期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Physical parameter regression from black hole images using a multiscale adaptive neural network
1
作者 Jialei Wei Ao Liu +1 位作者 Dejiang Li Cuihong Wen 《Chinese Physics C》 2025年第12期391-400,共10页
High-precision regression of physical parameters from black hole images generated by General Relativistic Ray Tracing(GRRT)is essential for investigating spacetime curvature and advancing black hole astrophysics.Howev... High-precision regression of physical parameters from black hole images generated by General Relativistic Ray Tracing(GRRT)is essential for investigating spacetime curvature and advancing black hole astrophysics.However,owing to limitations in observational resolution,high observational costs,and imbalanced distributions of positive and negative samples,black hole images often suffer from data scarcity,sparse parameter spaces,and complex structural characteristics.These factors pose significant challenges to conventional regression methods based on simplified physical models.To overcome these challenges,this study introduces the Multiscale Adaptive Network(MANet),a novel regression framework grounded in deep learning.MANet integrates an Adaptive Channel Attention(ACA)module to selectively enhance features in physically informative regions.Meanwhile,a Multiscale Enhancement Feature Pyramid(MEFP)is employed to capture fine-grained spatial structures,such as photon rings and accretion disks,while alleviating information loss due to downsampling.Experimental evaluations on GRRT-simulated datasets demonstrate that MANet substantially improves parameter estimation accuracy and generalization capability in high-dimensional parameter spaces,outperforming existing baseline approaches.This framework presents a promising avenue for high-precision parameter regression in Event Horizon Telescope(EHT)data analysis and broader astrophysical imaging applications characterized by sparse and noisy data. 展开更多
关键词 black hole image analysis parameter regression deep neural network
原文传递
ESTIMATION OF THE NUISANCE PARAMETER FOR A SEMIMARTINGALE REGRESSION MODEL
2
作者 潘一民 罗少波 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1991年第1期1-5,共5页
A nuisance parameter is introduced to the semimartingale regression model proposed by Aalen(1980), and we construct two estimators for this nuisance parameter based on the results ofparametric estimation which were gi... A nuisance parameter is introduced to the semimartingale regression model proposed by Aalen(1980), and we construct two estimators for this nuisance parameter based on the results ofparametric estimation which were given by Mckeague (1986) using the method of sieves. Theconsistency of the estimators is also provided. 展开更多
关键词 ESTIMATION OF THE NUISANCE parameter FOR A SEMIMARTINGALE regression MODEL
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部