This paper focuses on the performance analysis of flexible reactive systems. The performance analysis consists of two phases: first system modeling, second performance evalua-tion. The paper models the flexible react...This paper focuses on the performance analysis of flexible reactive systems. The performance analysis consists of two phases: first system modeling, second performance evalua-tion. The paper models the flexible reactive system by the stochas-tic statecharts method, and uses the simulation method to evalu-ate the performance. To make use of the feature of event-triggered state transitions in the statecharts, a new method of simulation is proposed based on the techniques of the discrete-event system simulation. The new method solves the problem of computer imple-mentation of stochastic events, probabilistic transition, concurrent states, paral el actions, and broadcast communication mechanism in the stochastic statecharts. An example of a flexible manufactur-ing system is presented. The simulation result of the example is consistent with the analytical result, which shows the feasibility of the proposed new simulation method.展开更多
The reactive materials filled structure(RMFS)is a structural penetrator that replaces high explosive(HE)with reactive materials,presenting a novel self-distributed initiation,multiple deflagrations behavior during pen...The reactive materials filled structure(RMFS)is a structural penetrator that replaces high explosive(HE)with reactive materials,presenting a novel self-distributed initiation,multiple deflagrations behavior during penetrating multi-layered plates,and generating a multipeak overpressure behind the plates.Here analytical models of RMFS self-distributed energy release and equivalent deflagration are developed.The multipeak overpressure formation model based on the single deflagration overpressure expression was promoted.The impact tests of RMFS on multi-layered plates at 584 m/s,616 m/s,and819 m/s were performed to validate the analytical model.Further,the influence of a single overpressure peak and time intervals versus impact velocity is discussed.The analysis results indicate that the deflagration happened within 20.68 mm behind the plate,the initial impact velocity and plate thickness are the crucial factors that dominate the self-distributed multipeak overpressure effect.Three formation patterns of multipeak overpressure are proposed.展开更多
The reactive diffusion in Mg-Gd binary system was studied at 773 K by optical microscopy(OM), scanning electron microscopy(SEM) and electron probe micro-analysis(EPMA). After annealing at 773 K for 12-48 h, four...The reactive diffusion in Mg-Gd binary system was studied at 773 K by optical microscopy(OM), scanning electron microscopy(SEM) and electron probe micro-analysis(EPMA). After annealing at 773 K for 12-48 h, four different intermetallic layers, Mg5 Gd, Mg3 Gd, Mg2 Gd and Mg Gd, form at the Mg/Gd interfaces in the diffusion couples. The thicknesses of intermetallic layers δi(i stands for the phases of Mg5 Gd, Mg3 Gd, Mg2 Gd and Mg Gd, respectively) are proportional to the square root of annealing time t1/2, which indicates that the growth behavior of the intermetallics is controlled by the diffusion rate. The ratio of thickness of each intermetallic layer to the total thickness is constant with increasing the annealing time, which means that the growth behavior is constant at a certain annealing temperature. The diffusion coefficient of Gd in different intermetallics was calculated by Matano method.展开更多
Rice is one of the main staple food crops in the world, but it may suffer serious water stress during growth period. Water stress during grain filling results in decreased grain yeild, but its mechanism generating and...Rice is one of the main staple food crops in the world, but it may suffer serious water stress during growth period. Water stress during grain filling results in decreased grain yeild, but its mechanism generating and scavenging the active oxygen is unclear under continuance of the water stress. The experiment was carried out in growth chamber to investigate the effects of water stress on the production of superoxide free radical (O2), hydrogen peroxide (H202), malondialdehyde (MDA), reduced glutathione (GSH), ascorbic acid (AsA), and antioxidative enzyme activities in three rice hybrids with differing drought resistant under both normal and drought conditions during grain-filling stage. The results showed that water stress aggravated the membrane lipid peroxidation in rice leaves, which was more severe in less drought resistant hybrids than that in more tolerant ones. Also O2' and H2O2 accumulated more rapidly in less drought resistant hybrids than that in more tolerant ones. During water stress, decreases of GSH, AsA, chlorophyll, and relative water contents in more drought resistant hybrids were obvious less than those in less tolerant ones. Activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in/eaves increased obviously in 0-14 d after heading and subsequently decreased rapidly, and those in more drought resistant hybrids were more than those in less tolerant ones. The results showed that changes of O2, H2O2, MDA, GSH, and AsA contents and antioxidative enzyme activities correlated significantly to drought resistance of rice hybrids, and more drought resistant hybrids possessed high ant oxidation capacity.展开更多
In this study, monoglycidyl silyl etherated eugenol(GSE) was synthesized as reactive epoxy diluent, and the chemical structure of GSE, intermediates, and products were characterized by Fourier transform infrared spect...In this study, monoglycidyl silyl etherated eugenol(GSE) was synthesized as reactive epoxy diluent, and the chemical structure of GSE, intermediates, and products were characterized by Fourier transform infrared spectroscopy(FTIR) and nuclear magnetic resonance(~1 H-NMR). GSE existed as a potential bio-based reactive diluent for petroleum-based epoxy resin. The curing kinetics of EP/HHPA/GSE system was studied by non-isothermal DSC method. The kinetics parameters were calculated by using the Kissinger model, Crane model, Ozawa model, and β-T(temperature-heating rate) extrapolation, respectively. In addition, the effects of GSE on the thermo-mechanical properties and thermal stability of EP/HHPA/GSE systems were studied, indicating that GSE can effectively improve the toughness and thermal decomposition temperature of the epoxy system.展开更多
