Absorption compensation is a process involving the exponential amplification of reflection amplitudes.This process amplifies the seismic signal and noise,thereby substantially reducing the signal-tonoise ratio of seis...Absorption compensation is a process involving the exponential amplification of reflection amplitudes.This process amplifies the seismic signal and noise,thereby substantially reducing the signal-tonoise ratio of seismic data.Therefore,this paper proposes a multichannel inversion absorption compensation method based on structure tensor regularization.First,the structure tensor is utilized to extract the spatial inclination of seismic signals,and the spatial prediction filter is designed along the inclination direction.The spatial prediction filter is then introduced into the regularization condition of multichannel inversion absorption compensation,and the absorption compensation is realized under the framework of multichannel inversion theory.The spatial predictability of seismic signals is also introduced into the objective function of absorption compensation inversion.Thus,the inversion system can effectively suppress the noise amplification effect during absorption compensation and improve the recovery accuracy of high-frequency signals.Synthetic and field data tests are conducted to demonstrate the accuracy and effectiveness of the proposed method.展开更多
Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to...Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to miniaturization of electronic components,it is challenging to directly measure or numerically predict the mechanical response of small-sized critical interconnections in board-level packaging structures to ensure the mechanical reliability of electronic devices in projectiles under harsh working conditions.To address this issue,an indirect measurement method using the Bayesian regularization-based load identification was proposed in this study based on finite element(FE)pre-dictions to estimate the load applied on critical interconnections of board-level packaging structures during the process of projectile penetration.For predicting the high-strain-rate penetration process,an FE model was established with elasto-plastic constitutive models of the representative packaging ma-terials(that is,solder material and epoxy molding compound)in which material constitutive parameters were calibrated against the experimental results by using the split-Hopkinson pressure bar.As the impact-induced dynamic bending of the printed circuit board resulted in an alternating tensile-compressive loading on the solder joints during penetration,the corner solder joints in the edge re-gions experience the highest S11 and strain,making them more prone to failure.Based on FE predictions at different structural scales,an improved Bayesian method based on augmented Tikhonov regulariza-tion was theoretically proposed to address the issues of ill-posed matrix inversion and noise sensitivity in the load identification at the critical solder joints.By incorporating a wavelet thresholding technique,the method resolves the problem of poor load identification accuracy at high noise levels.The proposed method achieves satisfactorily small relative errors and high correlation coefficients in identifying the mechanical response of local interconnections in board-level packaging structures,while significantly balancing the smoothness of response curves with the accuracy of peak identification.At medium and low noise levels,the relative error is less than 6%,while it is less than 10%at high noise levels.The proposed method provides an effective indirect approach for the boundary conditions of localized solder joints during the projectile penetration process,and its philosophy can be readily extended to other scenarios of multiscale analysis for highly nonlinear materials and structures under extreme loading conditions.展开更多
Induction-Polymerization is a novel method for preparing polymers of regular structure. In the presence of a special macromolecular compound, monomer molecules are aggregeted regularly around one or more growth points...Induction-Polymerization is a novel method for preparing polymers of regular structure. In the presence of a special macromolecular compound, monomer molecules are aggregeted regularly around one or more growth points and polymerized to polymer of regular structure. Regularity of structure of the polyacrylamide prepared by this means has been verified with electron diffractograms, DSC curve and IR spectrum of the polymer.展开更多
Because it is hard to search similar structure for low similarity unknown structure proteins directly from the Protein Data Bank (PDB) database, 3D-structure is modeled in this paper for secondary structure regular ...Because it is hard to search similar structure for low similarity unknown structure proteins directly from the Protein Data Bank (PDB) database, 3D-structure is modeled in this paper for secondary structure regular fragments (α-Helices, β-Strands) of such proteins by the protein secondary structure prediction software, the Basic Local Alignment Search Tool (BLAST) and the side chain construction software SCWRL3. First, the protein secondary structure prediction software is adopted to extract secondary structure fragments from the unknown structure proteins. Then, regular fragments are regulated by BLAST based on comparative modeling, providing main chain configurations. Finally, SCWRL3 is applied to assemble side chains for regular fragments, so that 3D-structure of regular fragments of low similarity unknown structure protein is obtained. Regular fragments of several neurotoxins are used for test. Simulation results show that the prediction errors are less than 0.06nm for regular fragments less than 10 amino acids, implying the simpleness and effectiveness of the proposed method.展开更多
