Although the image dehazing problem has received considerable attention over recent years,the existing models often prioritise performance at the expense of complexity,making them unsuitable for real-world application...Although the image dehazing problem has received considerable attention over recent years,the existing models often prioritise performance at the expense of complexity,making them unsuitable for real-world applications,which require algorithms to be deployed on resource constrained-devices.To address this challenge,we propose WaveLiteDehaze-Network(WLD-Net),an end-to-end dehazing model that delivers performance comparable to complex models while operating in real time and using significantly fewer parameters.This approach capitalises on the insight that haze predominantly affects low-frequency infor-mation.By exclusively processing the image in the frequency domain using discrete wavelet transform(DWT),we segregate the image into high and low frequencies and process them separately.This allows us to preserve high-frequency details and recover low-frequency components affected by haze,distinguishing our method from existing approaches that use spatial domain processing as the backbone,with DWT serving as an auxiliary component.DWT is applied at multiple levels for better in-formation retention while also accelerating computation by downsampling feature maps.Subsequently,a learning-based fusion mechanism reintegrates the processed frequencies to reconstruct the dehazed image.Experiments show that WLD-Net out-performs other low-parameter models on real-world hazy images and rivals much larger models,achieving the highest PSNR and SSIM scores on the O-Haze dataset.Qualitatively,the proposed method demonstrates its effectiveness in handling a diverse range of haze types,delivering visually pleasing results and robust performance,while also generalising well across different scenarios.With only 0.385 million parameters(more than 100 times smaller than comparable dehazing methods),WLD-Net processes 1024×1024 images in just 0.045 s,highlighting its applicability across various real-world scenarios.The code is available at https://github.com/AliMurtaza29/WLD-Net.展开更多
In our previous work, a novel algorithm to perform robust pose estimation was presented. The pose was estimated using points on the object to regions on image correspondence. The laboratory experiments conducted in th...In our previous work, a novel algorithm to perform robust pose estimation was presented. The pose was estimated using points on the object to regions on image correspondence. The laboratory experiments conducted in the previous work showed that the accuracy of the estimated pose was over 99% for position and 84% for orientation estimations respectively. However, for larger objects, the algorithm requires a high number of points to achieve the same accuracy. The requirement of higher number of points makes the algorithm, computationally intensive resulting in the algorithm infeasible for real-time computer vision applications. In this paper, the algorithm is parallelized to run on NVIDIA GPUs. The results indicate that even for objects having more than 2000 points, the algorithm can estimate the pose in real time for each frame of high-resolution videos.展开更多
基金Japan International Cooperation Agency(JICA)via Malaysia-Japan Linkage Research Grant 2024.
文摘Although the image dehazing problem has received considerable attention over recent years,the existing models often prioritise performance at the expense of complexity,making them unsuitable for real-world applications,which require algorithms to be deployed on resource constrained-devices.To address this challenge,we propose WaveLiteDehaze-Network(WLD-Net),an end-to-end dehazing model that delivers performance comparable to complex models while operating in real time and using significantly fewer parameters.This approach capitalises on the insight that haze predominantly affects low-frequency infor-mation.By exclusively processing the image in the frequency domain using discrete wavelet transform(DWT),we segregate the image into high and low frequencies and process them separately.This allows us to preserve high-frequency details and recover low-frequency components affected by haze,distinguishing our method from existing approaches that use spatial domain processing as the backbone,with DWT serving as an auxiliary component.DWT is applied at multiple levels for better in-formation retention while also accelerating computation by downsampling feature maps.Subsequently,a learning-based fusion mechanism reintegrates the processed frequencies to reconstruct the dehazed image.Experiments show that WLD-Net out-performs other low-parameter models on real-world hazy images and rivals much larger models,achieving the highest PSNR and SSIM scores on the O-Haze dataset.Qualitatively,the proposed method demonstrates its effectiveness in handling a diverse range of haze types,delivering visually pleasing results and robust performance,while also generalising well across different scenarios.With only 0.385 million parameters(more than 100 times smaller than comparable dehazing methods),WLD-Net processes 1024×1024 images in just 0.045 s,highlighting its applicability across various real-world scenarios.The code is available at https://github.com/AliMurtaza29/WLD-Net.
文摘In our previous work, a novel algorithm to perform robust pose estimation was presented. The pose was estimated using points on the object to regions on image correspondence. The laboratory experiments conducted in the previous work showed that the accuracy of the estimated pose was over 99% for position and 84% for orientation estimations respectively. However, for larger objects, the algorithm requires a high number of points to achieve the same accuracy. The requirement of higher number of points makes the algorithm, computationally intensive resulting in the algorithm infeasible for real-time computer vision applications. In this paper, the algorithm is parallelized to run on NVIDIA GPUs. The results indicate that even for objects having more than 2000 points, the algorithm can estimate the pose in real time for each frame of high-resolution videos.