth cameras are inevitably mixed with various noises.For depth maps presented in gray values,this research proposes a novel denoising model,termed graph-based transform(GBT)and dual graph Laplacian regularization(DGLR)(DGLR-GBT).This model specifically aims to remove Gaussian white noise by capitalizing on the nonlocal self-similarity(NSS)and the piecewise smoothness properties intrinsic to depth maps.Within the group sparse coding(GSC)framework,a combination of GBT and DGLR is implemented.Firstly,within each group,the graph is constructed by using estimates of the true values of the averaged blocks instead of the observations.Secondly,the graph Laplacian regular terms are constructed based on rows and columns of similar block groups,respectively.Lastly,the solution is obtained effectively by combining the alternating direction multiplication method(ADMM)with the weighted thresholding method within the domain of GBT. 展开更多
关键词 depth map graph signal processing dual graph Laplacian regularization(DGLR) graph-based transform(GBT) group sparse coding(GSC)
在线阅读 下载PDF
甲状腺结节、乳腺增生和子宫肌瘤三病的相关性及患病规律:基于真实世界数据的研究
9
作者 李春晓 张莹莹 +3 位作者 凌霄 杨玉晴 张业 金艳涛 《中华中医药学刊》 北大核心 2026年第1期7-12,共6页
目的旨在探究甲状腺结节(thyroid nodules,TN)、乳腺增生(hyperplasia of mammary gland,HMG)和子宫肌瘤(uterine leiomyomas,UL)三种疾病之间的相互关联性及其患病规律,为临床诊疗方案和合理用药提供科学依据。方法回顾性分析了河南中... 目的旨在探究甲状腺结节(thyroid nodules,TN)、乳腺增生(hyperplasia of mammary gland,HMG)和子宫肌瘤(uterine leiomyomas,UL)三种疾病之间的相互关联性及其患病规律,为临床诊疗方案和合理用药提供科学依据。方法回顾性分析了河南中医药大学第一附属医院体检中心2011年10月19日—2018年12月19日进行甲状腺、乳房、子宫超声检查的女性体检者的电子健康记录。根据检出结果,将单独检出任一疾病、任意两种疾病共发及三病并发的病例纳入病例组,未检出任何疾病的个体纳入对照组。通过SPSS Statistics 22.0软件运用Cochran-Mantel-Haenszel检验及描述性统计方法,分析三种疾病之间的相关性及患病规律。结果共纳入符合研究条件的病例5252例,其中病例组2902例。相关性分析显示,任意两病的共发均有显著的正向相关性。其中TN与HMG在45~59岁年龄组(r=0.106,P<0.001)、TN与UL在18~44岁年龄组(r=0.122,P<0.001)、HMG和UL在45~59岁年龄组(r=0.157,P<0.001)的相关性最为显著。描述性统计分析表明,三病或任意两病的并发主要集中在45~59岁年龄段。三种疾病患者的中医体质主要为痰湿质和阳虚质,血压、血脂及血糖水平大多正常,但与对照组相比存在显著差异(P<0.001)。实验室检查结果显示,血常规、肝功能和肾功能指标均处于正常范围内,但与对照组相比存在显著差异(P<0.001)。结论基于真实世界数据的研究结果显示,甲状腺结节、乳腺增生和子宫肌瘤三种疾病间存在显著的正向相关性,且在年龄分布、中医体质、血压、血糖、血脂及实验室检验指标方面与正常组相比均有显著差异,为这三种疾病的早期发现、预防和治疗提供了重要依据。 展开更多
关键词 甲状腺结节 乳腺增生 子宫肌瘤 数据挖掘 真实世界研究 患病规律
原文传递
3D density inversion of gravity gradient data using the extrapolated Tikhonov regularization 被引量:4
10
作者 刘金钊 柳林涛 +1 位作者 梁星辉 叶周润 《Applied Geophysics》 SCIE CSCD 2015年第2期137-146,273,共11页
