A deep understanding of explosive sensitivities and their factors is important for safe and reliable applications.However,quantitative prediction of the sensitivities is difficult.Here,reactive molecular dynamics simu...A deep understanding of explosive sensitivities and their factors is important for safe and reliable applications.However,quantitative prediction of the sensitivities is difficult.Here,reactive molecular dynamics simulation models for high-speed piston impacts on explosive supercells were established.Simulations were also performed to investigate shock-induced reactions of various high-energy explosives.The fraction of reacted explosive molecules in an initial supercell changed linearly with the propagation distance of the shock-wave front.The corresponding slope could be used as a reaction rate for a specific shock-loading velocity.Reaction rates that varied with the shock-loading pressure exhibited two-stage linearities with different slopes.The two inflection points corresponded to the initial and accelerated reactions,which respectively correlated to the thresholds of shock-induced ignition and detonation.Therefore,the ignition and detonation critical pressures could be determined.The sensitivity could then be a quantitative prediction of the critical pressure.The accuracies of the quantitative shock sensitivity predictions were verified by comparing the impact and shock sensitivities of common explosives and the characteristics of anisotropic shock-induced reactions.Molecular dynamics simulations quantitatively predict and rank shock sensitivities by using only crystal structures of the explosives.Overall,this method will enable the design and safe use of explosives.展开更多
Dimethyl carbonate is an environmentally benign and biodegradable chemical.Based on integration of reactive distillation and pressure-swing distillation technologies,a novel process for synthesis of dimethyl carbonate...Dimethyl carbonate is an environmentally benign and biodegradable chemical.Based on integration of reactive distillation and pressure-swing distillation technologies,a novel process for synthesis of dimethyl carbonate through transesterification with propylene carbonate and methanol has been developed by Huang et al.In this work,the optimization of this process was performed by minimizing the total TAC.The results show that the optimal design flowsheet can save energy consumption by 18.6% with the propylene carbonate conversion of 99.9%.Then,an effective plant-wide control structure for the process was developed.Dynamic simulation results demonstrate that the temperature/flow rate cascade control plus with simple temperature control can keep not only product purity but also the conversion of the reactant at their desired values in the face of the disturbance in reactant feed flow rate and feed composition.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11832006).
文摘A deep understanding of explosive sensitivities and their factors is important for safe and reliable applications.However,quantitative prediction of the sensitivities is difficult.Here,reactive molecular dynamics simulation models for high-speed piston impacts on explosive supercells were established.Simulations were also performed to investigate shock-induced reactions of various high-energy explosives.The fraction of reacted explosive molecules in an initial supercell changed linearly with the propagation distance of the shock-wave front.The corresponding slope could be used as a reaction rate for a specific shock-loading velocity.Reaction rates that varied with the shock-loading pressure exhibited two-stage linearities with different slopes.The two inflection points corresponded to the initial and accelerated reactions,which respectively correlated to the thresholds of shock-induced ignition and detonation.Therefore,the ignition and detonation critical pressures could be determined.The sensitivity could then be a quantitative prediction of the critical pressure.The accuracies of the quantitative shock sensitivity predictions were verified by comparing the impact and shock sensitivities of common explosives and the characteristics of anisotropic shock-induced reactions.Molecular dynamics simulations quantitatively predict and rank shock sensitivities by using only crystal structures of the explosives.Overall,this method will enable the design and safe use of explosives.
基金Supported by the National Natural Science Foundation of China(21306025,21576053)the International Science&Technology Cooperation Program of China(2013DFR90540)
文摘Dimethyl carbonate is an environmentally benign and biodegradable chemical.Based on integration of reactive distillation and pressure-swing distillation technologies,a novel process for synthesis of dimethyl carbonate through transesterification with propylene carbonate and methanol has been developed by Huang et al.In this work,the optimization of this process was performed by minimizing the total TAC.The results show that the optimal design flowsheet can save energy consumption by 18.6% with the propylene carbonate conversion of 99.9%.Then,an effective plant-wide control structure for the process was developed.Dynamic simulation results demonstrate that the temperature/flow rate cascade control plus with simple temperature control can keep not only product purity but also the conversion of the reactant at their desired values in the face of the disturbance in reactant feed flow rate and feed composition.