In this paper, it is described that the time-frequency resolution of geophysical signals is affected by the time window function attenuation coefficient and sampling interval and how such effects are eliminated effect...In this paper, it is described that the time-frequency resolution of geophysical signals is affected by the time window function attenuation coefficient and sampling interval and how such effects are eliminated effectively. Improving the signal resolution is the key to signal time-frequency analysis processing and has wide use in geophysical data processing and extraction of attribute parameters. In this paper, authors research the effects of the attenuation coefficient choice of the Gabor transform window function and sampling interval on signal resolution. Unsuitable parameters not only decrease the signal resolution on the frequency spectrum but also miss the signals. It is essential to first give the optimum window and range of parameters through time-frequency analysis simulation using the Gabor transform. In the paper, the suggestions about the range and choice of the optimum sampling interval and processing methods of general seismic signals are given.展开更多
Recent advances in electronics have increased the complexity of radar signal modulation.The quasi-linear frequency modulation(quasi-LFM)radar waveforms(LFM,Frank code,P1−P4 code)have similar time-frequency distributio...Recent advances in electronics have increased the complexity of radar signal modulation.The quasi-linear frequency modulation(quasi-LFM)radar waveforms(LFM,Frank code,P1−P4 code)have similar time-frequency distributions,and it is difficult to identify such signals using traditional time-frequency analysis methods.To solve this problem,this paper proposes an algorithm for automatic recognition of quasi-LFM radar waveforms based on fractional Fourier transform and time-frequency analysis.First of all,fractional Fourier transform and the Wigner-Ville distribution(WVD)are used to determine the number of main ridgelines and the tilt angle of the target component in WVD.Next,the standard deviation of the target component's width in the signal's WVD is calculated.Finally,an assembled classifier using neural network is built to recognize different waveforms by automatically combining the three features.Simulation results show that the overall recognition rate of the proposed algorithm reaches 94.17%under 0 dB.When the training data set and the test data set are mixed with noise,the recognition rate reaches 89.93%.The best recognition accuracy is achieved when the size of the training set is taken as 400.The algorithm complexity can meet the requirements of real-time recognition.展开更多
The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improv...The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improve the resolution of the linear time-frequency analysis method in the low-frequency region,we have proposed a W transform method,in which the instantaneous frequency is introduced as a parameter into the linear transformation,and the analysis time window is constructed which matches the instantaneous frequency of the seismic data.In this paper,the W transform method is compared with the Wigner-Ville distribution(WVD),a typical nonlinear time-frequency analysis method.The WVD method that shows the energy distribution in the time-frequency domain clearly indicates the gravitational center of time and the gravitational center of frequency of a wavelet,while the time-frequency spectrum of the W transform also has a clear gravitational center of energy focusing,because the instantaneous frequency corresponding to any time position is introduced as the transformation parameter.Therefore,the W transform can be benchmarked directly by the WVD method.We summarize the development of the W transform and three improved methods in recent years,and elaborate on the evolution of the standard W transform,the chirp-modulated W transform,the fractional-order W transform,and the linear canonical W transform.Through three application examples of W transform in fluvial sand body identification and reservoir prediction,it is verified that W transform can improve the resolution and energy focusing of time-frequency spectra.展开更多
Seismic time-frequency(TF)transforms are essential tools in reservoir interpretation and signal processing,particularly for characterizing frequency variations in non-stationary seismic data.Recently,sparse TF trans-f...Seismic time-frequency(TF)transforms are essential tools in reservoir interpretation and signal processing,particularly for characterizing frequency variations in non-stationary seismic data.Recently,sparse TF trans-forms,which leverage sparse coding(SC),have gained significant attention in the geosciences due to their ability to achieve high TF resolution.However,the iterative approaches typically employed in sparse TF transforms are computationally intensive,making them impractical for real seismic data analysis.To address this issue,we propose an interpretable convolutional sparse coding(CSC)network to achieve high TF resolution.The proposed model is generated based on the traditional short-time Fourier transform(STFT)transform and a modified UNet,named ULISTANet.In this design,we replace the conventional convolutional layers of the UNet with learnable iterative shrinkage thresholding algorithm(LISTA)blocks,a specialized form of CSC.The LISTA block,which evolves from the traditional iterative shrinkage thresholding algorithm(ISTA),is optimized for extracting sparse features more effectively.Furthermore,we create a synthetic dataset featuring complex frequency-modulated signals to train ULISTANet.Finally,the proposed method’s performance is subsequently validated using both synthetic and field data,demonstrating its potential for enhanced seismic data analysis.展开更多
This paper introduces the localized Radon transform (LRT) into time-frequency distributions and presents the localized Radon-Wigner transform (LRWT). The definition of LRWT and a fast algorithm is derived, the propert...This paper introduces the localized Radon transform (LRT) into time-frequency distributions and presents the localized Radon-Wigner transform (LRWT). The definition of LRWT and a fast algorithm is derived, the properties of LRWT and its relationship with Radon-Wigner transform, Wigner distribution (WD), ambiguity function (AF), and generalized-marginal time-frequency distributions are analyzed.展开更多