Composition estimation plays very important role in plant operation and control.Extended Kalman filter(EKF) is one of the most common estimators,which has been used in composition estimation of reactive batch distilla...Composition estimation plays very important role in plant operation and control.Extended Kalman filter(EKF) is one of the most common estimators,which has been used in composition estimation of reactive batch distillation,but its performance is heavily dependent on the thermodynamic modeling of vapor-liquid equilibrium,which is difficult to initialize and tune.In this paper an inferential state estimation scheme based on adaptive neuro-fuzzy inference system(ANFIS) ,which is a model base estimator,is employed for composition estimation by using temperature measurements in multicomponent reactive batch distillation.The state estimator is supported by data from a complete dynamic model that includes component and energy balance equations accompanied with thermodynamic relations and reaction kinetics.The mathematical model is verified by pilot plant data.The simulation results show that the ANFIS estimator provides reliable and accurate estimation for component concentrations in reactive batch distillation.The estimated states form a basis for improving the performance of reactive batch distillation either through decision making of an operator or through an automatic closed-loop control scheme.展开更多
The "neat" operation of the two-reactant reactive distillation column has Oetter steady-state economics, while It presents a challenge for design, optimization, and control of the process. Based on the optimal econo...The "neat" operation of the two-reactant reactive distillation column has Oetter steady-state economics, while It presents a challenge for design, optimization, and control of the process. Based on the optimal economic design, the dual-composition control structure and dual-temperature control structure are designed respectively for the benzene chlorine consecutive reactive distillation process. The effectiveness and robustness are analyzed comparably for the disturbance resistance in terms of changes of production rate and feed composition. Results show that dual-temperature control with propose selection of tray temperatures and the optimal profile of the set point can provide better transient process performance than the composition control structure.展开更多
The selective cationic polymerization of isobutylene (IB) initiated by a BF3-cyclohexanol (CL) complex was carried out from the mixed Ca fraction feed containing the 4C saturated and unsaturated hydrocarbons at -2...The selective cationic polymerization of isobutylene (IB) initiated by a BF3-cyclohexanol (CL) complex was carried out from the mixed Ca fraction feed containing the 4C saturated and unsaturated hydrocarbons at -20℃. The effects of CL concentration, BF3 concentration, solvent for preparing BF3·CL complex and polymerization time on the chemical structure of end groups, number-average molecular weight (Mn) and molecular weight distribution (MWD, Mw/Mn) of the resulting polymers were investigated. The experimental results indicate that the BF3·CL complex initiating system exhibited an extremely high selectivity toward the cationic polymerization of IB in the mixed C4 fraction feed and low molecular weight (Mn = 900-3600) polyisobutylenes (PIBs) with large proportion of exo-double bond end groups were obtained. The exo-double bond content in PIB chain ends increased by increasing CL concentration or by decreasing solvent polarity in initiating system, BF3 concentration and polymerization time. The M, and MWD of the resulting PIBs were dependent on the concentrations of CL and BF3. Highly reactive PIBs with around 90 mol% of exo-double bonds were successfully synthesized by the selective polymerization of IB from the mixed Ca fraction feed, providing a potentially practical process for its simplicity and low costs.展开更多
Consideration is given here to colour removal, carried out using immobilised biological cells, Shewanella strain J18 143. In order to provide greater control of an overall colour removal process and to give a basis fo...Consideration is given here to colour removal, carried out using immobilised biological cells, Shewanella strain J18 143. In order to provide greater control of an overall colour removal process and to give a basis for the effective recovery of the cell culture species, cell immobilisation has been established on chemically modified cellulose. The modification was achieved by chemically inducing the graft copolymerisation of methacrylic acid onto cotton fabric. The immobilised cells were able to decolorise the dye. The immobilisation methods, physical adsorption, “growing-in” and chemical coupling, were compared. Each of the methods was effective to some extent. However, the latter two immobilisation methods provided the greater effect in decoloration. Each of these immobilised systems is relatively simple to achieve, whether by adsorption, physical interlocking or covalent coupling. The graft copolymer is able to offer versatility in use. The decoloration was shown to be rapid under relatively simple processing conditions. Thus, compared with the established controls, complete decoloration of solutions of Remazol Black B was observed. The potential use of the graft copolymer substrate as support for a biochemical agent was confirmed.展开更多
