期刊文献+
共找到80,597篇文章
< 1 2 250 >
每页显示 20 50 100
A Hybrid Approach for Pavement Crack Detection Using Mask R-CNN and Vision Transformer Model 被引量:2
1
作者 Shorouq Alshawabkeh Li Wu +2 位作者 Daojun Dong Yao Cheng Liping Li 《Computers, Materials & Continua》 SCIE EI 2025年第1期561-577,共17页
Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learni... Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learning(DL)methods automate crack detection,but many still struggle with variable crack patterns and environmental conditions.This study aims to address these limitations by introducing the Masker Transformer,a novel hybrid deep learning model that integrates the precise localization capabilities of Mask Region-based Convolutional Neural Network(Mask R-CNN)with the global contextual awareness of Vision Transformer(ViT).The research focuses on leveraging the strengths of both architectures to enhance segmentation accuracy and adaptability across different pavement conditions.We evaluated the performance of theMaskerTransformer against other state-of-theartmodels such asU-Net,TransformerU-Net(TransUNet),U-NetTransformer(UNETr),SwinU-NetTransformer(Swin-UNETr),You Only Look Once version 8(YoloV8),and Mask R-CNN using two benchmark datasets:Crack500 and DeepCrack.The findings reveal that the MaskerTransformer significantly outperforms the existing models,achieving the highest Dice SimilarityCoefficient(DSC),precision,recall,and F1-Score across both datasets.Specifically,the model attained a DSC of 80.04%on Crack500 and 91.37%on DeepCrack,demonstrating superior segmentation accuracy and reliability.The high precision and recall rates further substantiate its effectiveness in real-world applications,suggesting that the Masker Transformer can serve as a robust tool for automated pavement crack detection,potentially replacing more traditional methods. 展开更多
关键词 Pavement crack segmentation TRANSPORTATION deep learning vision transformer Mask R-CNN image segmentation
在线阅读 下载PDF
Novel Methodologies for Preventing Crack Propagation in Steel Gas Pipelines Considering the Temperature Effect 被引量:2
2
作者 Nurlan Zhangabay Ulzhan Ibraimova +4 位作者 Marco Bonopera Ulanbator Suleimenov Konstantin Avramov Maryna Chernobryvko Aigerim Yessengali 《Structural Durability & Health Monitoring》 EI 2025年第1期1-23,共23页
Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crac... Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines. 展开更多
关键词 crack propagation finite-element internal pressure PRESTRESSING steel gas pipeline temperature effect
在线阅读 下载PDF
A 3D discrete model for soil desiccation cracking in consideration of moisture diffusion 被引量:1
3
作者 Chengzeng Yan Tie Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期614-635,共22页
Soil desiccation cracking is a common phenomenon on the earth surface.Numerical modeling is an effective approach to study the desiccation cracking mechanism of soil.This work develops a novel 3D moisture diffusion di... Soil desiccation cracking is a common phenomenon on the earth surface.Numerical modeling is an effective approach to study the desiccation cracking mechanism of soil.This work develops a novel 3D moisture diffusion discrete model that is capable of dynamically assessing the effect of cracking on moisture diffusion and allowing moisture to be discontinuous on both sides of the cracks.Then,the parametric analysis of the moisture exchange coefficient in the 3D moisture diffusion discrete model is carried out for moisture diffusion in continuous media,and the selection criterion of the moisture exchange coefficient for the unbroken cohesive element is given.Subsequently,an example of moisture migration in a medium with one crack is provided to illustrate the crack hindering effect on moisture migration.Finally,combining the 3D moisture diffusion discrete model with the finite-discrete element method(FDEM),the moisture diffusion-fracture coupling model is built to study the desiccation cracking in a strip soil and the crack pattern of a rectangular soil.The evolution of crack area and volume with moisture content is quantitatively analyzed.The modeling number and average width of cracks in the strip soil show a good consistency with the experimental results,and the crack pattern of the rectangular soil matches well with the existing numerical results,validating the coupled moisture diffusion-fracture model.Additionally,the parametric study of soil desiccation cracking is performed.The developed model offers a powerful tool for exploring soil desiccation cracking. 展开更多
关键词 Moisture migration Soil desiccation cracking crack hindering effect crack pattern Finite-discrete element method(FDEM)
在线阅读 下载PDF
From crack-prone to crack-free:Eliminating cracks in additively manufacturing of high-strength Mg_(2)Si-modified Al-Mg-Si alloys 被引量:3
4
作者 Tao Wen Zhicheng Li +6 位作者 Jianying Wang Yimou Luo Feipeng Yang Zhilin Liu Dong Qiu Hailin Yang Shouxun Ji 《Journal of Materials Science & Technology》 2025年第1期276-291,共16页