Some factors influencing the intelligibility of the enhanced whisper in the joint time-frequency domain are evaluated. Specifically, both the spectrum density and different regions of the enhanced spectrum are analyze...Some factors influencing the intelligibility of the enhanced whisper in the joint time-frequency domain are evaluated. Specifically, both the spectrum density and different regions of the enhanced spectrum are analyzed. Experimental results show that for a spectrum of some density, the joint time-frequency gain-modification based speech enhancement algorithm achieves significant improvement in intelligibility. Additionally, the spectrum region where the estimated spectrum is smaller than the clean spectrum, is the most important region contributing to intelligibility improvement for the enhanced whisper. The spectrum region where the estimated spectrum is larger than twice the size of the clean spectrum is detrimental to speech intelligibility perception within the whisper context.展开更多
The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and th...The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and the noise level not changes with space, whereas the actual situation does not satisfy this assumption, so that results after resolution improvement processing is not up to the expected effect. To solve these problems, we propose a seismic resolution improvement method based on the secondary time-frequency spectrum. First, we propose the secondary time-frequency spectrum based on S transform (ST) and discuss the reflection coefficient sequence and time-dependent wavelet in the secondary time frequency spectrum. Second, using the secondary time frequency spectrum, we design a two- dimensional filter to extract the amplitude spectrum of the time-dependent wavelet. Then, we discuss the improvement of the resolution operator in noisy environments and propose a novel approach for determining the broad frequency range of the resolution operator in the time- fi'equency-space domain. Finally, we apply the proposed method to synthetic and real data and compare the results of the traditional spectrum-modeling deconvolution and Q compensation method. The results suggest that the proposed method does not need to estimate the Q value and the resolution is not limited by the bandwidth of the source. Thus, the resolution of the seismic data is improved sufficiently based on the signal-to-noise ratio (SNR).展开更多
In this study,we report an analysis of cylinder head vibration signals at a steady engine speed using short-time Fourier transform(STFT).Three popular time-frequency analysis techniques,i.e.,STFT,analytic wavelet tran...In this study,we report an analysis of cylinder head vibration signals at a steady engine speed using short-time Fourier transform(STFT).Three popular time-frequency analysis techniques,i.e.,STFT,analytic wavelet transform(AWT) and S transform(ST),have been examined.AWT and ST are often applied in engine signal analyses.In particular,an AWT expression in terms of the quality factor Q and an analytical relationship between ST and AWT have been derived.The time-frequency resolution of a Gaussian function windowed STFT was studied via numerical simulation.Based on the simulation,the empirical limits for the lowest distinguishable frequency as well as the time and frequency resolutions were determined.These can provide insights for window width selection,spectrogram interpretation and artifact identification.Gaussian function windowed STFTs were applied to some cylinder head vibration signals.The spectrograms of the same signals from ST and AWT were also determined for comparison.The results indicate that the uniform resolution feature of STFT is not necessarily a disadvantage for time-frequency analysis of vibration signals when the engine is in stationary state because it can more accurately localize the frequency components excited by transient excitations without much loss of time resolution.展开更多
The Q-factor is an important physical parameter for characterizing the absorption and attenuation of seismic waves propagating in underground media,which is of great signifi cance for improving the resolution of seism...The Q-factor is an important physical parameter for characterizing the absorption and attenuation of seismic waves propagating in underground media,which is of great signifi cance for improving the resolution of seismic data,oil and gas detection,and reservoir description.In this paper,the local centroid frequency is defi ned using shaping regularization and used to estimate the Q values of the formation.We propose a continuous time-varying Q-estimation method in the time-frequency domain according to the local centroid frequency,namely,the local centroid frequency shift(LCFS)method.This method can reasonably reduce the calculation error caused by the low accuracy of the time picking of the target formation in the traditional methods.The theoretical and real seismic data processing results show that the time-varying Q values can be accurately estimated using the LCFS method.Compared with the traditional Q-estimation methods,this method does not need to extract the top and bottom interfaces of the target formation;it can also obtain relatively reasonable Q values when there is no eff ective frequency spectrum information.Simultaneously,a reasonable inverse Q fi ltering result can be obtained using the continuous time-varying Q values.展开更多
Early detection of sudden cardiac death may be used for surviving the life of cardiac patients. In this paper we have investigated an algorithm to detect and predict sudden cardiac death, by processing of heart rate v...Early detection of sudden cardiac death may be used for surviving the life of cardiac patients. In this paper we have investigated an algorithm to detect and predict sudden cardiac death, by processing of heart rate variability signal through the classical and time-frequency methods. At first, one minute of ECG signals, just before the cardiac death event are extracted and used to compute heart rate variability (HRV) signal. Five features in time domain and four features in frequency domain are extracted from the HRV signal and used as classical linear features. Then the Wigner Ville transform is applied to the HRV signal, and 11 extra features in the time-frequency (TF) domain are obtained. In order to improve the performance of classification, the principal component analysis (PCA) is applied to the obtained features vector. Finally a neural network classifier is applied to the reduced features. The obtained results show that the TF method can classify normal and SCD subjects, more efficiently than the classical methods. A MIT-BIH ECG database was used to evaluate the proposed method. The proposed method was implemented using MLP classifier and had 74.36% and 99.16% correct detection rate (accuracy) for classical features and TF method, respectively. Also, the accuracy of the KNN classifier were 73.87% and 96.04%.展开更多