1 Introduction The huize Zn-Pb ore district in Yunnan province is locatedinthecentralsouthernofthe Sichuan—Yunnan—GuizhouPb-ZnPoly-metallic Mineralization Area in the southwestern margin of the Yangtze Block,and is ...1 Introduction The huize Zn-Pb ore district in Yunnan province is locatedinthecentralsouthernofthe Sichuan—Yunnan—GuizhouPb-ZnPoly-metallic Mineralization Area in the southwestern margin of the Yangtze Block,and is strictly controlled by fault structures.It has developed to one of the famous production bases of lead&zinc and germanium in China.展开更多
Nowadays,an increasing number of ships and marine structures are manufactured and inevitably operated in rough sea.As a result,some phenomena related to the violent fluid-elastic structure interactions(e.g.,hydrodynam...Nowadays,an increasing number of ships and marine structures are manufactured and inevitably operated in rough sea.As a result,some phenomena related to the violent fluid-elastic structure interactions(e.g.,hydrodynamic slamming on marine vessels,tsunami impact on onshore structures,and sloshing in liquid containers)have aroused huge challenges to ocean engineering fields.In this paper,the moving particle semi-implicit(MPS)method and finite element method(FEM)coupled method is proposed for use in numerical investigations of the interaction between a regular wave and a horizontal suspended structure.The fluid domain calculated by the MPS method is dispersed into fluid particles,and the structure domain solved by the FEM method is dispersed into beam elements.The generation of the 2D regular wave is firstly conducted,and convergence verification is performed to determine appropriate particle spacing for the simulation.Next,the regular wave interacting with a rigid structure is initially performed and verified through the comparison with the laboratory experiments.By verification,the MPS-FEM coupled method can be applied to fluid-structure interaction(FSI)problems with waves.On this basis,taking the flexibility of structure into consideration,the elastic dynamic response of the structure subjected to the wave slamming is investigated,including the evolutions of the free surface,the variation of the wave impact pressures,the velocity distribution,and the structural deformation response.By comparison with the rigid case,the effects of the structural flexibility on wave-elastic structure interaction can be obtained.展开更多
For practical engineering structures,it is usually difficult to measure external load distribution in a direct manner,which makes inverse load identification important.Specifically,load identification is a typical inv...For practical engineering structures,it is usually difficult to measure external load distribution in a direct manner,which makes inverse load identification important.Specifically,load identification is a typical inverse problem,for which the models(e.g.,response matrix)are often ill-posed,resulting in degraded accuracy and impaired noise immunity of load identification.This study aims at identifying external loads in a stiffened plate structure,through comparing the effectiveness of different methods for parameter selection in regulation problems,including the Generalized Cross Validation(GCV)method,the Ordinary Cross Validation method and the truncated singular value decomposition method.With demonstrated high accuracy,the GCV method is used to identify concentrated loads in three different directions(e.g.,vertical,lateral and longitudinal)exerted on a stiffened plate.The results show that the GCV method is able to effectively identify multi-source static loads,with relative errors less than 5%.Moreover,under the situation of swept frequency excitation,when the excitation frequency is near the natural frequency of the structure,the GCV method can achieve much higher accuracy compared with direct inversion.At other excitation frequencies,the average recognition error of the GCV method load identification less than 10%.展开更多
The occurrence state of methane is mostly controlled by coalfield geologicalstructures.The coal-bearing strata at Qidong coalmine experienced many tectonic cyclessince their formation.The gas content made by the compl...The occurrence state of methane is mostly controlled by coalfield geologicalstructures.The coal-bearing strata at Qidong coalmine experienced many tectonic cyclessince their formation.The gas content made by the complicated structural geologic systemat the coalfield is very different, which is obviously higher on the north side of the Weimiaofracture belt than that on the south side and near itself.This thesis discussed the gas occurrenceregularity based on the geometric characteristics of the geological structure andits regional tectonic evolution.This study can provide a foundation for coalfield exploitationand deal with coal and gas outburst.展开更多