We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations b... We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations between calculated and observed data. We also use the depth weighting function based on the eigenvector of gravity gradient tensor to eliminate undesired effects owing to the fast attenuation of the position function. Model data suggest that the extrapolated Tikhonov regularization in conjunction with the depth weighting function can effectively recover the 3D distribution of density anomalies. We conduct density inversion of gravity gradient data from the Australia Kauring test site and compare the inversion results with the published research results. The proposed inversion method can be used to obtain the 3D density distribution of underground anomalies. 展开更多
关键词 extrapolated Tikhonov regularization depth weighting gravity gradient tensor eieenvector
在线阅读 下载PDF
定期成分献血者血常规相关指标分析
11
作者 于媛 谯铭铭 +2 位作者 王娜 徐昊 陈元锋 《中国实用医药》 2026年第2期37-42,共6页
目的对山东省血液中心定期成分献血者外周血血常规指标进行回顾性分析,探讨献血次数及不同机型血细胞分离机对血常规的影响,以期为献血者的关爱与保护及定期成分献血者队伍建设提供参考。方法在唐山启奥科技SHINOW 9.5系统中调取2024年2... 目的对山东省血液中心定期成分献血者外周血血常规指标进行回顾性分析,探讨献血次数及不同机型血细胞分离机对血常规的影响,以期为献血者的关爱与保护及定期成分献血者队伍建设提供参考。方法在唐山启奥科技SHINOW 9.5系统中调取2024年2月X、Y两个献血屋的献血者资料,从中选取从未捐献过全血并且在2018年2月~2024年2月间只采用同一种A或B机型血细胞分离机进行采集的献血者,调取血常规相关指标数据按照男女性别分别进行不同频次、不同机型分析。将选出的献血者按照男女分别进行分组:2月份初次前来即以往从未捐献过的献血者作为初次组;1次≤捐献次数<3次的成分献血者设为偶尔献血组;≥第4次前来捐献即已经捐献次数≥3次的成分献血者作为定期献血组;定期献血者中≥第21次前来捐献即已经捐献次数≥20次的成分献血者设为较高频次定期献血组;在较高频次定期献血组内再按采集机型不同分为A机型组、B机型组。男性:初次组25人,偶尔献血组21人,定期献血组79人,其中较高频次定期献血组29人;较高频次定期献血组的A机型组12人,B机型组17人。女性:初次组5人,偶尔献血组4人,定期献血组8人,其中较高频次定期献血组3人;较高频次定期献血组的A机型组1人,B机型组2人。比较各组男性的血常规相关指标[血红蛋白浓度(HGB)、血小板计数(PLT)、红细胞压积(HCT)、红细胞计数(RBC)、白细胞计数(WBC)、平均红细胞体积(MCV)、平均红细胞血红蛋白量(MCH)、平均红细胞血红蛋白浓度(MCHC)、淋巴细胞计数、淋巴细胞百分比、平均血小板体积(MPV)],初次组与采用不同机型的较高频次定期献血组男性的血常规相关指标,各组女性的血常规相关指标。结果较高频次定期献血组男性的WBC、HGB、HCT分别为5.00(4.30,5.65)×10^(9)/L、145.00(140.50,155.00)g/L、44.00(42.00,46.00)%,均明显低于初次组男性的6.20(5.50,6.85)×10^(9)/L、153.00(150.00,160.50)g/L、46.00(45.00,48.00)%,具有统计学意义(经Bonferroni校准后,P=0.003、0.028、0.021<0.05);较高频次定期献血组男性与初次组男性其他指标相比均没有统计学差异(P>0.05)。各组男性RBC、PLT、MCV、MCH、MCHC、淋巴细胞计数、淋巴细胞百分比、MPV两两相比均没有统计学差异(P>0.05)。B机型组男性RBC 4.80(4.70,5.20)×10^(12)/L、WBC 4.90(4.25,5.65)×10^(9)/L、HGB 144.00(138.50,151.00)g/L、HCT 43.00(42.00,44.00)%、淋巴细胞计数1.70(1.40,1.85)×10^(9)/L、MPV 9.50(9.10,9.85)fl均低于初次组男性的5.10(5.00,5.30)×10^(12)/L、6.20(5.50,6.85)×10^(9)/L、153.00(150.00,160.50)g/L、46.00(45.00,48.00)%、2.10(1.65,2.60)×10^(9)/L、9.90(9.65,10.35)fl,具有统计学意义(经Bonferroni校准后,P=0.022、0.001、0.001、0.000、0.044、0.023<0.05);B机型组男性HCT 43.00(42.00,44.00)%低于A机型组男性的45.00(44.00,47.00)%,具有统计学意义(经Bonferroni校准后,P=0.017<0.05)。其他相关指标相比均没有统计学差异(P>0.05)。17例女性的血常规相关指标数据均在可接受范围内,因样本数较少,未进行统计学比较。结论采集频次和采集机型不同对定期成分献血者血常规相关指标是有影响的,均在可接受范围内波动。工作人员需严格执行国家标准,建议根据献血者自身采集频次选择适宜机型,对定期献血者实行关爱和保护。 展开更多