Large solidification ranges and coarse columnar grains in the additively manufacturing of Al-Mg-Si alloys are normally involved in hot cracks during solidification.In this work,we develop novel crack-free Al-Mg_(2) Si... Large solidification ranges and coarse columnar grains in the additively manufacturing of Al-Mg-Si alloys are normally involved in hot cracks during solidification.In this work,we develop novel crack-free Al-Mg_(2) Si alloys fabricated by laser powder-bed fusion(L-PBF).The results indicate that the eutectic Mg_(2) Si phase possesses a strong ability to reduce crack susceptibility.It can enhance the grain growth restriction factor in the initial stage of solidification and promote eutectic filling in the terminal stage of solidifica-tion.The crack-free L-PBFed Al-x Mg_(2) Si alloys(x=6 wt.%,9 wt.%,and 12 wt.%)exhibit the combination of low crack susceptibility index(CSI),superior ability for liquid filling,and grain refinement.Particularly,the L-PBFed Al-9Mg_(2) Si alloy shows improved mechanical properties(e.g.yield strength of 397 MPa and elongation of 7.3%).However,the cracks are more likely to occur in the region near the columnar grain boundaries of the L-PBFed Al-3Mg_(2) Si alloy with a large solidification range and low eutectic content for liquid filling.Correspondingly,the L-PBFed Al-3Mg_(2) Si alloy shows poor bearing capacity of mechanical properties.The precise tuning of Mg_(2) Si eutectic content can offer an innovative strategy for eliminating cracks in additively manufactured Al-Mg-Si alloy. 展开更多
关键词 Aluminium alloys Las powder-bed fusion crack elimination Mechanical properties
原文传递
Mechanical response analysis of asphalt pavement considering top-down crack based on FDM-DEM coupling simulation 被引量:2
5
作者 Min Wang Xin Yu Chen Chen 《Journal of Road Engineering》 2025年第1期92-105,共14页
The occurrence of top-down(TD)cracking has gradually become a prevalent issue in semi-rigid base asphalt pavements after prolonged service.A coupled simulation model integrating the finite difference method(FDM)and di... The occurrence of top-down(TD)cracking has gradually become a prevalent issue in semi-rigid base asphalt pavements after prolonged service.A coupled simulation model integrating the finite difference method(FDM)and discrete element method(DEM)was employed to investigate the mechanical behavior of asphalt pavement containing a pre-existing TD crack.The mesoscopic parameters of the model were calibrated based on the mixture modulus and the static mechanical response on the MLS66 test road.Finally,an analysis was performed to assess how variations in TD crack depth and longitudinal length affect the distribution patterns of transverse tensile stress,vertical shear stress,and vertical compressive stress.The results indicate that the vertical propagation of TD crack significantly increases both the tensile stress value and range on the middle surface,while the longitudinal development of TD crack has minimal impact.This phenomenon may result in more severe fatigue failure on the middle surface.With the vertical and longitudinal development of TD crack,the vertical shear stress and compressive stress show obvious"two-stage"characteristics.When the crack's vertical length reaches 40 mm,there is a sharp increase in stress on the upper surface.As the crack continues to propagate vertically,the growth of stress on the upper surface becomes negligible,while the stress in the middle and lower layers increased significantly.Conversely,for longitudinal development of TD crack,any changes in stress are insignificant when their length is less than 180 mm;however,as they continue to develop longitudinally beyond this threshold,there is a sharp increase in stress levels.These findings hold great significance for understanding pavement structure deterioration and maintenance behavior associated with TD crack. 展开更多
关键词 Full-scale pavement structure Top-down crack FDM-DEM coupling model Mechanical response
在线阅读 下载PDF
Research on rock crack contact model considering linked substances based on particle flow method 被引量:1
6
作者 Fukun Xiao Kai Xie +3 位作者 Lei Shan Gang Liu Lianchong Li Fedotova Iuliia 《International Journal of Mining Science and Technology》 2025年第4期553-571,共19页