An ab initio analytical potential energy surface called BW3 for the CIH2 reactive system is presented. The fit of this surface is based on about 1 200 ab initio energy points, computed with multi-reference configurati...An ab initio analytical potential energy surface called BW3 for the CIH2 reactive system is presented. The fit of this surface is based on about 1 200 ab initio energy points, computed with multi-reference configuration interaction(MRCI) and scaling external correlation (SEC) method and a very large basis set. The precision in the fit is very high. The BW3 surface could reproduce correctly the dissociation energy of H2 and HCI, and the endothermicity of the Cl + H2 abstraction reaction. For the Cl + H2 abstraction reaction, the saddle point of BW3 lies in collinear geometries, and the barrier height is 32.84 kJ/mol; for the H + CIH exchange reaction, the barrier of BW3 is also linear, with a height of 77.40 kJ/mol.展开更多
The development of pollution-free dyeing technology, including anhydrous dyeing and non-aqueous dyeing technologies, has always been an important way and research hot in energy conservation and emission reduction. Des...The development of pollution-free dyeing technology, including anhydrous dyeing and non-aqueous dyeing technologies, has always been an important way and research hot in energy conservation and emission reduction. Designing new structural dye molecules is the key to water-saving dyeing processes.Herein, three reactive dyes were designed and synthesized, which contained large planar multiconjugated systems and multi-reactive groups. The designed reactive dyes are expected to have high affinity and high fixations in non-aqueous or small bath dyeing processes. The reactive dyes were applied in the decamethylcyclopentasiloxane(DMCS) reverse micelle dyeing for cotton fabric. High exhaustion rate of 99.35%, 98.10% and 98.80%, and fixation rate of 95.15%, 96.34% and 94.40% for three dyes, R1,R2 and R3, could be respectively obtained. The dyes can be fully utilized and had excellent dyeing performance, fastness and levelling properties under the revere micelle dyeing. The cotton fabric is like an oil-water separator in the dyeing process, where the dye micelles rapidly absorb and permeate into the cotton fibers. DMCS circulates around the fabric to transfer mass and energy. After dyeing, the solvent can be separated quickly and reused. The new reactive dyes containing large planar and multi-conjugated systems have potential application in green and sustainable dyeing technology with less wastewater and higher utilization.展开更多
Reactive oxygen species(ROS)are essential in various pathological and physiological processes.Developing nanosystems that generate ROS in a controlled manner is of great interest for nanomedicine.DNA nanotechnology of...Reactive oxygen species(ROS)are essential in various pathological and physiological processes.Developing nanosystems that generate ROS in a controlled manner is of great interest for nanomedicine.DNA nanotechnology offers a promising approach to constructing programmable ROS-generating platforms.By incorporating photosensitizers or metal ions,DNA nanostructures can be designed to produce ROS in a spatially and temporally desired fashion.DNA-based ROS-generating nanosystems hold great potential in intracellular homeostasis regulation,drug release,and cancer therapy.This review summarizes recent advances in developing DNA-based ROS-generating nanosystems,highlights their emerging biomedical applications,and discusses the opportunities and challenges for further applications.DNA nanotechnology provides a versatile toolkit to construct biocompatible ROS-generating platforms for next-generation nanomedicines.展开更多
Anthraquinone dyes are a class of typical carcinogenic and hard-biodegradable organic pollutants.This study aimed to enhance the decolorization of anthraquinone dye by rationally designing an expected immobilized syst...Anthraquinone dyes are a class of typical carcinogenic and hard-biodegradable organic pollutants.This study aimed to enhance the decolorization of anthraquinone dye by rationally designing an expected immobilized system.Reactive blue 4(RB4) was used as a substrate model and a previous isolated dyedegrading strain Aspergillus flavus A5pl was purposefully immobilized.Considering the effects of cell attachment and mass transfer,the polyurethane foam(PUF) with open pore structure was selected as the immobilization carrier.Results showed that the RB4 decolorization efficiency was significant enhanced after immobilization.Compared to the free mycelium system,the decolorization time of200 mg·L^(-1)RB4 was shortened from 48 h to 28 h by the PUF-immobilized cell system.Moreover,the PUF-immobilized system could tolerate RB4 up to 2000 mg-L^(-1).In the packed bed bioreactor(PBBR),an average decolorization efficiency of 93.3% could be maintained by the PUF-immobilized system for26 days.The decolorization process of RB4 was well described by the logistic equation and the degradation pathway was discussed.It was found that the higher specific growth rate of the PUF-immobilized cells was one of reasons for the enhanced decolorization.The good performance of the PUFimmobilized cell system would make it have potential application value for RB4 bioremediation.展开更多
In this paper, a strategy for the reactive power compensation and harmonic suppression of the power supply system in HT-7U superconductive Tokamak is proposed. The optimized approach is given in the parameters design...In this paper, a strategy for the reactive power compensation and harmonic suppression of the power supply system in HT-7U superconductive Tokamak is proposed. The optimized approach is given in the parameters design for passive filter. Also a controlling method with fast response time and good accuracy is put forward for the compensator, which is more suitable for the dynamic load.展开更多