This paper proposes a new method for estimating the parameter of maneuvering targets based on sparse time-frequency transform in over-the-horizon radar(OTHR). In this method, the sparse time-frequency distribution o...This paper proposes a new method for estimating the parameter of maneuvering targets based on sparse time-frequency transform in over-the-horizon radar(OTHR). In this method, the sparse time-frequency distribution of the radar echo is obtained by solving a sparse optimization problem based on the short-time Fourier transform. Then Hough transform is employed to estimate the parameter of the targets. The proposed algorithm has the following advantages: Compared with the Wigner-Hough transform method, the computational complexity of the sparse optimization is low due to the application of fast Fourier transform(FFT). And the computational cost of Hough transform is also greatly reduced because of the sparsity of the time-frequency distribution. Compared with the high order ambiguity function(HAF) method, the proposed method improves in terms of precision and robustness to noise. Simulation results show that compared with the HAF method, the required SNR and relative mean square error are 8 dB lower and 50 dB lower respectively in the proposed method. While processing the field experiment data, the execution time of Hough transform in the proposed method is only 4% of the Wigner-Hough transform method.展开更多
A new time-frequency representation called Dopplerlet transform, which uses the dilated, translated and modulated windowed Doppler signals as its basis functions, is proposed, and the Fourier transform, short-time Fou...A new time-frequency representation called Dopplerlet transform, which uses the dilated, translated and modulated windowed Doppler signals as its basis functions, is proposed, and the Fourier transform, short-time Fourier transform (including Gabor transform), wavelet transform, and chirplet transform are formulated in one framework of Dopplerlet transform accordingly.It is proved that the matching pursuits based on Dopplerlet basis functions are convergent, and that the energy of residual signals yielded in the decomposition process decays exponentially. Simulation results show that the matching pursuits with Dopplerlet basis functions can characterize compactly a nonstationary signal.展开更多
The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is define...The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system (GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time-frequency filtering technique.展开更多
This paper presents an evaluation of time-frequency methods for the analysis of seismic signals.Background of the present work is to describe,how the frequency content of the signal is changing in time.The theoretical...This paper presents an evaluation of time-frequency methods for the analysis of seismic signals.Background of the present work is to describe,how the frequency content of the signal is changing in time.The theoretical basis of short time Fourier transform,Gabor transform,wavelet transform,S-transform,Wigner distribution,Wigner-Ville distribution,Pseudo Wigner-Ville distribution,Smoothed Pseudo Wigner-Ville distribution,Choi-William distribution,Born-Jordan Distribution and cone shape distribution are presented.The strengths and weaknesses of each technique are verified by applying them to a particular synthetic seismic signal and recorded real time earthquake data.展开更多
In order to investigate the characteristics of sensorimotor cortex during motor execution(ME), voluntary, stimulated and imaginary finger flexions were performed by ten volunteer subjects. Electroencephalogram(EEG) da...In order to investigate the characteristics of sensorimotor cortex during motor execution(ME), voluntary, stimulated and imaginary finger flexions were performed by ten volunteer subjects. Electroencephalogram(EEG) data were recorded according to the modified 10-20 International EEG System. The patterns were compared by the analysis of the motion-evoked EEG signals focusing on the contralateral(C3) and ipsilateral(C4) channels for hemispheric differences. The EEG energy distributions at alpha(8—13 Hz), beta(14—30 Hz) and gamma(30—50 Hz) bands were computed by wavelet transform(WT) and compared by the analysis of variance(ANOVA). The timefrequency(TF) analysis indicated that there existed a contralateral dominance of alpha post-movement event-related synchronization(ERS) pattern during the voluntary task, and that the energy of alpha band increased in the ipsilateral area during the stimulated(median nerve of wrist) task. Besides, the contralateral alpha and beta event-related desynchronization(ERD) patterns were observed in both stimulated and imaginary tasks. Another significant difference was found in the mean power values of gamma band(p<0.01)between the imaginary and other tasks. The results show that significant hemispheric differences such as alpha and beta band EEG energy distributions and TF changing phenomena(ERS/ERD) were found between C3 and C4 areas during all of the three patterns. The largest energy distribution was always at the alpha band for each task.展开更多
Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, t...Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, the segmentation of non-stationary or multi-component signals is conducted in time domain. In this paper, we explore the advantages of applying joint time-frequency (TF) distribution of the multi-component signals to identify their segments. The Spectrogram that is known as Short-Time Fourier Transform (STFT) will be used for obtaining the time-frequency kernel. Time marginal of the computed kernel is optimally used for the signal segmentation. In order to obtain the desirable segmentation, it requires first to improve time marginal of the kernel by using two-dimensional Wiener mask filter applied to the TF kernel to mitigate and suppress non-stationary noise or interference. Additionally, a proper choice of the sliding window and its overlaying has enhanced our scheme to capture the discontinuities corresponding to the boundaries of the candidate segments.展开更多