The models constructed by particle flow simulation method can effectively simulate the heterogeneous substance characteristics and failure behaviors of rocks.However,existing contact models overlook the rock cracks,an... The models constructed by particle flow simulation method can effectively simulate the heterogeneous substance characteristics and failure behaviors of rocks.However,existing contact models overlook the rock cracks,and the various simulation methods that do consider cracks still exhibit certain limitations.In this paper,based on Flat-Joint model and Linear Parallel Bond model,a crack contact model considering linked substance in the crack is proposed by splitting the crack contact into two portions:linked portion and unlinked portion for calculation.The new contact model considers the influence of crack closure on the contact force-displacement law.And a better compressive tensile strength ratio(UCS/T)was obtained by limiting the failure of the contact bond to be solely controlled by the contact force and moment of the linked portion.Then,by employing the FISH Model tool within the Particle Flow Code,the contact model was constructed and verified through contact force–displacement experiments and loading-unloading tests with cracked model.Finally,the contact model was tested through simulations of rock mechanics experiments.The results indicate that the contact model can effectively simulate the axial and lateral strain laws of rocks simultaneously and has a relatively good reproduction of the bi-modularity of rocks. 展开更多
关键词 crack closure Contact model Compaction stage Initial effective modulus Lateral strain
在线阅读 下载PDF
Influence of surface layer slurry temperature on surface cracks and holes of ZTC4 titanium alloy by investment casting 被引量:1
7
作者 Wei-dong Li Xu-na Shi 《China Foundry》 2025年第1期90-98,共9页
In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were invest... In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were investigated by using a single factor variable method.The surface morphologies of the shell molds produced by different temperatures of the surface(first)layer slurries were observed via electron microscopy.Furthermore,the microscopic composition of these shell molds was obtained by EDS,and the osmotic effect of the slurry on the wax patterns at different temperatures was also assessed by the PZ-200 Contact Angle detector.The forming reasons for the surface cracks and holes of thick and large ZTC4 titanium alloy by investment casting were analyzed.The experimental results show that the surface of the shell molds prepared by the surface layer slurry with a low temperature exhibits noticeable damage,which is mainly due to the poor coating performance and the serious expansion and contraction of wax pattern at low temperatures.The second layer shell material(SiO_(2),Al_(2)O_(3))immerses into the crack area of the surface layer,contacts and reacts with the molten titanium to form surface cracks and holes in the castings.With the increase of the temperature of surface layer slurry,the damage to the shell surface tends to weaken,and the composition of the shell molds'surface becomes more uniform with less impurities.The results show that the surface layer slurry at 22℃is evenly coated on the surface of the wax patterns with appropriate thickness,and there is no surface shell mold rupture caused by sliding slurry after sand leaching.The surface layer slurry temperature is consistent with the wax pattern temperature and the workshop temperature,so there is no damage of the surface layer shell caused by expansion and contraction.Therefore,the shell mold prepared by the surface layer slurry at this temperature has good integrity,isolating the contact between the low inert shell material and the titanium liquid effectively,and the ZTC4 titanium alloy cylinder casting prepared by this shell mold is smooth,without cracks and holes. 展开更多
关键词 titanium alloy surface layer slurry surface cracks surface holes investment casting
在线阅读 下载PDF
Flexible Strain Sensors with Ultra‑High Sensitivity and Wide Range Enabled by Crack‑Modulated Electrical Pathways
8
作者 Yunzhao Bai Yunlei Zhou +6 位作者 Xuanyu Wu Mengfei Yin Liting Yin Shiyuan Qu Fan Zhang Kan Li YongAn Huang 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期246-264,共19页
This study presents a breakthrough in flexible strain sensor technology with the development of an ultrahigh sensitivity and wide-range sensor,addressing the critical challenge of reconciling sensitivity with measurem... This study presents a breakthrough in flexible strain sensor technology with the development of an ultrahigh sensitivity and wide-range sensor,addressing the critical challenge of reconciling sensitivity with measurement range.Inspired by the structure of bamboo slips,we introduce a novel approach that utilises liquid metal to modulate the electrical pathways within a cracked platinum fabric electrode.The resulting sensor demonstrates a gauge factor greater than 108 and a strain measurement capability exceeding 100%.The integration of patterned liquid metal enables customisable tuning of the sensor’s response,while the porous fabric structure ensures superior comfort and air permeability for the wearer.Our design not only optimises the sensor’s performance but also enhances the electrical stability that is essential for practical applications.Through systematic investigation,we reveal the intrinsic mechanisms governing the sensor’s response,offering valuable insights for the design of wearable strain sensors.The sensor’s exceptional performance across a spectrum of applications,from micro-strain to large-strain detection,highlights its potential for a wide range of real-world uses,demonstrating a significant advancement in the field of flexible electronics. 展开更多