In order to meet the rapid needs of processing square hole in mechanical equipment, the paper expounds the square hole processing method: planetary wheel method, and analyze the principle of tooling structure and pro...In order to meet the rapid needs of processing square hole in mechanical equipment, the paper expounds the square hole processing method: planetary wheel method, and analyze the principle of tooling structure and process with computer graphics parameters design. The results that, as long as the appropriate parameters, using the above method not only can punch the square hole, can also be processed triangle, the five angle and hexagonal regular polygon holes. The square hole processing method can provide theoretical basis and engineering reliable reference for related engineering and technical personnel.展开更多
An algorithm named DPP is addressed.In it,a new model based on the concept of irregularity degree is founded to evaluate the regularity of cells.It generates the structure regularity of cells by exploiting the signal ...An algorithm named DPP is addressed.In it,a new model based on the concept of irregularity degree is founded to evaluate the regularity of cells.It generates the structure regularity of cells by exploiting the signal flow of circuit.Then,it converts the bit slice structure to parallel constraints to enable Q place algorithm.The design flow and the main algorithms are introduced.Finally,the satisfied experimental result of the tool compared with the Cadence placement tool SE is discussed.展开更多
The distribution of the Jurassic coal measures in the northern Qaidam Basin is obviously controlled by the regional structures. Based on the existing data of coalfield exploration and combined with the analysis of coa...The distribution of the Jurassic coal measures in the northern Qaidam Basin is obviously controlled by the regional structures. Based on the existing data of coalfield exploration and combined with the analysis of coalfield basement structures, features of the main faults, and the distribution of coal measures, this paper brings forward a scheme of coalfield tectonic divisional units and the definition of the coal-controlling structural styles in the northern Qaidam Basin. The structure control of the distribution of coal measures is further discussed. Several stages of regional tectonic activities since the Indosinian has led to the distribution of coal measures into the characteristics of zonation from the north to south and block from east to west. The results indicate that the structural deformations are the most intense in the front of the three uplifted belts, which are characterized by the combination of thrusts. The coal measures are uplifted to the shallow formations, and are easy to be exploited, but the scale of mines is small because of serious damages by the coal distribution. On the contrary, the stress and strain are weak in the three depressions, with the coal-controlling structural styles being mainly the thrust-fold and thrust-monocline combinations. The distribution of coals in the depressions is relatively stable. The shallower part of the depression will become the key areas for exploration and development of coal resources in the northern Qaidam Basin.展开更多
To reveal the occurrence state and enrichment regularity of the dispersed element indium in pyrite, the petrology,mineralogy, geochemistry, and mineral physics were researched detailedly. The results suggest that the ...To reveal the occurrence state and enrichment regularity of the dispersed element indium in pyrite, the petrology,mineralogy, geochemistry, and mineral physics were researched detailedly. The results suggest that the structure of pyrite is mainlycomposed of massive structure, disseminated structure, vein structure, reticular structure, comb structure and so on. Generally, thepyrite coexists with sphalerite, marmatite, pyrrhotite, chalcopyrite, galena, and arsenopyrite. And the texture of pyrite primarilyconsists of the metasomatic texture, solid solution texture, idiomorphic?hypidiomorphic granular texture, and disseminated texture.The content of indium in pyrite ranges from 0.491×10?6 to 65.1×10?6 with an average value of 14.38×10?6. Yet, the indium content inthe Gaofeng deposit is higher than that in the Dafulou and Tongkeng deposit, showing a particularly significant supernormalenrichment. Besides, the cadmium content in pyrite is also higher than other dispersed elements, and similarly the abnormalenrichment of cadmium in the Gaofeng deposit is also very significant. An obvious positive correlation exists between In and Cd, orTl, but a negative correlation between In and Re. It is difficult to find out a positive or negative correlation between In and Ga. Theelement zinc is of great importance to the enrichment of indium, which can possibly facilitate to the migration and crystallization of dispersed element indium.展开更多
Theoretical results related to properties of a regularized recursive algorithm for estimation of a high dimensional vector of parameters are presented and proved. The recursive character of the procedure is proposed t...Theoretical results related to properties of a regularized recursive algorithm for estimation of a high dimensional vector of parameters are presented and proved. The recursive character of the procedure is proposed to overcome the difficulties with high dimension of the observation vector in computation of a statistical regularized estimator. As to deal with high dimension of the vector of unknown parameters, the regularization is introduced by specifying a priori non-negative covariance structure for the vector of estimated parameters. Numerical example with Monte-Carlo simulation for a low-dimensional system as well as the state/parameter estimation in a very high dimensional oceanic model is presented to demonstrate the efficiency of the proposed approach.展开更多