Considering the soft constraint characteristics of voltage constraints, the Interior-Point Filter Algorithm is applied to solve the formulation of fuzzy model for the power system reactive power optimization with a la...Considering the soft constraint characteristics of voltage constraints, the Interior-Point Filter Algorithm is applied to solve the formulation of fuzzy model for the power system reactive power optimization with a large number of equality and inequality constraints. Based on the primal-dual interior-point algorithm, the algorithm maintains an updating “filter” at each iteration in order to decide whether to admit correction of iteration point which can avoid effectively oscillation due to the conflict between the decrease of objective function and the satisfaction of constraints and ensure the global convergence. Moreover, the “filter” improves computational efficiency because it filters the unnecessary iteration points. The calculation results of a practical power system indicate that the algorithm can effectively deal with the large number of inequality constraints of the fuzzy model of reactive power optimization and satisfy the requirement of online calculation which realizes to decrease the network loss and maintain specified margins of voltage.展开更多
Astrocytes are the most abundant type of glial cell in the central nervous system.Upon injury and inflammation,astrocytes become reactive and undergo morphological and functional changes.Depending on their phenotypic ...Astrocytes are the most abundant type of glial cell in the central nervous system.Upon injury and inflammation,astrocytes become reactive and undergo morphological and functional changes.Depending on their phenotypic classification as A1 or A2,reactive astrocytes contribute to both neurotoxic and neuroprotective responses,respectively.However,this binary classification does not fully capture the diversity of astrocyte responses observed across different diseases and injuries.Transcriptomic analysis has revealed that reactive astrocytes have a complex landscape of gene expression profiles,which emphasizes the heterogeneous nature of their reactivity.Astrocytes actively participate in regulating central nervous system inflammation by interacting with microglia and other cell types,releasing cytokines,and influencing the immune response.The phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway is a central player in astrocyte reactivity and impacts various aspects of astrocyte behavior,as evidenced by in silico,in vitro,and in vivo results.In astrocytes,inflammatory cues trigger a cascade of molecular events,where nuclear factor-κB serves as a central mediator of the pro-inflammatory responses.Here,we review the heterogeneity of reactive astrocytes and the molecular mechanisms underlying their activation.We highlight the involvement of various signaling pathways that regulate astrocyte reactivity,including the PI3K/AKT/mammalian target of rapamycin(mTOR),αvβ3 integrin/PI3K/AKT/connexin 43,and Notch/PI3K/AKT pathways.While targeting the inactivation of the PI3K/AKT cellular signaling pathway to control reactive astrocytes and prevent central nervous system damage,evidence suggests that activating this pathway could also yield beneficial outcomes.This dual function of the PI3K/AKT pathway underscores its complexity in astrocyte reactivity and brain function modulation.The review emphasizes the importance of employing astrocyte-exclusive models to understand their functions accurately and these models are essential for clarifying astrocyte behavior.The findings should then be validated using in vivo models to ensure real-life relevance.The review also highlights the significance of PI3K/AKT pathway modulation in preventing central nervous system damage,although further studies are required to fully comprehend its role due to varying factors such as different cell types,astrocyte responses to inflammation,and disease contexts.Specific strategies are clearly necessary to address these variables effectively.展开更多
In this work,the hydrogen sorption properties of the LiBH4-Mg2NiH4 composite system with the molar ratio 2:2.5 were thoroughly investigated as a function of the applied temperature and hydrogen pressure.To the best of...In this work,the hydrogen sorption properties of the LiBH4-Mg2NiH4 composite system with the molar ratio 2:2.5 were thoroughly investigated as a function of the applied temperature and hydrogen pressure.To the best of our knowledge,it has been possible to prove experimentally the mutual destabilization between LiBH4 and Mg2NiH4.A detailed account of the kinetic and thermodynamic features of the dehydrogenation process is reported here.展开更多
A new gas preparation system(GasPS-RCS)is proposed to solve two tasks:(A)to heat helium gas for tank pressurization;(B)to prepare gas for the Launch Vehicle(LV)Reactive Control System(RCS)at the LV orientation and sta...A new gas preparation system(GasPS-RCS)is proposed to solve two tasks:(A)to heat helium gas for tank pressurization;(B)to prepare gas for the Launch Vehicle(LV)Reactive Control System(RCS)at the LV orientation and stabilization sections of the LV on passive parts of the flight trajectory,to provide conditions for launching the Liquid Rocket Engine(LRE).The system includes a gas generator based on hydrogen peroxide,a separator for water separation,heat exchangers independent of the LRE,and gas-jet nozzles.The proposed new system allowed to reduce the length of pressurizing gas lines and reduce the increased helium gas consumption during the heat exchanger warm-up interval of the LRE during its launch.A special advantage of the proposed system is the possibility of ground testing of heat exchangers without an operating LRE.A mathematical model based on the first law of thermodynamics was used to perform a comparative analysis of GasPS-RCS with traditional pressurization and RCS systems.To validate the mathematical model,the experimental studies of helium pressurizing of a liquid nitrogen tank were conducted.The results show that the deviation of experimental and calculated values for pressure is 1.1%and for temperature up to 2%.According to the results of comparative analysis,the GasPS-RCS is 259 kg lighter for the first stage and 80 kg lighter for the second stage of the LV.展开更多
Tis paper presents a genetic algorithm for reactive power optimization of power system in a more effective and rapid manner, and verifies the results with an IEEE 30-bus test system.