关键词 Flexible strain sensor FABRIC crack Response regulation Epidermal device
在线阅读 下载PDF
Exceptional strength paired with increased cold cracking susceptibility in laser powder bed fusion of a Mg-RE alloy 被引量:1
9
作者 Qingchen Deng Fan Chen +7 位作者 Lu Wang Ziyi Liu Qianye Wu Zhiyu Chang Yujuan Wu Wentao Yan Liming Peng Wenjiang Ding 《Journal of Materials Science & Technology》 2025年第10期300-314,共15页
Additive manufacturing (AM) of high-strength metallic alloys frequently encounters detrimental distortion and cracking, attributed to the accumulation of thermal stresses. These issues significantly impede the practic... Additive manufacturing (AM) of high-strength metallic alloys frequently encounters detrimental distortion and cracking, attributed to the accumulation of thermal stresses. These issues significantly impede the practical application of as-printed components. This study examines the Mg-15Gd-1Zn-0.4Zr (GZ151K, wt.%) alloy, a prototypical high-strength casting Mg-RE alloy, fabricated through laser powder bed fusion (LPBF). Despite achieving ultra-high strength, the GZ151K alloy concurrently exhibits a pronounced cold-cracking susceptibility. The as-printed GZ151K alloy consists of almost fully fine equiaxed grains with an average grain size of merely 2.87 µm. Subsequent direct aging (T5) heat treatment induces the formation of dense prismatic β' precipitates. Consequently, the LPBF-T5 GZ151K alloy manifests an ultra-high yield strength of 405 MPa, surpassing all previously reported yield strengths for Mg alloys fabricated via LPBF and even exceeding that of its extrusion-T5 counterpart. Interestingly, as-printed GZ151K samples with a build height of 2 mm exhibit no cracking, whereas samples with build heights ranging from 4 to 18 mm demonstrate severe cold cracking. Thermal stress simulation also suggests that the cold cracking susceptibility increases significantly with increasing build height. The combination of high thermal stress and low ductility in the as-printed GZ151K alloy culminates in a high cold cracking susceptibility. This study offers novel insights into the intricate issue of cold cracking in the LPBF process of high-strength Mg alloys, highlighting the critical balance between achieving high strength and mitigating cold cracking susceptibility. 展开更多
关键词 Laser powder bed fusion Mg-RE alloy Cold cracking High strength Build height Thermal stress simulation
原文传递
A review of corrosion and environmentally assisted cracking of Mg-Li alloys
10
作者 Yinmin Du Shidong Wang +7 位作者 Yixin Zhang Chuanqiang Li Shuo Wang Xiaopeng Lu Daokui Xu Hongzhi Cui Bolv Xiao Zongyi Ma 《Journal of Magnesium and Alloys》 2025年第9期4130-4166,共37页
Mg-Li alloys hold significant potential for applications in aerospace,automotive manufacturing,military weaponry,and biomedical implants,due to their excellent recyclability,high specific strength,biocompatibility,and... Mg-Li alloys hold significant potential for applications in aerospace,automotive manufacturing,military weaponry,and biomedical implants,due to their excellent recyclability,high specific strength,biocompatibility,and superior electromagnetic shielding properties.However,their poor corrosion resistance and high susceptibility to environmentally assisted cracking(EAC)significantly limit broader application.In recent years,growing attention has been directed toward understanding the corrosion and EAC behavior of Mg-Li alloys,as localized corrosion areas and hydrogen generated during the corrosion process can serve as crack initiation points and promote crack propagation.A comprehensive understanding of these mechanisms is essential for enhancing the reliability and performance of Mg-Li alloys in practical environments.This paper presents a detailed review of corrosion and EAC in Mg-Li alloys,focusing on corrosion behavior,crack initiation and propagation mechanisms,and the key factors influencing these processes.It summarizes recent advances in alloying,heat treatment,mechanical processing,microstructural control,environmental influences,mechanical loading,and surface treatments.In addition,the paper explores future research directions,highlights emerging trends,and proposes strategies to improve the durability and service performance of Mg-Li alloys. 展开更多
关键词 Mg-Li alloys Environmentally assisted cracking Corrosion behavior crack initiation crack propagation
在线阅读 下载PDF
Solidification cracking inhibition mechanism of 2024 Al alloy during oscillating laser-arc hybrid welding based on Zr-core-Al-shell wire
11