Brain midline delineation can facilitate the clinical evaluation of brain midline shift,which has a pivotal role in the diagnosis and prognosis of various brain pathology.However,there are still challenges for brain m...Brain midline delineation can facilitate the clinical evaluation of brain midline shift,which has a pivotal role in the diagnosis and prognosis of various brain pathology.However,there are still challenges for brain midline delineation:1)the largely deformed midline is hard to localize if mixed with severe cerebral hemorrhage;2)the predicted midlines of recent methods are not smooth and continuous which violates the structural priority.To overcome these challenges,we propose an anisotropic three dimensional(3D)network with context-aware refinement(A3D-CAR)for brain midline modeling.The proposed network fuses 3D context from different two dimensional(2D)slices through asymmetric context fusion.To exploit the elongated structure of the midline,an anisotropic block is designed to balance the difference between the adjacent pixels in the horizontal and vertical directions.For maintaining the structural priority of a brain midline,we present a novel 3D connectivity regular loss(3D CRL)to penalize the disconnectivity between nearby coordinates.Extensive experiments on the CQ dataset and one in-house dataset show that the proposed method outperforms three state-of-the-art methods on four evaluation metrics without excessive computational burden.展开更多
The periodic table of elements is arranged based on a series of regular polyhedron. The stability of inert gas atoms can be explained by the distribution of electrons, as well as their motion and magnetic force struct...The periodic table of elements is arranged based on a series of regular polyhedron. The stability of inert gas atoms can be explained by the distribution of electrons, as well as their motion and magnetic force structure. A magnetic force regular octahedron is proposed. It is a unique configuration that best satisfies the convergence of electrons moving in the same direction within regular polyhedra. In the case of an electrostatic force crust, the formal electron spin accounts for the crusts intrinsic magnetic moment exceeding the speed of light. If one is to consider that the electron has a magnetic outer layer and an electrostatic inner layer, then the question can be solved and abovementioned inference can provide the basis for magnetic force and momentum for the regular octahedron model. The electron periphery has twenty-petal adsorptive substances;the existence of adsorptive substance causes the magnetic force greater than the electrostatic force. Each electronic shell in the regular polyhedron is in accordance with the electron configuration of periodic table of elements;the kinetic track of each electron is a surface of regular polyhedron. The magnetic properties of iron, cobalt, and nickel can be explained by the regular dodecahedron electronic shell of an atom. The electron orbit converged from reverse direction can explain diamond. The adsorptive substances found in atomic nuclei and electrons are defined as magnetic particles called magnetons. The thermodynamic magneton theory can be better explained when it is analyzed using principles of thermodynamics, superconductivity, viscosity, and even in the creation of glass. The structure of the light is a helical line.展开更多
The work illustrates the impossibility of decreasing entropy in a strictly random thermodynamic process in a non-isolated system using the example of heating a planet by solar radiation flux without and taking into ac...The work illustrates the impossibility of decreasing entropy in a strictly random thermodynamic process in a non-isolated system using the example of heating a planet by solar radiation flux without and taking into account its rotation around its own axis. That is, the second law of thermodynamics formulated for isolated systems continues to govern such systems. We have shown that in order to achieve a stationary state at lower values of temperature and entropy far from thermodynamic equilibrium at a maximum of temperature and entropy, it is necessary to have regular factors of nonrandom nature, one of which in this example is the rotation of the planet around its own axis. This means that the reason for the appearance of ordered structured objects in non-isolated thermodynamic systems is not the random process itself, but the action of dynamic control mechanisms, such as periodic external influences, nonlinear elements with positive feedback, catalysts for chemical reactions, etc. We present the plots with dependences of temperature and entropy versus time in non-isolated systems with purely random processes and in the presence of a control factor of non-random nature-rotation.展开更多
基金funded by the National Key R&D Program of China(Grant no.2018YFA0702504)the Sinopec research project(P22162).