Hydrogenated Cr-incorporated carbon films (Cr/a-C:H) are deposited successfully by using a dc reactive mag- netron sputtering system. The structure and mechanical properties of the as-deposited Cr/a-C:H films are ...Hydrogenated Cr-incorporated carbon films (Cr/a-C:H) are deposited successfully by using a dc reactive mag- netron sputtering system. The structure and mechanical properties of the as-deposited Cr/a-C:H films are characterized systematically by field-emission scanning electron microscope, x-ray diffraction, Raman spectra, nanoindentation and scratch. It is shown that optimal Cr metal forms nanocrystalline carbide to improve the hardness, toughness and adhesion strength in the amorphous carbon matrix, which possesses relatively higher nano-hardness of 15. 7 CPa, elastic modulus of 126.8 GPa and best adhesion strength with critical load (Lc) of 36 N for the Cr/a-C:H film deposited at CH4 flow rate of 20sccm. The friction and wear behaviors of as-deposited Cr/a-C:H films are evaluated under both the ambient air and deionized water conditions. The results reveal that it can achieve superior low friction and anti-wear performance for the Cr/a-C:H film deposited at CH4 flow rate of 20sccm under the ambient air condition, and the friction coetllcient and wear rate tested in deionized water condition are relatively lower compared with those tested under the ambient air condition for each film. Superior combination of mechanical and tribological properties for the Cr/a-C:H film should be a good candidate for engineering applications.展开更多
基金supported by the National Natural Science Foundation of China(61171120)
文摘This paper focuses on the performance analysis of flexible reactive systems. The performance analysis consists of two phases: first system modeling, second performance evalua-tion. The paper models the flexible reactive system by the stochas-tic statecharts method, and uses the simulation method to evalu-ate the performance. To make use of the feature of event-triggered state transitions in the statecharts, a new method of simulation is proposed based on the techniques of the discrete-event system simulation. The new method solves the problem of computer imple-mentation of stochastic events, probabilistic transition, concurrent states, paral el actions, and broadcast communication mechanism in the stochastic statecharts. An example of a flexible manufactur-ing system is presented. The simulation result of the example is consistent with the analytical result, which shows the feasibility of the proposed new simulation method.
基金the support received from the National Natural Science Foundation of China(Grant No.12302460)the State Key Laboratory of Explosion Science and Safety Protection(Grant No.YBKT24-02)。
文摘The reactive materials filled structure(RMFS)is a structural penetrator that replaces high explosive(HE)with reactive materials,presenting a novel self-distributed initiation,multiple deflagrations behavior during penetrating multi-layered plates,and generating a multipeak overpressure behind the plates.Here analytical models of RMFS self-distributed energy release and equivalent deflagration are developed.The multipeak overpressure formation model based on the single deflagration overpressure expression was promoted.The impact tests of RMFS on multi-layered plates at 584 m/s,616 m/s,and819 m/s were performed to validate the analytical model.Further,the influence of a single overpressure peak and time intervals versus impact velocity is discussed.The analysis results indicate that the deflagration happened within 20.68 mm behind the plate,the initial impact velocity and plate thickness are the crucial factors that dominate the self-distributed multipeak overpressure effect.Three formation patterns of multipeak overpressure are proposed.
基金Projects(2013CB6322022013CB632205)supported by the National Basic Research Program of China
文摘The reactive diffusion in Mg-Gd binary system was studied at 773 K by optical microscopy(OM), scanning electron microscopy(SEM) and electron probe micro-analysis(EPMA). After annealing at 773 K for 12-48 h, four different intermetallic layers, Mg5 Gd, Mg3 Gd, Mg2 Gd and Mg Gd, form at the Mg/Gd interfaces in the diffusion couples. The thicknesses of intermetallic layers δi(i stands for the phases of Mg5 Gd, Mg3 Gd, Mg2 Gd and Mg Gd, respectively) are proportional to the square root of annealing time t1/2, which indicates that the growth behavior of the intermetallics is controlled by the diffusion rate. The ratio of thickness of each intermetallic layer to the total thickness is constant with increasing the annealing time, which means that the growth behavior is constant at a certain annealing temperature. The diffusion coefficient of Gd in different intermetallics was calculated by Matano method.
基金supported by the National 863 Program of China (2002AA2Z4011)the Foundation for Personnel of Henan University of Science and Technology China.
文摘Rice is one of the main staple food crops in the world, but it may suffer serious water stress during growth period. Water stress during grain filling results in decreased grain yeild, but its mechanism generating and scavenging the active oxygen is unclear under continuance of the water stress. The experiment was carried out in growth chamber to investigate the effects of water stress on the production of superoxide free radical (O2), hydrogen peroxide (H202), malondialdehyde (MDA), reduced glutathione (GSH), ascorbic acid (AsA), and antioxidative enzyme activities in three rice hybrids with differing drought resistant under both normal and drought conditions during grain-filling stage. The results showed that water stress aggravated the membrane lipid peroxidation in rice leaves, which was more severe in less drought resistant hybrids than that in more tolerant ones. Also O2' and H2O2 accumulated more rapidly in less drought resistant hybrids than that in more tolerant ones. During water stress, decreases of GSH, AsA, chlorophyll, and relative water contents in more drought resistant hybrids were obvious less than those in less tolerant ones. Activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in/eaves increased obviously in 0-14 d after heading and subsequently decreased rapidly, and those in more drought resistant hybrids were more than those in less tolerant ones. The results showed that changes of O2, H2O2, MDA, GSH, and AsA contents and antioxidative enzyme activities correlated significantly to drought resistance of rice hybrids, and more drought resistant hybrids possessed high ant oxidation capacity.