作者 Jun Jin Shaoning Geng +3 位作者 Ping Jiang Liangyuan Ren Chu Han Yuantai Li 《Journal of Materials Science & Technology》 2025年第14期153-168,共16页
Solidification cracking(SC)of 2024 high-strength aluminium alloy during fusion welding or additive manufacturing has been a long-term issue.In this work,crack-free weld could be obtained using a Zr-core-Alshell wire(Z... Solidification cracking(SC)of 2024 high-strength aluminium alloy during fusion welding or additive manufacturing has been a long-term issue.In this work,crack-free weld could be obtained using a Zr-core-Alshell wire(ZCASW filler material,a novel filler)coupled with an oscillating laser-arc hybrid welding process,and we investigated the solidification cracking susceptibility(SCS)and cracking behavior of AA2024 weld fabricated with different filler materials.The cracking inhibition mechanism of the weld fabricated with ZCASW filler material was elucidated by combined experiments and phase-field simulation.The results show that the effectiveness of filler materials in reducing the SC gradually improves in the order of ER2319 filler material<ER4043 filler material<ZCASW filler material.The main cracking(when using the ER2319 filler material)branches and the micro cracking branches interact with each other to produce cracking coalescence,which aggravates the cracking propagation.The formation of the Al_(3) Zr phase(when using the ZCASW filler material)promotes heterogeneous nucleation of α-Al,thereby resulting in finer and equiaxed non-dendrite structures,which shortens the liquid phase channels and decreases cracking susceptibility index|d T/d(f_(s))^(1/2)|(T is temperature and f_(s) is solidification fraction)at final solidification.A higher proportion(7.65%area fraction)of inter-dendrite phase with spherical distribution state,a shorter(8.6 mm liquid channel length)inter-dendrite phase coupled with round non-dendrite structure(6μm dendrite size)effectively inhibit the SC.The present study can be a useful database for welding and additive manufacturing of AA2024. 展开更多
关键词 2024 aluminium alloy Filler materials Solidification cracking susceptibility cracking behavior cracking inhibition mechanism
原文传递
Early Crack Propagation Behavior of Laser Metal Deposited Ti-6Al-4V Alloy Under High Cycles Fatigue Loading
12
作者 Li Yanping Huang Wei +3 位作者 He Yan Xu Feng Zhao Sihan Guo Weiguo 《稀有金属材料与工程》 北大核心 2025年第1期62-75,共14页
The crack initiation and early propagation are of great significance to the overall fatigue life of material.In order to investigate the anisotropic fracture behavior of laser metal deposited Ti-6Al-4V alloy(LMD Ti64)... The crack initiation and early propagation are of great significance to the overall fatigue life of material.In order to investigate the anisotropic fracture behavior of laser metal deposited Ti-6Al-4V alloy(LMD Ti64)during the early stage,the fourpoint bending fatigue test was carried out on specimens of three different directions,as well as the forged specimens.The results indicate the anisotropic crack initiation and early propagation of LMD Ti64.The direction perpendicular to the deposition direction exhibits a better fatigue resistance than the other two.The crack initiation position and propagation path are dominated by the microstructure in the vicinity of U-notch.LMD Ti64 has a typical small crack effect,and the early crack propagation velocities in three directions are similar.Affected by the slip system of LMD Ti64,secondary cracks frequently occur,which are often found to have an angle of 60°to the main crack.The electron backscatter diffraction analysis indicates that LMD Ti64 has preferred orientations,i.e.,strong 0001//Z texture and 001//Z texture.Their crystallographic orientation will change as the direction of columnarβgrains turns over,resulting in the fatigue anisotropy of LMD Ti64 in crack initiation and early crack propagation process. 展开更多
关键词 fatigue resistance crack propagation behavior microstructure laser metal deposit TI-6AL-4V ANISOTROPY
原文传递
Experimental Study on the Desiccation Cracking Dynamic Evolution Law of Fine-Grained Coral Soil
13
作者 FANG Hua-qiang DING Xuan-ming +4 位作者 LUO Zhao-gang JIANG Chun-yong LI Yi-fu WANG Hong REN Jun-yu 《China Ocean Engineering》 2025年第4期728-743,共16页