Radio Frequency Fingerprint Identification(RFFI)technology provides a means of identifying spurious signals.This technology has been widely used in solving Automatic Dependent Surveillance–Broadcast(ADS-B)signal spoo...Radio Frequency Fingerprint Identification(RFFI)technology provides a means of identifying spurious signals.This technology has been widely used in solving Automatic Dependent Surveillance–Broadcast(ADS-B)signal spoofing problems.However,the effects of circuit changes over time often lead to a decline in identification accuracy within open-time set.This paper proposes an ADS-B transmitter identification method to solve the degradation of identification accuracy.First,a real-time data processing system is established to receive and store ADS-B signals to meet the conditions for open-time set.The system possesses the following functionalities:data collection,data parsing,feature extraction,and identity recognition.Subsequently,a two-dimensional TimeFrequency Feature Diagram(TFFD)is proposed as a signal pre-processing method.The TFFD is constructed from the received ADS-B signal and the reconstructed signal for input to the recognition model.Finally,incorporating a frequency offset layer into the Swin Transformer architecture,a novel recognition network framework is proposed.This integration can enhance the network recognition accuracy and robustness by tailoring to the specific characteristics of ADSB signals.Experimental results indicate that the proposed recognition architecture achieves recognition accuracy of 95.86%in closed-time set and 84.33%in open-time set,surpassing other algorithms.展开更多
The S transform, which is a time-frequency representation known for its local spectral phase properties in signal processing, uniquely combines elements of wavelet transforms and the short-time Fourier transform (STF...The S transform, which is a time-frequency representation known for its local spectral phase properties in signal processing, uniquely combines elements of wavelet transforms and the short-time Fourier transform (STFT). The fractional Fourier transform is a tool for non-stationary signal analysis. In this paper, we define the concept of the fractional S transform (FRST) of a signal, based on the idea of the fractional Fourier transform (FRFT) and S transform (ST), extend the S transform to the time-fractional frequency domain from the time- frequency domain to obtain the inverse transform, and study the FRST mathematical properties. The FRST, which has the advantages of FRFT and ST, can enhance the ST flexibility to process signals. Compared to the S transform, the FRST can effectively improve the signal time- frequency resolution capacity. Simulation results show that the proposed method is effective.展开更多
Synthetic speech detection is an essential task in the field of voice security,aimed at identifying deceptive voice attacks generated by text-to-speech(TTS)systems or voice conversion(VC)systems.In this paper,we propo...Synthetic speech detection is an essential task in the field of voice security,aimed at identifying deceptive voice attacks generated by text-to-speech(TTS)systems or voice conversion(VC)systems.In this paper,we propose a synthetic speech detection model called TFTransformer,which integrates both local and global features to enhance detection capabilities by effectively modeling local and global dependencies.Structurally,the model is divided into two main components:a front-end and a back-end.The front-end of the model uses a combination of SincLayer and two-dimensional(2D)convolution to extract high-level feature maps(HFM)containing local dependency of the input speech signals.The back-end uses time-frequency Transformer module to process these feature maps and further capture global dependency.Furthermore,we propose TFTransformer-SE,which incorporates a channel attention mechanism within the 2D convolutional blocks.This enhancement aims to more effectively capture local dependencies,thereby improving the model’s performance.The experiments were conducted on the ASVspoof 2021 LA dataset,and the results showed that the model achieved an equal error rate(EER)of 3.37%without data augmentation.Additionally,we evaluated the model using the ASVspoof 2019 LA dataset,achieving an EER of 0.84%,also without data augmentation.This demonstrates that combining local and global dependencies in the time-frequency domain can significantly improve detection accuracy.展开更多
The Space-Air-Ground-Sea Integrated Networks(SAGSIN)significantly enhance global communication by merging satellite,aviation,terrestrial,and marine networks.Crucial to SAGSIN’s functionality and security is spectrum ...The Space-Air-Ground-Sea Integrated Networks(SAGSIN)significantly enhance global communication by merging satellite,aviation,terrestrial,and marine networks.Crucial to SAGSIN’s functionality and security is spectrum monitoring using deep learning-based Automatic Modulation Classification(AMC),essential for processing and classifying complex modulation signals.However,these AMC models are susceptible to adversarial attacks.Thus,we introduce the Deep Time-Frequency Denoising Transformation(DTFDT)defense method to mitigate the impact of adversarial attacks.The DTFDT method is comprised of a deep denoising module and a transformation module.The denoising module maps signals into the time-frequency domain,amplifying the differences between benign and adversarial examples,aiding in the elimination of adversarial perturbations.Concurrently,the transformation module develops a learnable network,generating example-specific transformation matrices suited for signal data,which diminishes the effectiveness of attacks.Extensive evaluations on two datasets,RML2016.10a and DMRadio09.real,demonstrate the superior defense capabilities of DTFDT against various attacks.展开更多
基金This work was funded by National Natural Science Foundation of China-(No. 40474044).