文摘Absorption compensation is a process involving the exponential amplification of reflection amplitudes.This process amplifies the seismic signal and noise,thereby substantially reducing the signal-tonoise ratio of seismic data.Therefore,this paper proposes a multichannel inversion absorption compensation method based on structure tensor regularization.First,the structure tensor is utilized to extract the spatial inclination of seismic signals,and the spatial prediction filter is designed along the inclination direction.The spatial prediction filter is then introduced into the regularization condition of multichannel inversion absorption compensation,and the absorption compensation is realized under the framework of multichannel inversion theory.The spatial predictability of seismic signals is also introduced into the objective function of absorption compensation inversion.Thus,the inversion system can effectively suppress the noise amplification effect during absorption compensation and improve the recovery accuracy of high-frequency signals.Synthetic and field data tests are conducted to demonstrate the accuracy and effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant Nos.52475166,52175148)the Regional Collaboration Project of Shanxi Province(Grant No.202204041101044).
文摘Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to miniaturization of electronic components,it is challenging to directly measure or numerically predict the mechanical response of small-sized critical interconnections in board-level packaging structures to ensure the mechanical reliability of electronic devices in projectiles under harsh working conditions.To address this issue,an indirect measurement method using the Bayesian regularization-based load identification was proposed in this study based on finite element(FE)pre-dictions to estimate the load applied on critical interconnections of board-level packaging structures during the process of projectile penetration.For predicting the high-strain-rate penetration process,an FE model was established with elasto-plastic constitutive models of the representative packaging ma-terials(that is,solder material and epoxy molding compound)in which material constitutive parameters were calibrated against the experimental results by using the split-Hopkinson pressure bar.As the impact-induced dynamic bending of the printed circuit board resulted in an alternating tensile-compressive loading on the solder joints during penetration,the corner solder joints in the edge re-gions experience the highest S11 and strain,making them more prone to failure.Based on FE predictions at different structural scales,an improved Bayesian method based on augmented Tikhonov regulariza-tion was theoretically proposed to address the issues of ill-posed matrix inversion and noise sensitivity in the load identification at the critical solder joints.By incorporating a wavelet thresholding technique,the method resolves the problem of poor load identification accuracy at high noise levels.The proposed method achieves satisfactorily small relative errors and high correlation coefficients in identifying the mechanical response of local interconnections in board-level packaging structures,while significantly balancing the smoothness of response curves with the accuracy of peak identification.At medium and low noise levels,the relative error is less than 6%,while it is less than 10%at high noise levels.The proposed method provides an effective indirect approach for the boundary conditions of localized solder joints during the projectile penetration process,and its philosophy can be readily extended to other scenarios of multiscale analysis for highly nonlinear materials and structures under extreme loading conditions.
文摘Induction-Polymerization is a novel method for preparing polymers of regular structure. In the presence of a special macromolecular compound, monomer molecules are aggregeted regularly around one or more growth points and polymerized to polymer of regular structure. Regularity of structure of the polyacrylamide prepared by this means has been verified with electron diffractograms, DSC curve and IR spectrum of the polymer.
基金Sponsored by the National Natural Science Foundation of China (60374069) and the Excellent Young Scholars Research Fund of Beijing Institute of Technology (000Y01-3).
文摘Because it is hard to search similar structure for low similarity unknown structure proteins directly from the Protein Data Bank (PDB) database, 3D-structure is modeled in this paper for secondary structure regular fragments (α-Helices, β-Strands) of such proteins by the protein secondary structure prediction software, the Basic Local Alignment Search Tool (BLAST) and the side chain construction software SCWRL3. First, the protein secondary structure prediction software is adopted to extract secondary structure fragments from the unknown structure proteins. Then, regular fragments are regulated by BLAST based on comparative modeling, providing main chain configurations. Finally, SCWRL3 is applied to assemble side chains for regular fragments, so that 3D-structure of regular fragments of low similarity unknown structure protein is obtained. Regular fragments of several neurotoxins are used for test. Simulation results show that the prediction errors are less than 0.06nm for regular fragments less than 10 amino acids, implying the simpleness and effectiveness of the proposed method.