Coralline soils,specialized materials found extensively in the South China Sea,are playing an increasingly vital role in engineering projects.However,like most terrigenous soils,fine-grained coral soil is prone to shr... Coralline soils,specialized materials found extensively in the South China Sea,are playing an increasingly vital role in engineering projects.However,like most terrigenous soils,fine-grained coral soil is prone to shrinkage and cracking,which can significantly affect its engineering properties and ultimately jeopardize engineering safety.This paper presents a desiccation cracking test of fine-grained coral soil,with a particular focus on the thickness effect.The study involved measuring the water content and recording the evolution of desiccation cracking.Advanced image processing technology is employed to analyze the variations in crack parameters,clod parameters,fractal dimensions,frequency distributions,and desiccation cracking propagation velocities of fine-grained coral soil.Furthermore,the dynamic evolution of desiccation cracking under the influence of layer thickness is analyzed.A comprehensive crack evolution model is proposed,encompassing both top-down and bottom-up crack propagation,as well as internal tensile cracking.This work introduces novel metrics for the propagation velocity of the total crack area,the characteristic propagation velocities of desiccation cracks,and the acceleration of crack propagation.Through data fitting,theoretical formulas for soil water evaporation,propagation velocities of desiccation cracks,and crack propagation acceleration are derived,laying a foundation for future soil cracking theories. 展开更多
关键词 fine-grained coral soil desiccation crack layer thickness crack dynamic evolution crack propagation acceleration
在线阅读 下载PDF
基于Crack-YOLACT的道路裂缝提取
14
作者 袁文豪 尹珺宇 +3 位作者 方莉娜 吴尚华 郭明华 侯海涛 《南京信息工程大学学报》 北大核心 2025年第3期328-339,共12页
针对现有的道路裂缝检测算法多采用先检测再分割的方式,导致两个过程相互独立,在实际生产中效率不高的问题,本文提出一种端到端一体化的道路裂缝检测方法.首先,采用更加轻量化的裂缝主干特征提取网络,以降低计算成本并提高模型推理速度... 针对现有的道路裂缝检测算法多采用先检测再分割的方式,导致两个过程相互独立,在实际生产中效率不高的问题,本文提出一种端到端一体化的道路裂缝检测方法.首先,采用更加轻量化的裂缝主干特征提取网络,以降低计算成本并提高模型推理速度;然后,使用融合渐进式特征金字塔网络和空间自适应模块的裂缝特征融合模块,提高复杂场景下模型对小目标裂缝的检测能力;最后,将本文提出的方法在两个差异较大的数据集(车载扫描车采集的城市复杂街景数据和公开数据集Crack500)上进行了实验验证.结果表明,本文方法在两个数据集的道路裂缝检测任务中,准确率、召回率和综合评价指标F_(1)分数分别达到86.3%、84.1%、85.2%和82.4%、80.2%、81.3%.实验结果证明了本方法在识别细小裂缝方面的准确性,以及在不同实际环境中的鲁棒性. 展开更多
关键词 道路裂缝 实例分割 注意力机制 轻量化网络
在线阅读 下载PDF
Crack evolution of soft red-bed rock under drying-wetting cycles
15
作者 Guodong Zhang Sixiang Ling +2 位作者 Chengjun Xiao Zixing Liao Xiyong Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5768-5780,共13页
Softening of soft red-bed rocks subjected to rainfall-evaporation cycles is commonly characterized by rapid disintegration and is often accompanied by cracking,resulting in degradation of the mechanical properties of ... Softening of soft red-bed rocks subjected to rainfall-evaporation cycles is commonly characterized by rapid disintegration and is often accompanied by cracking,resulting in degradation of the mechanical properties of the rock,which can lead to slope instability or rockfalls.The microstructural changes in soft red-bed rocks after immersion were imaged,and two-dimensional(2D)images of cracks under water absorption-evaporation conditions were obtained.The dynamics,fractal characteristics,and geometry of the cracks were analyzed using digital image processing and analysis based on morphological algorithms.The results indicate that the faceeface particle bonds become pointeface bonds with numerous micropores with sizes of 1-5 mm.The evolution of cracks generated after water absorption can be divided into four stages:edge crack initiation,crack propagation,crack coalescence forming the main crack,and subcrack segmentation.The evolution of the dynamic characteristics of cracks during water absorption and drying cycles can be effectively described by the crack intensity factor,crack density,and average width.The fractal dimension increases to a stable value with increasing soaking time,whereas drying increases the crack complexity,resulting in fractal dimensions ranging from 1.106 to 1.126.The geometry results indicate that the crack directions are mainly at angles of 30°-70°after soaking and primarily in the range of 50°-60°after 10 drying cycles.The transition of the crack intersection angle from a bimodal to a unimodal distribution suggests that water absorption and drying processes tend to form Y-shaped and T-shaped cracks,respectively.Finally,the evolution of the watererock interface induced by particle dissolution,ion exchange,expansion force,and liquid surface tensionwas used to explain the mechanism of crack evolution related to water entry and evaporation.These results provide a theoretical basis for evaluating the cracking behavior of soft red-bed rocks. 展开更多
关键词 Red-bed rock crack evolution MICROSTRUCTURE crack mechanism Water-rock interaction
在线阅读 下载PDF
Effect of short-range ordering on crack propagation behavior of high-entropy alloys
16
作者 H.Y.Bo H.Y.Song X.Y.Li 《Journal of Materials Science & Technology》 2025年第24期262-275,共14页