基金the financial support provided by "One Hundred Talented People" of the Chinese Academy of Sciences–China (No. Y60707WR04)Natural Science Foundation of Zhejiang Province (No. Y16B040008)
文摘In this study, monoglycidyl silyl etherated eugenol(GSE) was synthesized as reactive epoxy diluent, and the chemical structure of GSE, intermediates, and products were characterized by Fourier transform infrared spectroscopy(FTIR) and nuclear magnetic resonance(~1 H-NMR). GSE existed as a potential bio-based reactive diluent for petroleum-based epoxy resin. The curing kinetics of EP/HHPA/GSE system was studied by non-isothermal DSC method. The kinetics parameters were calculated by using the Kissinger model, Crane model, Ozawa model, and β-T(temperature-heating rate) extrapolation, respectively. In addition, the effects of GSE on the thermo-mechanical properties and thermal stability of EP/HHPA/GSE systems were studied, indicating that GSE can effectively improve the toughness and thermal decomposition temperature of the epoxy system.
文摘Composition estimation plays very important role in plant operation and control.Extended Kalman filter(EKF) is one of the most common estimators,which has been used in composition estimation of reactive batch distillation,but its performance is heavily dependent on the thermodynamic modeling of vapor-liquid equilibrium,which is difficult to initialize and tune.In this paper an inferential state estimation scheme based on adaptive neuro-fuzzy inference system(ANFIS) ,which is a model base estimator,is employed for composition estimation by using temperature measurements in multicomponent reactive batch distillation.The state estimator is supported by data from a complete dynamic model that includes component and energy balance equations accompanied with thermodynamic relations and reaction kinetics.The mathematical model is verified by pilot plant data.The simulation results show that the ANFIS estimator provides reliable and accurate estimation for component concentrations in reactive batch distillation.The estimated states form a basis for improving the performance of reactive batch distillation either through decision making of an operator or through an automatic closed-loop control scheme.
基金Supported by the National Natural Science Foundation of China(61203020,21276126)Jiangsu Province Natural Science Foundation(BK2011795)National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2011BAE18B01)
文摘The "neat" operation of the two-reactant reactive distillation column has Oetter steady-state economics, while It presents a challenge for design, optimization, and control of the process. Based on the optimal economic design, the dual-composition control structure and dual-temperature control structure are designed respectively for the benzene chlorine consecutive reactive distillation process. The effectiveness and robustness are analyzed comparably for the disturbance resistance in terms of changes of production rate and feed composition. Results show that dual-temperature control with propose selection of tray temperatures and the optimal profile of the set point can provide better transient process performance than the composition control structure.
基金supported by the National Natural Science Foundation of China(Nos.20774008 and 20934001)Program for Changjiang Scholars and Innovative Research Teams in Universities(IRT 0706)
文摘The selective cationic polymerization of isobutylene (IB) initiated by a BF3-cyclohexanol (CL) complex was carried out from the mixed Ca fraction feed containing the 4C saturated and unsaturated hydrocarbons at -20℃. The effects of CL concentration, BF3 concentration, solvent for preparing BF3·CL complex and polymerization time on the chemical structure of end groups, number-average molecular weight (Mn) and molecular weight distribution (MWD, Mw/Mn) of the resulting polymers were investigated. The experimental results indicate that the BF3·CL complex initiating system exhibited an extremely high selectivity toward the cationic polymerization of IB in the mixed C4 fraction feed and low molecular weight (Mn = 900-3600) polyisobutylenes (PIBs) with large proportion of exo-double bond end groups were obtained. The exo-double bond content in PIB chain ends increased by increasing CL concentration or by decreasing solvent polarity in initiating system, BF3 concentration and polymerization time. The M, and MWD of the resulting PIBs were dependent on the concentrations of CL and BF3. Highly reactive PIBs with around 90 mol% of exo-double bonds were successfully synthesized by the selective polymerization of IB from the mixed Ca fraction feed, providing a potentially practical process for its simplicity and low costs.
文摘Consideration is given here to colour removal, carried out using immobilised biological cells, Shewanella strain J18 143. In order to provide greater control of an overall colour removal process and to give a basis for the effective recovery of the cell culture species, cell immobilisation has been established on chemically modified cellulose. The modification was achieved by chemically inducing the graft copolymerisation of methacrylic acid onto cotton fabric. The immobilised cells were able to decolorise the dye. The immobilisation methods, physical adsorption, “growing-in” and chemical coupling, were compared. Each of the methods was effective to some extent. However, the latter two immobilisation methods provided the greater effect in decoloration. Each of these immobilised systems is relatively simple to achieve, whether by adsorption, physical interlocking or covalent coupling. The graft copolymer is able to offer versatility in use. The decoloration was shown to be rapid under relatively simple processing conditions. Thus, compared with the established controls, complete decoloration of solutions of Remazol Black B was observed. The potential use of the graft copolymer substrate as support for a biochemical agent was confirmed.
文摘An ab initio analytical potential energy surface called BW3 for the CIH2 reactive system is presented. The fit of this surface is based on about 1 200 ab initio energy points, computed with multi-reference configuration interaction(MRCI) and scaling external correlation (SEC) method and a very large basis set. The precision in the fit is very high. The BW3 surface could reproduce correctly the dissociation energy of H2 and HCI, and the endothermicity of the Cl + H2 abstraction reaction. For the Cl + H2 abstraction reaction, the saddle point of BW3 lies in collinear geometries, and the barrier height is 32.84 kJ/mol; for the H + CIH exchange reaction, the barrier of BW3 is also linear, with a height of 77.40 kJ/mol.