文摘In this paper, it is described that the time-frequency resolution of geophysical signals is affected by the time window function attenuation coefficient and sampling interval and how such effects are eliminated effectively. Improving the signal resolution is the key to signal time-frequency analysis processing and has wide use in geophysical data processing and extraction of attribute parameters. In this paper, authors research the effects of the attenuation coefficient choice of the Gabor transform window function and sampling interval on signal resolution. Unsuitable parameters not only decrease the signal resolution on the frequency spectrum but also miss the signals. It is essential to first give the optimum window and range of parameters through time-frequency analysis simulation using the Gabor transform. In the paper, the suggestions about the range and choice of the optimum sampling interval and processing methods of general seismic signals are given.
基金This work was supported by the National Natural Science Foundation of China(91538201)the Taishan Scholar Project of Shandong Province(ts201511020)the project supported by Chinese National Key Laboratory of Science and Technology on Information System Security(6142111190404).
文摘Recent advances in electronics have increased the complexity of radar signal modulation.The quasi-linear frequency modulation(quasi-LFM)radar waveforms(LFM,Frank code,P1−P4 code)have similar time-frequency distributions,and it is difficult to identify such signals using traditional time-frequency analysis methods.To solve this problem,this paper proposes an algorithm for automatic recognition of quasi-LFM radar waveforms based on fractional Fourier transform and time-frequency analysis.First of all,fractional Fourier transform and the Wigner-Ville distribution(WVD)are used to determine the number of main ridgelines and the tilt angle of the target component in WVD.Next,the standard deviation of the target component's width in the signal's WVD is calculated.Finally,an assembled classifier using neural network is built to recognize different waveforms by automatically combining the three features.Simulation results show that the overall recognition rate of the proposed algorithm reaches 94.17%under 0 dB.When the training data set and the test data set are mixed with noise,the recognition rate reaches 89.93%.The best recognition accuracy is achieved when the size of the training set is taken as 400.The algorithm complexity can meet the requirements of real-time recognition.
基金Supported by the National Science Foundation of China(42055402)。
文摘The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improve the resolution of the linear time-frequency analysis method in the low-frequency region,we have proposed a W transform method,in which the instantaneous frequency is introduced as a parameter into the linear transformation,and the analysis time window is constructed which matches the instantaneous frequency of the seismic data.In this paper,the W transform method is compared with the Wigner-Ville distribution(WVD),a typical nonlinear time-frequency analysis method.The WVD method that shows the energy distribution in the time-frequency domain clearly indicates the gravitational center of time and the gravitational center of frequency of a wavelet,while the time-frequency spectrum of the W transform also has a clear gravitational center of energy focusing,because the instantaneous frequency corresponding to any time position is introduced as the transformation parameter.Therefore,the W transform can be benchmarked directly by the WVD method.We summarize the development of the W transform and three improved methods in recent years,and elaborate on the evolution of the standard W transform,the chirp-modulated W transform,the fractional-order W transform,and the linear canonical W transform.Through three application examples of W transform in fluvial sand body identification and reservoir prediction,it is verified that W transform can improve the resolution and energy focusing of time-frequency spectra.
基金supported by the National Natural Science Foundation of China under Grant 42474139the Key Research and Development Program of Shaanxi under Grant 2024GX-YBXM-067.
文摘Seismic time-frequency(TF)transforms are essential tools in reservoir interpretation and signal processing,particularly for characterizing frequency variations in non-stationary seismic data.Recently,sparse TF trans-forms,which leverage sparse coding(SC),have gained significant attention in the geosciences due to their ability to achieve high TF resolution.However,the iterative approaches typically employed in sparse TF transforms are computationally intensive,making them impractical for real seismic data analysis.To address this issue,we propose an interpretable convolutional sparse coding(CSC)network to achieve high TF resolution.The proposed model is generated based on the traditional short-time Fourier transform(STFT)transform and a modified UNet,named ULISTANet.In this design,we replace the conventional convolutional layers of the UNet with learnable iterative shrinkage thresholding algorithm(LISTA)blocks,a specialized form of CSC.The LISTA block,which evolves from the traditional iterative shrinkage thresholding algorithm(ISTA),is optimized for extracting sparse features more effectively.Furthermore,we create a synthetic dataset featuring complex frequency-modulated signals to train ULISTANet.Finally,the proposed method’s performance is subsequently validated using both synthetic and field data,demonstrating its potential for enhanced seismic data analysis.