关键词 定期成分献血 血常规 血细胞分离机
暂未订购
Iterative regularization method for image denoising with adaptive scale parameter
12
作者 李文书 骆建华 +2 位作者 刘且根 何芳芳 魏秀金 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期453-456,共4页
In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoi... In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoising, a novel IRM with the adaptive scale parameter is proposed. First, the classic regularization item is modified and the equation of the adaptive scale parameter is deduced. Then, the initial value of the varying scale parameter is obtained by the trend of the number of iterations and the scale parameter sequence vectors. Finally, the novel iterative regularization method is used for image denoising. Numerical experiments show that compared with the IRM with the constant scale parameter, the proposed method with the varying scale parameter can not only reduce the number of iterations when the scale parameter becomes smaller, but also efficiently remove noise when the scale parameter becomes bigger and well preserve the details of images. 展开更多
关键词 iterative regularization model (IRM) total variation varying scale parameter image denoising
在线阅读 下载PDF
Load of the Small-Scale Vertical Cylinder in a Wave-Current Field
13
作者 Mingjie Li Binbin Zhao Wengyang Duan 《哈尔滨工程大学学报(英文版)》 2026年第1期82-94,共13页
Studies of wave-current interactions are vital for the safe design of structures.Regular waves in the presence of uniform,linear shear,and quadratic shear currents are explored by the High-Level Green-Naghdi model in ... Studies of wave-current interactions are vital for the safe design of structures.Regular waves in the presence of uniform,linear shear,and quadratic shear currents are explored by the High-Level Green-Naghdi model in this paper.The five-point central difference method is used for spatial discretization,and the fourth-order Adams predictor-corrector scheme is employed for marching in time.The domain-decomposition method is applied for the wave-current generation and absorption.The effects of currents on the wave profile and velocity field are examined under two conditions:the same velocity of currents at the still-water level and the constant flow volume of currents.Wave profiles and