基金supported by Natural Science Foundation of Shanghai (20ZR1400300)Textile Vision Applied Basic Research Project (J202005)National Key Research & Development Program of China (2017YFB0309600)。
文摘The development of pollution-free dyeing technology, including anhydrous dyeing and non-aqueous dyeing technologies, has always been an important way and research hot in energy conservation and emission reduction. Designing new structural dye molecules is the key to water-saving dyeing processes.Herein, three reactive dyes were designed and synthesized, which contained large planar multiconjugated systems and multi-reactive groups. The designed reactive dyes are expected to have high affinity and high fixations in non-aqueous or small bath dyeing processes. The reactive dyes were applied in the decamethylcyclopentasiloxane(DMCS) reverse micelle dyeing for cotton fabric. High exhaustion rate of 99.35%, 98.10% and 98.80%, and fixation rate of 95.15%, 96.34% and 94.40% for three dyes, R1,R2 and R3, could be respectively obtained. The dyes can be fully utilized and had excellent dyeing performance, fastness and levelling properties under the revere micelle dyeing. The cotton fabric is like an oil-water separator in the dyeing process, where the dye micelles rapidly absorb and permeate into the cotton fibers. DMCS circulates around the fabric to transfer mass and energy. After dyeing, the solvent can be separated quickly and reused. The new reactive dyes containing large planar and multi-conjugated systems have potential application in green and sustainable dyeing technology with less wastewater and higher utilization.
基金financial support provided by the National Key R&D Program of China(No.2022YFC2603800)the National Natural Science Foundation of China(No.22274113)。
文摘Reactive oxygen species(ROS)are essential in various pathological and physiological processes.Developing nanosystems that generate ROS in a controlled manner is of great interest for nanomedicine.DNA nanotechnology offers a promising approach to constructing programmable ROS-generating platforms.By incorporating photosensitizers or metal ions,DNA nanostructures can be designed to produce ROS in a spatially and temporally desired fashion.DNA-based ROS-generating nanosystems hold great potential in intracellular homeostasis regulation,drug release,and cancer therapy.This review summarizes recent advances in developing DNA-based ROS-generating nanosystems,highlights their emerging biomedical applications,and discusses the opportunities and challenges for further applications.DNA nanotechnology provides a versatile toolkit to construct biocompatible ROS-generating platforms for next-generation nanomedicines.
基金funded by the National Natural Science Foundation of China(21066001)the Scientific Research Foundation of Guangxi University(XJZ130360)the Innovation and Entrepreneurship Training Program for Undergraduate of Guangxi University(202010593174)。
文摘Anthraquinone dyes are a class of typical carcinogenic and hard-biodegradable organic pollutants.This study aimed to enhance the decolorization of anthraquinone dye by rationally designing an expected immobilized system.Reactive blue 4(RB4) was used as a substrate model and a previous isolated dyedegrading strain Aspergillus flavus A5pl was purposefully immobilized.Considering the effects of cell attachment and mass transfer,the polyurethane foam(PUF) with open pore structure was selected as the immobilization carrier.Results showed that the RB4 decolorization efficiency was significant enhanced after immobilization.Compared to the free mycelium system,the decolorization time of200 mg·L^(-1)RB4 was shortened from 48 h to 28 h by the PUF-immobilized cell system.Moreover,the PUF-immobilized system could tolerate RB4 up to 2000 mg-L^(-1).In the packed bed bioreactor(PBBR),an average decolorization efficiency of 93.3% could be maintained by the PUF-immobilized system for26 days.The decolorization process of RB4 was well described by the logistic equation and the degradation pathway was discussed.It was found that the higher specific growth rate of the PUF-immobilized cells was one of reasons for the enhanced decolorization.The good performance of the PUFimmobilized cell system would make it have potential application value for RB4 bioremediation.
文摘In this paper, a strategy for the reactive power compensation and harmonic suppression of the power supply system in HT-7U superconductive Tokamak is proposed. The optimized approach is given in the parameters design for passive filter. Also a controlling method with fast response time and good accuracy is put forward for the compensator, which is more suitable for the dynamic load.
文摘Considering the soft constraint characteristics of voltage constraints, the Interior-Point Filter Algorithm is applied to solve the formulation of fuzzy model for the power system reactive power optimization with a large number of equality and inequality constraints. Based on the primal-dual interior-point algorithm, the algorithm maintains an updating “filter” at each iteration in order to decide whether to admit correction of iteration point which can avoid effectively oscillation due to the conflict between the decrease of objective function and the satisfaction of constraints and ensure the global convergence. Moreover, the “filter” improves computational efficiency because it filters the unnecessary iteration points. The calculation results of a practical power system indicate that the algorithm can effectively deal with the large number of inequality constraints of the fuzzy model of reactive power optimization and satisfy the requirement of online calculation which realizes to decrease the network loss and maintain specified margins of voltage.
基金supported by Fondo Nacional de Desarrollo Científico y Tecnológico(FONDECYT)#1200836,#1210644,and#1240888,and Agencia Nacional de Investigación y Desarrollo(ANID)-FONDAP#15130011(to LL)FONDECYT#3230227(to MFG).