The short-range ordering(SRO)structure has been considered as a toughening method to improve the mechanical properties of high-entropy alloys(HEAs).However,the strengthening mechanism of the SRO structures on the HEAs... The short-range ordering(SRO)structure has been considered as a toughening method to improve the mechanical properties of high-entropy alloys(HEAs).However,the strengthening mechanism of the SRO structures on the HEAs still needs to be further revealed.Here,the effect of element distribution,Al content,crack orientation,temperature,and strain rate on the crack propagation behavior of the AlxFeCoCrNi HEAs are investigated using Monte Carlo(MC)/molecular dynamics(MD)simulation methods.Two HEA models are considered,one with five elements randomly distributed in the alloys,i.e.RSS_HEAs,and the other presenting SRO structure in the alloys,namely SRO_HEAs.The results show that Al atoms play a decisive role in the SRO degree of the HEA.The higher the Al content,the greater the SRO degree of the HEA,and the stronger the resistance of the SRO structure to crack propagation in the alloys.The results indicate that the reinforcement effect of the SRO structure in the model with the(111)[110]crack is more significant than that with the(111)[110]crack.The results show that the crack length of the alloys at maximum strain does not monotonically increase with temperature,but rather exhibits a turning point at the temperature of 400 K.When the temperature is below 400 K,the crack length of the alloys increases with the increase of temperature,while above 400 K,the opposite trend appears.In addition,the results indicate that the crack length of the alloys decreases with increasing strain rate under the same strain. 展开更多
关键词 Short-range order High-entropy alloys crack propagation crack orientation Molecular dynamics simulation
原文传递
CNN-based multi-output regression model to estimate infrastructural surface crack dimensions adopting a generalised patch size and FWHM-based width quantification
17
作者 Sudipta Debroy Arjun Sil 《Digital Twins and Applications》 2025年第1期75-102,共28页
To cater the need for real-time crack monitoring of infrastructural facilities,a CNN-regression model is proposed to directly estimate the crack properties from patches.RGB crack images and their corresponding masks o... To cater the need for real-time crack monitoring of infrastructural facilities,a CNN-regression model is proposed to directly estimate the crack properties from patches.RGB crack images and their corresponding masks obtained from a public dataset are cropped into patches of 256 square pixels that are classified with a pre-trained deep convolution neural network,the true positives are segmented,and crack properties are extracted using two different methods.The first method is primarily based on active contour models and level-set segmentation and the second method consists of the domain adaptation of a mathematical morphology-based method known as FIL-FINDER.A statistical test has been performed for the comparison of the stated methods and a database prepared with the more suitable method.An advanced convolution neural network-based multi-output regression model has been proposed which was trained with the prepared database and validated with the held-out dataset for the prediction of crack-length,crack-width,and width-uncertainty directly from input image patches.The pro-posed model has been tested on crack patches collected from different locations.Huber loss has been used to ensure the robustness of the proposed model selected from a set of 288 different variations of it.Additionally,an ablation study has been conducted on the top 3 models that demonstrated the influence of each network component on the pre-diction results.Finally,the best performing model HHc-X among the top 3 has been proposed that predicted crack properties which are in close agreement to the ground truths in the test data. 展开更多
关键词 ablation CNN convolution neural network crack crack patch estimation FWHM length multi-output regression segmentation uncertainty WIDTH
在线阅读 下载PDF
An analytical solution of direction evolution of crack growth during progressive failure in brittle rocks
18
作者 Xiaozhao Li Lianjie Li +4 位作者 Fayuan Yan Chengzhi Qi Mikhail A.Guzev Evgenii V.Kozhevnikov Artem A.Kunitskikh 《Deep Underground Science and Engineering》 2025年第3期452-460,共9页
Microcrack growth during progressive compressive failure in brittle rocks strongly influences the safety of deep underground engineering.The external shear stressτxy on brittle rocks greatly affects microcrack growth... Microcrack growth during progressive compressive failure in brittle rocks strongly influences the safety of deep underground engineering.The external shear stressτxy on brittle rocks greatly affects microcrack growth and progressive failure.However,the theoretical mechanism of the growth direction evolution of the newly generated wing crack during progressive failure has rarely been studied.A novel analytical method is proposed to evaluate the shear stress effect on the progressive compressive failure and microcrack growth direction in brittle rocks.This model consists of the wing crack growth model under the principal compressive stresses,the direction correlation of the general stress,the principal stress and the initial