velocity fields demonstrate substantial differences in three types of currents owing to the diverse vertical distribution of current velocity and vorticity.Then,loads on small-scale vertical cylinders subjected to regular waves and three types of background currents with the same flow volume are investigated.The maximum load intensity and load fluctuation amplitude in uniform,linear shear,and quadratic shear currents increase sequentially.The stretched superposition method overestimates the maximum load intensity and load fluctuation amplitude in opposing currents and underestimates these values in following currents.The stretched superposition method obtains a poor approximation for strong nonlinear waves,particularly in the case of the opposing quadratic shear current. 展开更多
关键词 Wave-current interaction Cylinder load HLGN model Morison equation Regular waves
在线阅读 下载PDF
生态鱼礁对规则波在珊瑚岛礁上传播变形与增水的影响
14
作者 陈佳莹 任兴月 +1 位作者 屈科 王超 《应用海洋学学报》 北大核心 2026年第1期72-80,共9页
珊瑚礁海岸特殊的地貌结构可以对波浪起到天然缓冲作用,从而有效降低波浪对海岸的破坏,保护后方人口密集地区的安全。然而,岛礁上日益增多的人类活动,如吹填珊瑚砂和基建工程等,不但对珊瑚岛礁脆弱的生态系统构成威胁,并且显著重塑了岛... 珊瑚礁海岸特殊的地貌结构可以对波浪起到天然缓冲作用,从而有效降低波浪对海岸的破坏,保护后方人口密集地区的安全。然而,岛礁上日益增多的人类活动,如吹填珊瑚砂和基建工程等,不但对珊瑚岛礁脆弱的生态系统构成威胁,并且显著重塑了岛礁的波浪水动力环境,影响岸礁对海岸的保护作用。目前,岛礁建设面临生态修复和改善防浪抗浪特性的双重需要。本研究基于物理模型实验,系统研究了生态鱼礁存在时对珊瑚岛礁上规则波水动力特性影响的变化规律,分析了不同入射波高、礁坪水深、波浪周期和礁体开孔率等4种因素的影响,试验结果表明:生态鱼礁的存在会对规则波在岛礁上传播的演变特性和增水产生显著影响。入射波浪与人工鱼礁之间产生复杂的相互作用,生态鱼礁的存在可以显著地减小礁缘及礁坪附近的局部波高,并降低礁坪上的波浪增水。此外,生态鱼礁内部复杂的涡流场会耗散更多的波浪能量,导致礁后斜坡上最大波浪爬高降低,实现防浪护岸的作用。 展开更多
关键词 生态鱼礁 生态护岸 规则波 水动力特性 物理模型试验
在线阅读 下载PDF
积分收缩条件下一类二阶中立型发展方程的T-可控性
15
作者 王甜甜 范虹霞 《浙江大学学报(理学版)》 北大核心 2026年第1期63-70,118,共9页
研究了在Hilbert空间中的一类二阶中立型发展方程适度解的存在唯一性和T-可控性。利用余弦族理论、正则积分收缩条件(较Lipschitz连续弱的条件)和迭代技术,证明了一类二阶中立型发展方程适度解的存在唯一性,并结合算子的单调性与强制性... 研究了在Hilbert空间中的一类二阶中立型发展方程适度解的存在唯一性和T-可控性。利用余弦族理论、正则积分收缩条件(较Lipschitz连续弱的条件)和迭代技术,证明了一类二阶中立型发展方程适度解的存在唯一性,并结合算子的单调性与强制性假设,获得了其T-可控性的充分条件。最后,通过实例验证了结果的正确性。 展开更多
关键词 T-可控性 中立型发展方程 正则积分收缩 迭代技术
在线阅读 下载PDF
基于改进DenseNet的棉叶螨危害等级识别研究
16
作者 雷竣杰 周保平 《中国农机化学报》 北大核心 2026年第2期202-209,共8页
针对传统棉叶螨人工诊断分级方法费工费时且存在滞后性的问题,提出一种基于改进DenseNet—121的棉叶螨危害等级识别模型。依据棉叶螨害分级标准,在单一背景和自然背景下采集不同危害等级的棉叶图像,并对原始数据集进行增强以模拟图像采... 针对传统棉叶螨人工诊断分级方法费工费时且存在滞后性的问题,提出一种基于改进DenseNet—121的棉叶螨危害等级识别模型。依据棉叶螨害分级标准,在单一背景和自然背景下采集不同危害等级的棉叶图像,并对原始数据集进行增强以模拟图像采集时受不同天气情况、拍摄角度和设备噪声等因素的影响。不同螨害等级棉叶间特征相似度高、识别难度大,在优选DenseNet—121模型的基础上,首先,将第一层卷积中的7×7卷积核替换为Inception模块,增强浅层网络的特征提取能力;其次,在Transition Layer后引入SimAM注意力机制,强化棉叶螨害特征并抑制背景特征;最后,在Dense Layer后应用DropBlock正则化,提高模型的鲁棒性和抗过拟合能力。结果表明,所提模型在原始数据集上的识别准确率达到90.76%,较原始模型提高4.21个百分点;数据增强和3项改进策略分别使模型的识别准确率提高1.47、2.74、2.37、1.86个百分点;综合性能明显优于VGG16、ResNet50等模型。 展开更多
