期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Sedimentary environment and organic matter accumulation of Wufeng-Longmaxi shales,southwest Yangtze Plate,China:Insights from geochemical and petrological evidence
1
作者 An-kun Zhao Dong Wang +4 位作者 Qian Zhang Zi-hui Lei Qian Yu Di Zhang Ye-xin Zhou 《China Geology》 CAS CSCD 2024年第4期747-761,共15页
Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formation is the most developed strata of shale gas in southern China.Due to the complex sedimentary environment adjacent to the Kangdian Uplift,the favorable area for o... Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formation is the most developed strata of shale gas in southern China.Due to the complex sedimentary environment adjacent to the Kangdian Uplift,the favorable area for organic-rich shale development is still undetermined.The authors,therefore,focus on the mechanism of accumulation of organic matter and the characterization of the sedimentary environment of the Wufeng-Longmaxi Shales to have a more complete understanding and new discovering of organic matter enrichment and favorable area in the marginal region around Sichuan Basin.Multiple methods were applied in this study,including thin section identification,scanning electron microscopy(SEM)observations and X-ray diffraction(XRD),and elemental analysis on outcrop samples.Five lithofacies have been defined according to the mineralogical and petrological analyses,including mudstone,bioclastic limestone,silty shale,dolomitic shale,and carbonaceous siliceous shale.The paleo-environments have been reconstructed and the organic enrichment mechanism has been identified as a reduced environment and high productivity.The Wufeng period is generally a suboxic environment and the early Longmaxi period is a reducing environment based on geochemical characterization.High dolomite content in the study area is accompanied by high TOC,which may potentially indicate the restricted anoxic environment formed by biological flourishing in shallower water.And for the area close to the Kangdian Uplift,the shale gas generation capability is comparatively favorable.The geochemical parameters implied that new favorable areas for shale gas exploration could be targeted,and more shale gas resources in the mountain-basin transitional zone might be identified in the future. 展开更多
关键词 SHALES Shale gas Sedimentary environment Graptolite Upper Ordovician‒Lower Silurian Organic matter accumulation Radiolarian Geochemical and petrographic evidence Wufeng-Longmaxi Formation Oil-gas exploration engineering Suboxic environment Sichuan Basin Reduced environment Yangtze Plate
在线阅读 下载PDF
The Equilibrium Coefficient Kp and Petroleum Exploration:Design of the New Generation of Petroleum Exploration Instrument
2
作者 FENG Weiheng FENG Yun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第3期685-691,共7页
The main reason why the application of nuclear technology in petroleum exploration has not yet been accepted by most exploration workers is that they are not clear about the homologous distribution features of oil and... The main reason why the application of nuclear technology in petroleum exploration has not yet been accepted by most exploration workers is that they are not clear about the homologous distribution features of oil and gas fields and radioactive radiation. The authors hold that the disequilibrium of uranium, radium and radon as a natural radioactive series is the basic feature in the use of this technology in petroleum exploration. The invention Gamma-ray Spectral Measurement of the Equilibium Coefficient Kp and Its Embodiment of the senior author now can readily solve that problem and replace the impedient measure of normalization of uranium and potassium to thorium that had to be proposed before. Application of this impedient measure has some limitations. In areas where the surface is covered by beach or river sands, thorium minerals such as monazite may be concentrated by placering. This could result in local thorium highs that would yield local uranium and potassium lows after normalization to thorium, and these would constitute false anomalies. 展开更多
关键词 petroleum deposit reducing environment in-situ measurement gamma-ray spectrometer equilibrium coefficient
在线阅读 下载PDF
Reductant-assisted polydopamine-modified membranes for efficient water purification 被引量:2
3
作者 Feng Sun Jinren Lu +3 位作者 Yuhong Wang Jie Xiong Congjie Gao Jia Xu 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2021年第1期109-117,共9页
Surface engineering with polydopamine coatings has been considered a promising surface functionalisation tool.However,it is difficult to control the self-polymerisation for polydopamine formation,which usually causes ... Surface engineering with polydopamine coatings has been considered a promising surface functionalisation tool.However,it is difficult to control the self-polymerisation for polydopamine formation,which usually causes severe interparticle aggregation.In this study,polydopamine self-polymerisation was controlled by adjusting its reducing environment using a reductant(NaBH4)to fabricate mixed cellulose ester(MCE)/polydopamine membranes.An oxidising environment using NaIO4 was additionally tested as the control.The results showed that a thin polydopamine coating with small polydopamine particles was formed on the skeleton frameworks of the MCE membrane with NaBH4,and the self-polymerisation rate was suppressed.The polydopamine coating formed in the reducing environment facilitated excellent water transport performance with a water permeance of approximately 400 L·m^(−2)·h^(−1)·bar^(−1) as well as efficient organic foulant removal with a bovine serum albumin rejection of approximately 90%.In addition,the polydopamine coating with NaBH4 exhibited both excellent chemical stability and anti-microbial activity,demonstrating the contribution of the reducing environment to the performance of the MCE/polydopamine membranes.It shows significant potential for use in water purification. 展开更多
关键词 MEMBRANE water purification POLYDOPAMINE reducing environment self-polymerization control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部