文摘Astrocytes are the most abundant type of glial cell in the central nervous system.Upon injury and inflammation,astrocytes become reactive and undergo morphological and functional changes.Depending on their phenotypic classification as A1 or A2,reactive astrocytes contribute to both neurotoxic and neuroprotective responses,respectively.However,this binary classification does not fully capture the diversity of astrocyte responses observed across different diseases and injuries.Transcriptomic analysis has revealed that reactive astrocytes have a complex landscape of gene expression profiles,which emphasizes the heterogeneous nature of their reactivity.Astrocytes actively participate in regulating central nervous system inflammation by interacting with microglia and other cell types,releasing cytokines,and influencing the immune response.The phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway is a central player in astrocyte reactivity and impacts various aspects of astrocyte behavior,as evidenced by in silico,in vitro,and in vivo results.In astrocytes,inflammatory cues trigger a cascade of molecular events,where nuclear factor-κB serves as a central mediator of the pro-inflammatory responses.Here,we review the heterogeneity of reactive astrocytes and the molecular mechanisms underlying their activation.We highlight the involvement of various signaling pathways that regulate astrocyte reactivity,including the PI3K/AKT/mammalian target of rapamycin(mTOR),αvβ3 integrin/PI3K/AKT/connexin 43,and Notch/PI3K/AKT pathways.While targeting the inactivation of the PI3K/AKT cellular signaling pathway to control reactive astrocytes and prevent central nervous system damage,evidence suggests that activating this pathway could also yield beneficial outcomes.This dual function of the PI3K/AKT pathway underscores its complexity in astrocyte reactivity and brain function modulation.The review emphasizes the importance of employing astrocyte-exclusive models to understand their functions accurately and these models are essential for clarifying astrocyte behavior.The findings should then be validated using in vivo models to ensure real-life relevance.The review also highlights the significance of PI3K/AKT pathway modulation in preventing central nervous system damage,although further studies are required to fully comprehend its role due to varying factors such as different cell types,astrocyte responses to inflammation,and disease contexts.Specific strategies are clearly necessary to address these variables effectively.
基金supported by the Danish Council for Strategic Research via HyFillFast
文摘In this work,the hydrogen sorption properties of the LiBH4-Mg2NiH4 composite system with the molar ratio 2:2.5 were thoroughly investigated as a function of the applied temperature and hydrogen pressure.To the best of our knowledge,it has been possible to prove experimentally the mutual destabilization between LiBH4 and Mg2NiH4.A detailed account of the kinetic and thermodynamic features of the dehydrogenation process is reported here.
基金supported by the Ministry of Education and Science of the Russian Federation(No.2019-0251).
文摘A new gas preparation system(GasPS-RCS)is proposed to solve two tasks:(A)to heat helium gas for tank pressurization;(B)to prepare gas for the Launch Vehicle(LV)Reactive Control System(RCS)at the LV orientation and stabilization sections of the LV on passive parts of the flight trajectory,to provide conditions for launching the Liquid Rocket Engine(LRE).The system includes a gas generator based on hydrogen peroxide,a separator for water separation,heat exchangers independent of the LRE,and gas-jet nozzles.The proposed new system allowed to reduce the length of pressurizing gas lines and reduce the increased helium gas consumption during the heat exchanger warm-up interval of the LRE during its launch.A special advantage of the proposed system is the possibility of ground testing of heat exchangers without an operating LRE.A mathematical model based on the first law of thermodynamics was used to perform a comparative analysis of GasPS-RCS with traditional pressurization and RCS systems.To validate the mathematical model,the experimental studies of helium pressurizing of a liquid nitrogen tank were conducted.The results show that the deviation of experimental and calculated values for pressure is 1.1%and for temperature up to 2%.According to the results of comparative analysis,the GasPS-RCS is 259 kg lighter for the first stage and 80 kg lighter for the second stage of the LV.
文摘Tis paper presents a genetic algorithm for reactive power optimization of power system in a more effective and rapid manner, and verifies the results with an IEEE 30-bus test system.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51302116 and 51365016the Open Fund Item of State Key Laboratory of Solid Lubrication of Lanzhou Institute of Chemical Physics of Chinese Academy of Sciences under Grant No LSL-1203
文摘Hydrogenated Cr-incorporated carbon films (Cr/a-C:H) are deposited successfully by using a dc reactive mag- netron sputtering system. The structure and mechanical properties of the as-deposited Cr/a-C:H films are characterized systematically by field-emission scanning electron microscope, x-ray diffraction, Raman spectra, nanoindentation and scratch. It is shown that optimal Cr metal forms nanocrystalline carbide to improve the hardness, toughness and adhesion strength in the amorphous carbon matrix, which possesses relatively higher nano-hardness of 15. 7 CPa, elastic modulus of 126.8 GPa and best adhesion strength with critical load (Lc) of 36 N for the Cr/a-C:H film deposited at CH4 flow rate of 20sccm. The friction and wear behaviors of as-deposited Cr/a-C:H films are evaluated under both the ambient air and deionized water conditions. The results reveal that it can achieve superior low friction and anti-wear performance for the Cr/a-C:H film deposited at CH4 flow rate of 20sccm under the ambient air condition, and the friction coetllcient and wear rate tested in deionized water condition are relatively lower compared with those tested under the ambient air condition for each film. Superior combination of mechanical and tribological properties for the Cr/a-C:H film should be a good candidate for engineering applications.