Let Z(λ,G)denote the zeta function of a graph G.In this paper the complement G^Cand the G^(xyz)-transformation G^(xyz)of an r-regular graph G with n vertices and m edges for x,y,z∈{0,1,+,-},are considerd.The relatio...Let Z(λ,G)denote the zeta function of a graph G.In this paper the complement G^Cand the G^(xyz)-transformation G^(xyz)of an r-regular graph G with n vertices and m edges for x,y,z∈{0,1,+,-},are considerd.The relationship between Z(λ,G)and Z(λ,G^C)is obtained.For all x,y,z∈{0,1,+,-},the explicit formulas for the reciprocal of Z(λ,G^(xyz))in terms of r,m,n and the characteristic polynomial of G are obtained.Due to limited space,only the expressions for G^(xyz)with z=0,and xyz∈{0++,+++,1+-}are presented here.展开更多
A new method for approximating the inerse Laplace transform is presented. We first change our Laplace transform equation into a convolution type integral equation, where Tikhonov regularization techniques and the Four...A new method for approximating the inerse Laplace transform is presented. We first change our Laplace transform equation into a convolution type integral equation, where Tikhonov regularization techniques and the Fourier transformation are easily applied. We finally obtain a regularized approximation to the inverse Laplace transform as finite sum展开更多
Let LE(G) denote the Laplacian energy of a graph G. In this paper the xyz-transformations G^(xyz) of an r-regular graph G for x,y,z∈{0,1, +,-} are considered. The explicit formulas of LE(G^(xyz)) are presented in ter...Let LE(G) denote the Laplacian energy of a graph G. In this paper the xyz-transformations G^(xyz) of an r-regular graph G for x,y,z∈{0,1, +,-} are considered. The explicit formulas of LE(G^(xyz)) are presented in terms of r,the number of vertices of G for any positive integer r and x,y,z∈{ 0,1},and also for r = 2 and all x,y,z∈{0,1,+,-}. Some Laplacian equienergetic pairs of G^(xyz) for r = 2 and x,y,z∈{0,1, +,-} are obtained. This also provides several ways to construct infinitely many pairs of Laplacian equienergetic graphs.展开更多
The asymptotic theory for nonlinear transformations of fractionally integrated time series is developed. By the use of fractional Occupation Times Formula, various nonlinear functions of fractionally integrated series...The asymptotic theory for nonlinear transformations of fractionally integrated time series is developed. By the use of fractional Occupation Times Formula, various nonlinear functions of fractionally integrated series such as ARFIMA time series are studied, and the asymptotic distributions of the sample moments of such functions are obtained and analyzed. The transformations considered in this paper includes a variety of functions such as regular functions, integrable functions and asymptotically homogeneous functions that are often used in practical nonlinear econometric analysis. It is shown that the asymptotic theory of nonlinear transformations of original and normalized fractionally integrated processes is diffent from that of fractionally integrated processes, but is similar to the asymptotic theory of nonlinear transformations of integrated processes.展开更多
The loping OS-EM iteration is a numerically efficient regularization method for solving ill-posed problems. In this article we investigate the loping OS-EM iterative method in connection with the circular Radon transf...The loping OS-EM iteration is a numerically efficient regularization method for solving ill-posed problems. In this article we investigate the loping OS-EM iterative method in connection with the circular Radon transform. We show that the proposed method converges weakly for the noisy data. Numerical tests are presented for a linear problem related to photoacoustic tomography.展开更多
基金National Natural Science Foundation of China(No.11671258)
文摘Let Z(λ,G)denote the zeta function of a graph G.In this paper the complement G^Cand the G^(xyz)-transformation G^(xyz)of an r-regular graph G with n vertices and m edges for x,y,z∈{0,1,+,-},are considerd.The relationship between Z(λ,G)and Z(λ,G^C)is obtained.For all x,y,z∈{0,1,+,-},the explicit formulas for the reciprocal of Z(λ,G^(xyz))in terms of r,m,n and the characteristic polynomial of G are obtained.Due to limited space,only the expressions for G^(xyz)with z=0,and xyz∈{0++,+++,1+-}are presented here.
文摘A new method for approximating the inerse Laplace transform is presented. We first change our Laplace transform equation into a convolution type integral equation, where Tikhonov regularization techniques and the Fourier transformation are easily applied. We finally obtain a regularized approximation to the inverse Laplace transform as finite sum
基金National Natural Science Foundation of China(No.11371086)the Fund of Science and Technology Commission of Shanghai Municipality,China(No.13ZR1400100)
文摘Let LE(G) denote the Laplacian energy of a graph G. In this paper the xyz-transformations G^(xyz) of an r-regular graph G for x,y,z∈{0,1, +,-} are considered. The explicit formulas of LE(G^(xyz)) are presented in terms of r,the number of vertices of G for any positive integer r and x,y,z∈{ 0,1},and also for r = 2 and all x,y,z∈{0,1,+,-}. Some Laplacian equienergetic pairs of G^(xyz) for r = 2 and x,y,z∈{0,1, +,-} are obtained. This also provides several ways to construct infinitely many pairs of Laplacian equienergetic graphs.
基金Supported by National Natural Science Foundation of China(No.70471050).
文摘The asymptotic theory for nonlinear transformations of fractionally integrated time series is developed. By the use of fractional Occupation Times Formula, various nonlinear functions of fractionally integrated series such as ARFIMA time series are studied, and the asymptotic distributions of the sample moments of such functions are obtained and analyzed. The transformations considered in this paper includes a variety of functions such as regular functions, integrable functions and asymptotically homogeneous functions that are often used in practical nonlinear econometric analysis. It is shown that the asymptotic theory of nonlinear transformations of original and normalized fractionally integrated processes is diffent from that of fractionally integrated processes, but is similar to the asymptotic theory of nonlinear transformations of integrated processes.
基金supported by the National Natural Science Foundation of China(61271398)K.C.Wong Magna Fund in Ningbo UniversityNatural Science Foundation of Ningbo City(2010A610102)
文摘The loping OS-EM iteration is a numerically efficient regularization method for solving ill-posed problems. In this article we investigate the loping OS-EM iterative method in connection with the circular Radon transform. We show that the proposed method converges weakly for the noisy data. Numerical tests are presented for a linear problem related to photoacoustic tomography.