文摘This paper introduces the localized Radon transform (LRT) into time-frequency distributions and presents the localized Radon-Wigner transform (LRWT). The definition of LRWT and a fast algorithm is derived, the properties of LRWT and its relationship with Radon-Wigner transform, Wigner distribution (WD), ambiguity function (AF), and generalized-marginal time-frequency distributions are analyzed.
基金The National Natural Science Foundation of China(No.61301295,61273266,61301219,61201326,61003131)the Natural Science Foundation of Anhui Province(No.1308085QF100,1408085MF113)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK20130241)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.12KJB510021)the Doctoral Fund of Anhui University
文摘Some factors influencing the intelligibility of the enhanced whisper in the joint time-frequency domain are evaluated. Specifically, both the spectrum density and different regions of the enhanced spectrum are analyzed. Experimental results show that for a spectrum of some density, the joint time-frequency gain-modification based speech enhancement algorithm achieves significant improvement in intelligibility. Additionally, the spectrum region where the estimated spectrum is smaller than the clean spectrum, is the most important region contributing to intelligibility improvement for the enhanced whisper. The spectrum region where the estimated spectrum is larger than twice the size of the clean spectrum is detrimental to speech intelligibility perception within the whisper context.
基金financially supported by the National 973 Project(No.2014CB239006)the National Natural Science Foundation of China(No.41104069 and 41274124)the Fundamental Research Funds for Central Universities(No.R1401005A)
文摘The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and the noise level not changes with space, whereas the actual situation does not satisfy this assumption, so that results after resolution improvement processing is not up to the expected effect. To solve these problems, we propose a seismic resolution improvement method based on the secondary time-frequency spectrum. First, we propose the secondary time-frequency spectrum based on S transform (ST) and discuss the reflection coefficient sequence and time-dependent wavelet in the secondary time frequency spectrum. Second, using the secondary time frequency spectrum, we design a two- dimensional filter to extract the amplitude spectrum of the time-dependent wavelet. Then, we discuss the improvement of the resolution operator in noisy environments and propose a novel approach for determining the broad frequency range of the resolution operator in the time- fi'equency-space domain. Finally, we apply the proposed method to synthetic and real data and compare the results of the traditional spectrum-modeling deconvolution and Q compensation method. The results suggest that the proposed method does not need to estimate the Q value and the resolution is not limited by the bandwidth of the source. Thus, the resolution of the seismic data is improved sufficiently based on the signal-to-noise ratio (SNR).
基金Project (No. 2011BAE22B05) supported by the National Key Technologies Supporting Program of China during the 12th Five-Year Plan Period
文摘In this study,we report an analysis of cylinder head vibration signals at a steady engine speed using short-time Fourier transform(STFT).Three popular time-frequency analysis techniques,i.e.,STFT,analytic wavelet transform(AWT) and S transform(ST),have been examined.AWT and ST are often applied in engine signal analyses.In particular,an AWT expression in terms of the quality factor Q and an analytical relationship between ST and AWT have been derived.The time-frequency resolution of a Gaussian function windowed STFT was studied via numerical simulation.Based on the simulation,the empirical limits for the lowest distinguishable frequency as well as the time and frequency resolutions were determined.These can provide insights for window width selection,spectrogram interpretation and artifact identification.Gaussian function windowed STFTs were applied to some cylinder head vibration signals.The spectrograms of the same signals from ST and AWT were also determined for comparison.The results indicate that the uniform resolution feature of STFT is not necessarily a disadvantage for time-frequency analysis of vibration signals when the engine is in stationary state because it can more accurately localize the frequency components excited by transient excitations without much loss of time resolution.
基金This work was supported by The National Key Research and Development Program(No.2016YFC0600505 and 2018YFC0603701)National Natural Science Foundation(No.41974134 and 41774127).
文摘The Q-factor is an important physical parameter for characterizing the absorption and attenuation of seismic waves propagating in underground media,which is of great signifi cance for improving the resolution of seismic data,oil and gas detection,and reservoir description.In this paper,the local centroid frequency is defi ned using shaping regularization and used to estimate the Q values of the formation.We propose a continuous time-varying Q-estimation method in the time-frequency domain according to the local centroid frequency,namely,the local centroid frequency shift(LCFS)method.This method can reasonably reduce the calculation error caused by the low accuracy of the time picking of the target formation in the traditional methods.The theoretical and real seismic data processing results show that the time-varying Q values can be accurately estimated using the LCFS method.Compared with the traditional Q-estimation methods,this method does not need to extract the top and bottom interfaces of the target formation;it can also obtain relatively reasonable Q values when there is no eff ective frequency spectrum information.Simultaneously,a reasonable inverse Q fi ltering result can be obtained using the continuous time-varying Q values.
