In this paper, a new probabilistic analytical approach, the minimal cut-based recursive decomposition algorithm (MCRDA), is presented to evaluate the seismic reliability of large-scale lifeline systems. Based on the...In this paper, a new probabilistic analytical approach, the minimal cut-based recursive decomposition algorithm (MCRDA), is presented to evaluate the seismic reliability of large-scale lifeline systems. Based on the minimal cut searching algorithm, the approach calculates the disjoint minimal cuts one by one using the basic procedure of the recursive decomposition method. At the same time, the process obtains the disjoint minimal paths of the system. In order to improve the computation efficiency, probabilistic inequality is used to calculate a solution that satisfies the prescribed error bound. A series of case studies show that MCRDA converges rapidly when the edges of the systems have low reliabilities. Therefore, the approach can be used to evaluate large-scale lifeline systems subjected to strong seismic wave excitation.展开更多
The seismic reliability evaluation of lifeline networks has received considerable attention and been widely studied. In this paper, on the basis of an original recursive decomposition algorithm, an improved analytical...The seismic reliability evaluation of lifeline networks has received considerable attention and been widely studied. In this paper, on the basis of an original recursive decomposition algorithm, an improved analytical approach to evaluate the seismic reliability of large lifeline systems is presented. The proposed algorithm takes the shortest path from the source to the sink of a network as decomposition policy. Using the Boolean laws of set operation and the probabilistic operation principal, a recursive decomposition process is constructed in which the disjoint minimal path set and the disjoint minimal cut set are simultaneously enumerated. As the result, a probabilistic inequality can be used to provide results that satisfy a prescribed error bound. During the decomposition process, different from the original recursive decomposition algorithm which only removes edges to simplify the network, the proposed algorithm simplifies the network by merging nodes into sources and removing edges. As a result, the proposed algorithm can obtain simpler networks. Moreover, for a network owning s-independent components in its component set, two network reduction techniques are introduced to speed up the proposed algorithm. A series of case studies, including an actual water distribution network and a large urban gas system, are calculated using the proposed algorithm. The results indicate that the proposed algorithm provides a useful probabilistic analysis method for the seismic reliability evaluation of lifeline networks.展开更多
High-speed milling(HSM)is advantageous for machining high-quality complex-structure surface components with various materials.Identifying and estimating cutting force signals for characterizing HSM is of high signific...High-speed milling(HSM)is advantageous for machining high-quality complex-structure surface components with various materials.Identifying and estimating cutting force signals for characterizing HSM is of high significance.However,considering the tool runout and size effects,many proposed models focus on the material and mechanical characteristics.This study presents a novel approach for predicting micromilling cutting forces using a semianalytical multidimensional model that integrates experimental empirical data and a mechanical theoretical force model.A novel analytical optimization approach is provided to identify the cutting forces,classify the cutting states,and determine the tool runout using an adaptive algorithm that simplifies modeling and calculation.The instantaneous un-deformed chip thickness(IUCT)is determined from the trochoidal trajectories of each tool flute and optimized using the bisection method.Herein,the computational efficiency is improved,and the errors are clarified.The tool runout parameters are identified from the processed displacement signals and determined from the preprocessed vibration signals using an adaptive signal processing method.It is reliable and stable for determining tool runout and is an effective foundation for the force model.This approach is verified using HSM tests.Herein,the determination coefficients are stable above 0.9.It is convenient and efficient for achieving the key intermediate parameters(IUCT and tool runout),which can be generalized to various machining conditions and operations.展开更多
基金the Natural Science Fundation of China for the Innovative Research Group of China Under Grant No. 50621062
文摘In this paper, a new probabilistic analytical approach, the minimal cut-based recursive decomposition algorithm (MCRDA), is presented to evaluate the seismic reliability of large-scale lifeline systems. Based on the minimal cut searching algorithm, the approach calculates the disjoint minimal cuts one by one using the basic procedure of the recursive decomposition method. At the same time, the process obtains the disjoint minimal paths of the system. In order to improve the computation efficiency, probabilistic inequality is used to calculate a solution that satisfies the prescribed error bound. A series of case studies show that MCRDA converges rapidly when the edges of the systems have low reliabilities. Therefore, the approach can be used to evaluate large-scale lifeline systems subjected to strong seismic wave excitation.
基金Natural Science Funds for the Innovative Research Group of China Under Grant No.50621062
文摘The seismic reliability evaluation of lifeline networks has received considerable attention and been widely studied. In this paper, on the basis of an original recursive decomposition algorithm, an improved analytical approach to evaluate the seismic reliability of large lifeline systems is presented. The proposed algorithm takes the shortest path from the source to the sink of a network as decomposition policy. Using the Boolean laws of set operation and the probabilistic operation principal, a recursive decomposition process is constructed in which the disjoint minimal path set and the disjoint minimal cut set are simultaneously enumerated. As the result, a probabilistic inequality can be used to provide results that satisfy a prescribed error bound. During the decomposition process, different from the original recursive decomposition algorithm which only removes edges to simplify the network, the proposed algorithm simplifies the network by merging nodes into sources and removing edges. As a result, the proposed algorithm can obtain simpler networks. Moreover, for a network owning s-independent components in its component set, two network reduction techniques are introduced to speed up the proposed algorithm. A series of case studies, including an actual water distribution network and a large urban gas system, are calculated using the proposed algorithm. The results indicate that the proposed algorithm provides a useful probabilistic analysis method for the seismic reliability evaluation of lifeline networks.
基金Supported by National Natural Science Foundation of China(Grant No.52175528).
文摘High-speed milling(HSM)is advantageous for machining high-quality complex-structure surface components with various materials.Identifying and estimating cutting force signals for characterizing HSM is of high significance.However,considering the tool runout and size effects,many proposed models focus on the material and mechanical characteristics.This study presents a novel approach for predicting micromilling cutting forces using a semianalytical multidimensional model that integrates experimental empirical data and a mechanical theoretical force model.A novel analytical optimization approach is provided to identify the cutting forces,classify the cutting states,and determine the tool runout using an adaptive algorithm that simplifies modeling and calculation.The instantaneous un-deformed chip thickness(IUCT)is determined from the trochoidal trajectories of each tool flute and optimized using the bisection method.Herein,the computational efficiency is improved,and the errors are clarified.The tool runout parameters are identified from the processed displacement signals and determined from the preprocessed vibration signals using an adaptive signal processing method.It is reliable and stable for determining tool runout and is an effective foundation for the force model.This approach is verified using HSM tests.Herein,the determination coefficients are stable above 0.9.It is convenient and efficient for achieving the key intermediate parameters(IUCT and tool runout),which can be generalized to various machining conditions and operations.