基金supported by the Funds for the program of the National Natural Science Foundation (Noes. 41572060, U1133602)Projects of YM Lab (2011)Innovation Team of Yunnan province and KMUST (2008,2012)
文摘1 Introduction The huize Zn-Pb ore district in Yunnan province is locatedinthecentralsouthernofthe Sichuan—Yunnan—GuizhouPb-ZnPoly-metallic Mineralization Area in the southwestern margin of the Yangtze Block,and is strictly controlled by fault structures.It has developed to one of the famous production bases of lead&zinc and germanium in China.
基金supported by the National Natural Science Foundation of China(51879159,51490675,11432009,and 51579145)Chang Jiang Scholars Program(T2014099)+3 种基金Shanghai Excellent Academic Leaders Program(17XD1402300)Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(2013022)Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China(2016-23/09)Lloyd’s Register Foundation for doctoral student
文摘Nowadays,an increasing number of ships and marine structures are manufactured and inevitably operated in rough sea.As a result,some phenomena related to the violent fluid-elastic structure interactions(e.g.,hydrodynamic slamming on marine vessels,tsunami impact on onshore structures,and sloshing in liquid containers)have aroused huge challenges to ocean engineering fields.In this paper,the moving particle semi-implicit(MPS)method and finite element method(FEM)coupled method is proposed for use in numerical investigations of the interaction between a regular wave and a horizontal suspended structure.The fluid domain calculated by the MPS method is dispersed into fluid particles,and the structure domain solved by the FEM method is dispersed into beam elements.The generation of the 2D regular wave is firstly conducted,and convergence verification is performed to determine appropriate particle spacing for the simulation.Next,the regular wave interacting with a rigid structure is initially performed and verified through the comparison with the laboratory experiments.By verification,the MPS-FEM coupled method can be applied to fluid-structure interaction(FSI)problems with waves.On this basis,taking the flexibility of structure into consideration,the elastic dynamic response of the structure subjected to the wave slamming is investigated,including the evolutions of the free surface,the variation of the wave impact pressures,the velocity distribution,and the structural deformation response.By comparison with the rigid case,the effects of the structural flexibility on wave-elastic structure interaction can be obtained.
基金funding for this study from National Key R&D Program of China(2018YFA0702800)National Natural Science Foundation of China(12072056)+1 种基金the Fundamental Research Funds for the Central Universities(DUT19LK49)Nantong Science and Technology Plan Project(No.MS22019016).
文摘For practical engineering structures,it is usually difficult to measure external load distribution in a direct manner,which makes inverse load identification important.Specifically,load identification is a typical inverse problem,for which the models(e.g.,response matrix)are often ill-posed,resulting in degraded accuracy and impaired noise immunity of load identification.This study aims at identifying external loads in a stiffened plate structure,through comparing the effectiveness of different methods for parameter selection in regulation problems,including the Generalized Cross Validation(GCV)method,the Ordinary Cross Validation method and the truncated singular value decomposition method.With demonstrated high accuracy,the GCV method is used to identify concentrated loads in three different directions(e.g.,vertical,lateral and longitudinal)exerted on a stiffened plate.The results show that the GCV method is able to effectively identify multi-source static loads,with relative errors less than 5%.Moreover,under the situation of swept frequency excitation,when the excitation frequency is near the natural frequency of the structure,the GCV method can achieve much higher accuracy compared with direct inversion.At other excitation frequencies,the average recognition error of the GCV method load identification less than 10%.
基金Supported by the National Natural Science Foundation of China(40872103)
文摘The occurrence state of methane is mostly controlled by coalfield geologicalstructures.The coal-bearing strata at Qidong coalmine experienced many tectonic cyclessince their formation.The gas content made by the complicated structural geologic systemat the coalfield is very different, which is obviously higher on the north side of the Weimiaofracture belt than that on the south side and near itself.This thesis discussed the gas occurrenceregularity based on the geometric characteristics of the geological structure andits regional tectonic evolution.This study can provide a foundation for coalfield exploitationand deal with coal and gas outburst.