文摘Early detection of sudden cardiac death may be used for surviving the life of cardiac patients. In this paper we have investigated an algorithm to detect and predict sudden cardiac death, by processing of heart rate variability signal through the classical and time-frequency methods. At first, one minute of ECG signals, just before the cardiac death event are extracted and used to compute heart rate variability (HRV) signal. Five features in time domain and four features in frequency domain are extracted from the HRV signal and used as classical linear features. Then the Wigner Ville transform is applied to the HRV signal, and 11 extra features in the time-frequency (TF) domain are obtained. In order to improve the performance of classification, the principal component analysis (PCA) is applied to the obtained features vector. Finally a neural network classifier is applied to the reduced features. The obtained results show that the TF method can classify normal and SCD subjects, more efficiently than the classical methods. A MIT-BIH ECG database was used to evaluate the proposed method. The proposed method was implemented using MLP classifier and had 74.36% and 99.16% correct detection rate (accuracy) for classical features and TF method, respectively. Also, the accuracy of the KNN classifier were 73.87% and 96.04%.
基金supported by the National Natural Science Foundation of China(611011726137118461301262)
文摘This paper proposes a new method for estimating the parameter of maneuvering targets based on sparse time-frequency transform in over-the-horizon radar(OTHR). In this method, the sparse time-frequency distribution of the radar echo is obtained by solving a sparse optimization problem based on the short-time Fourier transform. Then Hough transform is employed to estimate the parameter of the targets. The proposed algorithm has the following advantages: Compared with the Wigner-Hough transform method, the computational complexity of the sparse optimization is low due to the application of fast Fourier transform(FFT). And the computational cost of Hough transform is also greatly reduced because of the sparsity of the time-frequency distribution. Compared with the high order ambiguity function(HAF) method, the proposed method improves in terms of precision and robustness to noise. Simulation results show that compared with the HAF method, the required SNR and relative mean square error are 8 dB lower and 50 dB lower respectively in the proposed method. While processing the field experiment data, the execution time of Hough transform in the proposed method is only 4% of the Wigner-Hough transform method.
基金Supported by the National Natural Science Fundation of China(Grant No.69775009)
文摘A new time-frequency representation called Dopplerlet transform, which uses the dilated, translated and modulated windowed Doppler signals as its basis functions, is proposed, and the Fourier transform, short-time Fourier transform (including Gabor transform), wavelet transform, and chirplet transform are formulated in one framework of Dopplerlet transform accordingly.It is proved that the matching pursuits based on Dopplerlet basis functions are convergent, and that the energy of residual signals yielded in the decomposition process decays exponentially. Simulation results show that the matching pursuits with Dopplerlet basis functions can characterize compactly a nonstationary signal.
文摘The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system (GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time-frequency filtering technique.
文摘This paper presents an evaluation of time-frequency methods for the analysis of seismic signals.Background of the present work is to describe,how the frequency content of the signal is changing in time.The theoretical basis of short time Fourier transform,Gabor transform,wavelet transform,S-transform,Wigner distribution,Wigner-Ville distribution,Pseudo Wigner-Ville distribution,Smoothed Pseudo Wigner-Ville distribution,Choi-William distribution,Born-Jordan Distribution and cone shape distribution are presented.The strengths and weaknesses of each technique are verified by applying them to a particular synthetic seismic signal and recorded real time earthquake data.
基金Supported by the National Natural Science Foundation of China(No.81222021,No.61172008,No.81171423)National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2012BAI34B02)Program for New Century Excellent Talents in University of the Ministry of Education of China(No.NCET-10-0618)
文摘In order to investigate the characteristics of sensorimotor cortex during motor execution(ME), voluntary, stimulated and imaginary finger flexions were performed by ten volunteer subjects. Electroencephalogram(EEG) data were recorded according to the modified 10-20 International EEG System. The patterns were compared by the analysis of the motion-evoked EEG signals focusing on the contralateral(C3) and ipsilateral(C4) channels for hemispheric differences. The EEG energy distributions at alpha(8—13 Hz), beta(14—30 Hz) and gamma(30—50 Hz) bands were computed by wavelet transform(WT) and compared by the analysis of variance(ANOVA). The timefrequency(TF) analysis indicated that there existed a contralateral dominance of alpha post-movement event-related synchronization(ERS) pattern during the voluntary task, and that the energy of alpha band increased in the ipsilateral area during the stimulated(median nerve of wrist) task. Besides, the contralateral alpha and beta event-related desynchronization(ERD) patterns were observed in both stimulated and imaginary tasks. Another significant difference was found in the mean power values of gamma band(p<0.01)between the imaginary and other tasks. The results show that significant hemispheric differences such as alpha and beta band EEG energy distributions and TF changing phenomena(ERS/ERD) were found between C3 and C4 areas during all of the three patterns. The largest energy distribution was always at the alpha band for each task.