关键词 棉叶 螨害分级 改进DenseNet—121 注意力机制 正则化
在线阅读 下载PDF
基于计算预测与斑马鱼观察雷公藤甲素治疗系统性红斑狼疮的效-毒研究
17
作者 季宇鑫 林彦 +3 位作者 冯鑫煜 王雨 张晓朦 张冰 《中国药物警戒》 2026年第1期12-18,共7页
目的探讨雷公藤甲素(Triptolide,TP)器官毒性发生与时序规律、剂量蓄积的关系,初步分析其疗效-毒性机制,为提高TP临床使用安全性提供参考。方法以2 dpf斑马鱼胚胎为模型,设置荧光标记TP暴露组,于72 h后动态观察心脏、肝脏、肾脏及胃肠... 目的探讨雷公藤甲素(Triptolide,TP)器官毒性发生与时序规律、剂量蓄积的关系,初步分析其疗效-毒性机制,为提高TP临床使用安全性提供参考。方法以2 dpf斑马鱼胚胎为模型,设置荧光标记TP暴露组,于72 h后动态观察心脏、肝脏、肾脏及胃肠道毒性出现顺序及相关表型改变;利用网络药理学与网络毒理学筛选TP治疗系统性红斑狼疮及器官毒性共同靶点,进行GO/KEGG富集分析。结果TP可依次诱发斑马鱼肝脏(72 h)、心脏(74 h)、胃肠道(78 h)及肾脏(80 h)损伤;富集分析提示其“效-毒”机制高度相似,其潜在分子机制与凋亡、炎症反应等通路相关,白蛋白或为TP器官毒性标志指标。结论TP所致器官毒性呈现明显时序性与剂量依赖性,其“效-毒”潜在机制高度相似提示其疗效与毒性关系可能与剂量蓄积有关,其结果可为临床时序性毒性监测与干预提供参考,为临床防治提供新策略。但斑马鱼在药物代谢以及结构与人类存在差异,其器官毒性顺序需结合临床案例研究补充。 展开更多
关键词 雷公藤甲素 器官毒性 时序规律 分子机制 斑马鱼 中药药物警戒
暂未订购
基于嵌入特征和稀疏矩阵的实体对齐方法
18
作者 冯超文 耿程晨 刘英莉 《浙江大学学报(工学版)》 北大核心 2026年第2期379-387,454,共10页
多语言知识融合的实体对齐面临特征建模粒度不足、结构信息利用受限的挑战,为此提出融合多层次嵌入特征与稀疏矩阵传播机制的实体对齐方法.结合字符特征、词向量特征与邻域关系特征,构建统一的多维实体表示,增强实体的局部语义表达和结... 多语言知识融合的实体对齐面临特征建模粒度不足、结构信息利用受限的挑战,为此提出融合多层次嵌入特征与稀疏矩阵传播机制的实体对齐方法.结合字符特征、词向量特征与邻域关系特征,构建统一的多维实体表示,增强实体的局部语义表达和结构关联建模能力.基于关系嵌入构建稀疏邻接矩阵,结合特征归一化传播机制,实现信息在知识图谱中的稳定扩展与有效传递.为了进一步提升实体匹配的全局一致性,引入Sinkhorn正则化优化相似度矩阵,采用Hungarian算法执行最优实体对齐.所提方法在多个跨语言知识图谱数据集上的命中率和平均倒数排名评价指标上均有稳定性能表现,比代表性方法(如SNGA、EAMI)的竞争性强.该结果有效验证了所提方法的准确性与鲁棒性. 展开更多
关键词 知识图谱 实体对齐 多层次特征建模 稀疏矩阵传播 Sinkhorn正则化
在线阅读 下载PDF
双重正则化约束下主被动结合方法重建火焰物理场
19
作者 朱宁静 王哲 +2 位作者 杜雷恒 余亮英 黄志锋 《热力发电》 北大核心 2026年第1期134-141,共8页
利用火焰自发辐射(被动法)与吸收光谱(主动法)信号重建燃烧物理场是常用的2种光学测量方法,结合2种方法各自优势发展主被动结合方法将为燃烧检测提供新手段。通过在被动法测量系统中引入1条激光吸收光路同时获得火焰自发辐射和吸收光谱... 利用火焰自发辐射(被动法)与吸收光谱(主动法)信号重建燃烧物理场是常用的2种光学测量方法,结合2种方法各自优势发展主被动结合方法将为燃烧检测提供新手段。通过在被动法测量系统中引入1条激光吸收光路同时获得火焰自发辐射和吸收光谱信号,将被动法重建的燃烧温度场和组分初始浓度场引入主动法重建中,结合平滑性与先验浓度物理场双重正则化约束发展主被动结合方法。针对典型单峰与双峰轴对称火焰截面开展模拟重建,当测量误差为1.00%时,单峰与双峰火焰燃烧温度场重建平均误差分别为0.92%和1.32%,水蒸气体积分数平均误差分别3.05%和3.31%。结果表明,双重正则化约束下主被动结合方法水蒸气体积分数重建精度相较于被动法明显提升,相比于主动法所需布置激光光路数大幅减少,实现了利用简单测量系统的燃烧温度场和组分浓度场准确测量。 展开更多
关键词 燃烧检测 主被动结合方法 火焰物理场重建 双重正则化约束
在线阅读 下载PDF
柿棉蚧的发生与防治措施
20
作者 杨健 柳雪梅 颜世民 《果树资源学报》 2026年第1期94-96,共3页
柿树树冠圆整,树姿优美,秋季果实挂满枝头,景观效果显著,园林观赏价值极高,目前在林场和果园建设、村庄庭院绿化中广泛栽植,是重要的经济林木树种。然而近年来柿棉蚧危害逐年加重,对柿树的果实和枝叶均造成了不同程度的危害,制约了柿树... 柿树树冠圆整,树姿优美,秋季果实挂满枝头,景观效果显著,园林观赏价值极高,目前在林场和果园建设、村庄庭院绿化中广泛栽植,是重要的经济林木树种。然而近年来柿棉蚧危害逐年加重,对柿树的果实和枝叶均造成了不同程度的危害,制约了柿树生产的健康发展。系统阐述了柿棉蚧危害原因及发生规律,分析了防治困难的原因,提出了针对性的综合防治措施,希望给柿农参考与指导。 展开更多
关键词 柿棉蚧 发生规律 防治措施
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部