基金supported by the National Natural Science Foundation of China (No. 91320201 and No. 61471262)the International (Regional) Collaborative Key Research Projects (No. 61520106002)
文摘In order to meet the rapid needs of processing square hole in mechanical equipment, the paper expounds the square hole processing method: planetary wheel method, and analyze the principle of tooling structure and process with computer graphics parameters design. The results that, as long as the appropriate parameters, using the above method not only can punch the square hole, can also be processed triangle, the five angle and hexagonal regular polygon holes. The square hole processing method can provide theoretical basis and engineering reliable reference for related engineering and technical personnel.
文摘An algorithm named DPP is addressed.In it,a new model based on the concept of irregularity degree is founded to evaluate the regularity of cells.It generates the structure regularity of cells by exploiting the signal flow of circuit.Then,it converts the bit slice structure to parallel constraints to enable Q place algorithm.The design flow and the main algorithms are introduced.Finally,the satisfied experimental result of the tool compared with the Cadence placement tool SE is discussed.
文摘The distribution of the Jurassic coal measures in the northern Qaidam Basin is obviously controlled by the regional structures. Based on the existing data of coalfield exploration and combined with the analysis of coalfield basement structures, features of the main faults, and the distribution of coal measures, this paper brings forward a scheme of coalfield tectonic divisional units and the definition of the coal-controlling structural styles in the northern Qaidam Basin. The structure control of the distribution of coal measures is further discussed. Several stages of regional tectonic activities since the Indosinian has led to the distribution of coal measures into the characteristics of zonation from the north to south and block from east to west. The results indicate that the structural deformations are the most intense in the front of the three uplifted belts, which are characterized by the combination of thrusts. The coal measures are uplifted to the shallow formations, and are easy to be exploited, but the scale of mines is small because of serious damages by the coal distribution. On the contrary, the stress and strain are weak in the three depressions, with the coal-controlling structural styles being mainly the thrust-fold and thrust-monocline combinations. The distribution of coals in the depressions is relatively stable. The shallower part of the depression will become the key areas for exploration and development of coal resources in the northern Qaidam Basin.
基金Projects(41202051,41672076)supported by the National Natural Science Foundation of ChinaProject(2015CX008)supported by the Innovation-driven Plan in Central South University,China+4 种基金Project(2016JJ1022)supported by Hunan Provincial Natural Science Outstanding Youth Foundation of ChinaProject(CSUZC201601)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,ChinaProject(2014T70886)supported by the Special Program of the Postdoctoral Science Foundation of ChinaProject(2012M521721)supported by China Postdoctoral Science FoundationProject(XKRZ[2014]76)supported by the Platform of Scientific and Technological Innovation for Hunan Youth,China
文摘To reveal the occurrence state and enrichment regularity of the dispersed element indium in pyrite, the petrology,mineralogy, geochemistry, and mineral physics were researched detailedly. The results suggest that the structure of pyrite is mainlycomposed of massive structure, disseminated structure, vein structure, reticular structure, comb structure and so on. Generally, thepyrite coexists with sphalerite, marmatite, pyrrhotite, chalcopyrite, galena, and arsenopyrite. And the texture of pyrite primarilyconsists of the metasomatic texture, solid solution texture, idiomorphic?hypidiomorphic granular texture, and disseminated texture.The content of indium in pyrite ranges from 0.491×10?6 to 65.1×10?6 with an average value of 14.38×10?6. Yet, the indium content inthe Gaofeng deposit is higher than that in the Dafulou and Tongkeng deposit, showing a particularly significant supernormalenrichment. Besides, the cadmium content in pyrite is also higher than other dispersed elements, and similarly the abnormalenrichment of cadmium in the Gaofeng deposit is also very significant. An obvious positive correlation exists between In and Cd, orTl, but a negative correlation between In and Re. It is difficult to find out a positive or negative correlation between In and Ga. Theelement zinc is of great importance to the enrichment of indium, which can possibly facilitate to the migration and crystallization of dispersed element indium.