文摘Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, the segmentation of non-stationary or multi-component signals is conducted in time domain. In this paper, we explore the advantages of applying joint time-frequency (TF) distribution of the multi-component signals to identify their segments. The Spectrogram that is known as Short-Time Fourier Transform (STFT) will be used for obtaining the time-frequency kernel. Time marginal of the computed kernel is optimally used for the signal segmentation. In order to obtain the desirable segmentation, it requires first to improve time marginal of the kernel by using two-dimensional Wiener mask filter applied to the TF kernel to mitigate and suppress non-stationary noise or interference. Additionally, a proper choice of the sliding window and its overlaying has enhanced our scheme to capture the discontinuities corresponding to the boundaries of the candidate segments.
基金supported by the National Key Research and Development Program of China(No.2022YFB4300902)。
文摘Radio Frequency Fingerprint Identification(RFFI)technology provides a means of identifying spurious signals.This technology has been widely used in solving Automatic Dependent Surveillance–Broadcast(ADS-B)signal spoofing problems.However,the effects of circuit changes over time often lead to a decline in identification accuracy within open-time set.This paper proposes an ADS-B transmitter identification method to solve the degradation of identification accuracy.First,a real-time data processing system is established to receive and store ADS-B signals to meet the conditions for open-time set.The system possesses the following functionalities:data collection,data parsing,feature extraction,and identity recognition.Subsequently,a two-dimensional TimeFrequency Feature Diagram(TFFD)is proposed as a signal pre-processing method.The TFFD is constructed from the received ADS-B signal and the reconstructed signal for input to the recognition model.Finally,incorporating a frequency offset layer into the Swin Transformer architecture,a novel recognition network framework is proposed.This integration can enhance the network recognition accuracy and robustness by tailoring to the specific characteristics of ADSB signals.Experimental results indicate that the proposed recognition architecture achieves recognition accuracy of 95.86%in closed-time set and 84.33%in open-time set,surpassing other algorithms.
基金supported by Scientific Research Fund of Sichuan Provincial Education Departmentthe National Nature Science Foundation of China (No. 40873035)
文摘The S transform, which is a time-frequency representation known for its local spectral phase properties in signal processing, uniquely combines elements of wavelet transforms and the short-time Fourier transform (STFT). The fractional Fourier transform is a tool for non-stationary signal analysis. In this paper, we define the concept of the fractional S transform (FRST) of a signal, based on the idea of the fractional Fourier transform (FRFT) and S transform (ST), extend the S transform to the time-fractional frequency domain from the time- frequency domain to obtain the inverse transform, and study the FRST mathematical properties. The FRST, which has the advantages of FRFT and ST, can enhance the ST flexibility to process signals. Compared to the S transform, the FRST can effectively improve the signal time- frequency resolution capacity. Simulation results show that the proposed method is effective.
基金supported by project ZR2022MF330 supported by Shandong Provincial Natural Science Foundationthe National Natural Science Foundation of China under Grant No.61701286.
文摘Synthetic speech detection is an essential task in the field of voice security,aimed at identifying deceptive voice attacks generated by text-to-speech(TTS)systems or voice conversion(VC)systems.In this paper,we propose a synthetic speech detection model called TFTransformer,which integrates both local and global features to enhance detection capabilities by effectively modeling local and global dependencies.Structurally,the model is divided into two main components:a front-end and a back-end.The front-end of the model uses a combination of SincLayer and two-dimensional(2D)convolution to extract high-level feature maps(HFM)containing local dependency of the input speech signals.The back-end uses time-frequency Transformer module to process these feature maps and further capture global dependency.Furthermore,we propose TFTransformer-SE,which incorporates a channel attention mechanism within the 2D convolutional blocks.This enhancement aims to more effectively capture local dependencies,thereby improving the model’s performance.The experiments were conducted on the ASVspoof 2021 LA dataset,and the results showed that the model achieved an equal error rate(EER)of 3.37%without data augmentation.Additionally,we evaluated the model using the ASVspoof 2019 LA dataset,achieving an EER of 0.84%,also without data augmentation.This demonstrates that combining local and global dependencies in the time-frequency domain can significantly improve detection accuracy.
文摘The Space-Air-Ground-Sea Integrated Networks(SAGSIN)significantly enhance global communication by merging satellite,aviation,terrestrial,and marine networks.Crucial to SAGSIN’s functionality and security is spectrum monitoring using deep learning-based Automatic Modulation Classification(AMC),essential for processing and classifying complex modulation signals.However,these AMC models are susceptible to adversarial attacks.Thus,we introduce the Deep Time-Frequency Denoising Transformation(DTFDT)defense method to mitigate the impact of adversarial attacks.The DTFDT method is comprised of a deep denoising module and a transformation module.The denoising module maps signals into the time-frequency domain,amplifying the differences between benign and adversarial examples,aiding in the elimination of adversarial perturbations.Concurrently,the transformation module develops a learnable network,generating example-specific transformation matrices suited for signal data,which diminishes the effectiveness of attacks.Extensive evaluations on two datasets,RML2016.10a and DMRadio09.real,demonstrate the superior defense capabilities of DTFDT against various attacks.