microcrack inclination,and the relationship between the wing crack length and strain.The shear stress effect on the relationship between y-direction stress and wing crack growth and the relationship between y-direction stress and y-direction strain are analyzed.The shear stress effect on the wing crack growth direction during the progressive compressive failure is determined.The initial crack angle effect on the y-direction peak stress and the wing crack growth direction during the progressive compressive failure considering shear stress is also discussed.A crucial conclusion is that the direction of wing crack growth has a U-shaped variation with the growth of the wing crack.The rationality of the analytical results is verified by an experiment and from numerical results.The study results provide theoretical support for the evaluation of the safety and stability of surrounding rocks in deep underground engineering. 展开更多
关键词 brittle rocks initial crack angle progressive failure shear stress wing crack growth direction
原文传递
Deep Learning-Based Identification of Cracks Using Ultrasonic Phased-Array Images
19
作者 Lijuan Yang Huan Liu +3 位作者 Desheng Wu Zhibo Yang Xuefeng Chen Shaohua Tian 《Acta Mechanica Solida Sinica》 2025年第5期803-814,共12页
In order to realize the automatic recognition and classification of cracks with different depths,in this study,several deep convolutional neural networks including AlexNet,ResNet,and DenseNet were employed to identify... In order to realize the automatic recognition and classification of cracks with different depths,in this study,several deep convolutional neural networks including AlexNet,ResNet,and DenseNet were employed to identify and classify cracks at different depths and in various materials.An analysis process for the automatic classification of crack damage was presented.The image dataset used for model training was obtained from scanning experiments on aluminum and titanium alloy plates using an ultrasonic phased-array flaw detector.All models were trained and validated with the dataset;the proposed models were compared using classification precision and loss values.The results show that the automatic recognition and classification of crack depth can be realized by using the deep learning algorithm to analyze the ultrasonic phased array images,and the classification precision of DenseNet is the highest.The problem that ultrasonic damage identification relies on manual experience is solved. 展开更多
关键词 crack damage Deep convolutional neural network Ultrasonic phased-array image Automatic crack recognition
原文传递
Predicting soil desiccation cracking behavior using machine learning and interpretability analysis
20
作者 Ting Wang Chao-Sheng Tang +6 位作者 Zhixiong Zeng Jin-Jian Xu Rui Wang Qing Cheng Zhengtao Shen She-Feng Hao Yong-Xiang Yu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期6020-6032,共13页
Soil desiccation cracking is ubiquitous in nature and has significantpotential impacts on the engineering geological properties of soils.Previous studies have extensively examined various factors affecting soil cracki... Soil desiccation cracking is ubiquitous in nature and has significantpotential impacts on the engineering geological properties of soils.Previous studies have extensively examined various factors affecting soil cracking behavior through a numerous small-sample experiments.However,experimental studies alone cannot accurately describe soil cracking behavior.In this study,we firstly propose a modeling framework for predicting the surface crack ratio of soil desiccation cracking based on machine learning and interpretable analysis.The framework utilizes 1040 sets of soil cracking experimental data and employs random forest(RF),extreme gradient boosting(XGBoost),and artificialneural network(ANN)models to predict the surface crack ratio of soil desiccation cracking.To clarify the influenceof input features on soil cracking behavior,feature importance and Shapley additive explanations(SHAP)are applied for interpretability analysis.The results reveal that ensemble methods(RF and XGBoost)provide better predictive performance than the deep learning model(ANN).The feature importance analysis shows that soil desiccation cracking is primarily influencedby initial water content,plasticity index,finalwater content,liquid limit,sand content,clay content and thickness.Moreover,SHAP-based interpretability analysis further explores how soil cracking responds to various input variables.This study provides new insight into the evolution of soil cracking behavior,enhancing the understanding of its physical mechanisms and facilitating the assessment of potential regional development of soil desiccation cracking. 展开更多
关键词 Soil desiccation cracking Surface crack ratio Machine learning model Shapley additive explanations Interpretability analysis
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部