文摘Theoretical results related to properties of a regularized recursive algorithm for estimation of a high dimensional vector of parameters are presented and proved. The recursive character of the procedure is proposed to overcome the difficulties with high dimension of the observation vector in computation of a statistical regularized estimator. As to deal with high dimension of the vector of unknown parameters, the regularization is introduced by specifying a priori non-negative covariance structure for the vector of estimated parameters. Numerical example with Monte-Carlo simulation for a low-dimensional system as well as the state/parameter estimation in a very high dimensional oceanic model is presented to demonstrate the efficiency of the proposed approach.
基金supported by National Natural Science Foundation of China(NSFC)(Nos.62106022,62225601,and U19B2036)Key Program of Beijing Municipal Natural Science Foundation(No.7191003)Beijing Natural Science Foundation Project(No.Z200002).
文摘Brain midline delineation can facilitate the clinical evaluation of brain midline shift,which has a pivotal role in the diagnosis and prognosis of various brain pathology.However,there are still challenges for brain midline delineation:1)the largely deformed midline is hard to localize if mixed with severe cerebral hemorrhage;2)the predicted midlines of recent methods are not smooth and continuous which violates the structural priority.To overcome these challenges,we propose an anisotropic three dimensional(3D)network with context-aware refinement(A3D-CAR)for brain midline modeling.The proposed network fuses 3D context from different two dimensional(2D)slices through asymmetric context fusion.To exploit the elongated structure of the midline,an anisotropic block is designed to balance the difference between the adjacent pixels in the horizontal and vertical directions.For maintaining the structural priority of a brain midline,we present a novel 3D connectivity regular loss(3D CRL)to penalize the disconnectivity between nearby coordinates.Extensive experiments on the CQ dataset and one in-house dataset show that the proposed method outperforms three state-of-the-art methods on four evaluation metrics without excessive computational burden.
文摘The periodic table of elements is arranged based on a series of regular polyhedron. The stability of inert gas atoms can be explained by the distribution of electrons, as well as their motion and magnetic force structure. A magnetic force regular octahedron is proposed. It is a unique configuration that best satisfies the convergence of electrons moving in the same direction within regular polyhedra. In the case of an electrostatic force crust, the formal electron spin accounts for the crusts intrinsic magnetic moment exceeding the speed of light. If one is to consider that the electron has a magnetic outer layer and an electrostatic inner layer, then the question can be solved and abovementioned inference can provide the basis for magnetic force and momentum for the regular octahedron model. The electron periphery has twenty-petal adsorptive substances;the existence of adsorptive substance causes the magnetic force greater than the electrostatic force. Each electronic shell in the regular polyhedron is in accordance with the electron configuration of periodic table of elements;the kinetic track of each electron is a surface of regular polyhedron. The magnetic properties of iron, cobalt, and nickel can be explained by the regular dodecahedron electronic shell of an atom. The electron orbit converged from reverse direction can explain diamond. The adsorptive substances found in atomic nuclei and electrons are defined as magnetic particles called magnetons. The thermodynamic magneton theory can be better explained when it is analyzed using principles of thermodynamics, superconductivity, viscosity, and even in the creation of glass. The structure of the light is a helical line.
文摘The work illustrates the impossibility of decreasing entropy in a strictly random thermodynamic process in a non-isolated system using the example of heating a planet by solar radiation flux without and taking into account its rotation around its own axis. That is, the second law of thermodynamics formulated for isolated systems continues to govern such systems. We have shown that in order to achieve a stationary state at lower values of temperature and entropy far from thermodynamic equilibrium at a maximum of temperature and entropy, it is necessary to have regular factors of nonrandom nature, one of which in this example is the rotation of the planet around its own axis. This means that the reason for the appearance of ordered structured objects in non-isolated thermodynamic systems is not the random process itself, but the action of dynamic control mechanisms, such as periodic external influences, nonlinear elements with positive feedback, catalysts for chemical reactions, etc. We present the plots with dependences of temperature and entropy versus time in non-isolated systems with purely random processes and in the presence of a control factor of non-random nature-rotation.