The reactive diffusion in Mg-Gd binary system was studied at 773 K by optical microscopy(OM), scanning electron microscopy(SEM) and electron probe micro-analysis(EPMA). After annealing at 773 K for 12-48 h, four...The reactive diffusion in Mg-Gd binary system was studied at 773 K by optical microscopy(OM), scanning electron microscopy(SEM) and electron probe micro-analysis(EPMA). After annealing at 773 K for 12-48 h, four different intermetallic layers, Mg5 Gd, Mg3 Gd, Mg2 Gd and Mg Gd, form at the Mg/Gd interfaces in the diffusion couples. The thicknesses of intermetallic layers δi(i stands for the phases of Mg5 Gd, Mg3 Gd, Mg2 Gd and Mg Gd, respectively) are proportional to the square root of annealing time t1/2, which indicates that the growth behavior of the intermetallics is controlled by the diffusion rate. The ratio of thickness of each intermetallic layer to the total thickness is constant with increasing the annealing time, which means that the growth behavior is constant at a certain annealing temperature. The diffusion coefficient of Gd in different intermetallics was calculated by Matano method.展开更多
Mixed Al-Si and Al-Cu powders were investigated as insert layers to reactive diffusion bond SiCp/6063 metal matrix composite (MMC). The results show that SiCp/6063 MMC joints bonded by the insert layers of the mixed...Mixed Al-Si and Al-Cu powders were investigated as insert layers to reactive diffusion bond SiCp/6063 metal matrix composite (MMC). The results show that SiCp/6063 MMC joints bonded by the insert layers of the mixed Al-Si and Al-Cu powders have a dense joining layer of high quality. The mass transfer between the bonded materials and insert layers during bonding leads to the hypoeutectic microstructure of the joining layers bonded by both the mixed Al-Si and Al-Cu powders with eutectic composition. At fixed bonding time (temperature), the shear strength of the joints by both insert layers of the mixed Al-Si and Al-Cu powders increases with increasing the bonding temperature (time), but get maxima at bonding temperature 600℃ (time 90 min).展开更多
Mixed Al-Si and Al-Si-SiC powders were employed as insert layers to reactive diffusion bond SiCp/6063 MMC (metal matrix composites). The results show that SiCp/6063 MMC joints bonded by the insert layer of the mixed...Mixed Al-Si and Al-Si-SiC powders were employed as insert layers to reactive diffusion bond SiCp/6063 MMC (metal matrix composites). The results show that SiCp/6063 MMC joints bonded by the insert layer of the mixed Al-Si powder have a dense joining layer with a typical hypoeutectic microstructtn'e. Using the mixed Al-Si-SiC powder as the insert layer, SiCp/6063 MMC can be reactive diffusion bonded by a composite joint. Because of the SiC segregation, however, there are a number of porous zones in the joining layer, which results in the bad shear strength of the joints reactive diffusion bonded by the insert layer of the mixed A1-Si- SiC powder, even lower than that of the joints reactive diffusion bonded by the insert layer of the mixed Al-Si powder. Ti and Mg added in the insert layers obviously improve the strength of the joints reactive diffusion bonded by the insert layer of the mixed Al- Si-SiC powder, especially, Mg has a more obvious effect.展开更多
A review of the periodic layered structure (PLS) formed during reactive diffusion was presented. The formation of PLS is a very interesting and complex phenomenon during the reactive diffusion process. It was firstl...A review of the periodic layered structure (PLS) formed during reactive diffusion was presented. The formation of PLS is a very interesting and complex phenomenon during the reactive diffusion process. It was firstly discovered occasionally. The formation of PLS has been reported in various solid state diffusion couples such as Zn/ Ni3 Si, Mg/SiO2, Zn/Cux Tiy and so on, and some controversial theoretical models and formation mechanism of PLS were put forward. However, there have been few reports about the PLS formed during hot dip. The development of PLS was reviewed, and the recent progress referring to the formation of PLS during the hot dip aluminizing of a no- vel Fe-Cr-B cast steel was especially introduced. However, not all of the borides could form PLS in their interracial reaction with molten Al. PLS only formed at the Cr-rich Fe2B/Al interface, while Mo-rich Fe2B fractured. A general qualitative description for the interracial reaction of Fe-Cr-B cast steel with molten Al was represented. Further inves- tigation on the constituents of the alternating phases and formation mechanism of PLS needs to be done. At last, the development trends of PLS were proposed.展开更多
Transient electronics are an emerging class of electronics with the unique characteristic to completely dissolve within a programmed period of time. Since no harmful byproducts are released, these electronics can be u...Transient electronics are an emerging class of electronics with the unique characteristic to completely dissolve within a programmed period of time. Since no harmful byproducts are released, these electronics can be used in the human body as a diagnostic tool, for instance, or they can be used as environmentally friendly alternatives to existing electronics which disintegrate when exposed to water. Thus, the most crucial aspect of transient electronics is their ability to disintegrate in a practical manner and a review of the literature on this topic is essential for understanding the current capabilities of transient electronics and areas of future research. In the past, only partial dissolution of transient electronics was possible, however, total dissolution has been achieved with a recent discovery that silicon nanomembrane undergoes hydrolysis. The use of single- and multi-layered structures has also been explored as a way to extend the lifetime of the electronics. Analytical models have been developed to study the dissolution of various functional materials as well as the devices constructed from this set of functional materials and these models prove to be useful in the design of the transient electronics.展开更多
The magnetohydrodynamic(MHD)boundary layer slipflow and solute transfer over a porous plate in the presence of a chemical reaction are investigated.The governing equations were transformed into self-similar ordinary di...The magnetohydrodynamic(MHD)boundary layer slipflow and solute transfer over a porous plate in the presence of a chemical reaction are investigated.The governing equations were transformed into self-similar ordinary differential equations by adopting the similarity transformation technique.Then the numerical solutions are obtained by a shooting technique using the fourth order Runge-Kutta method.The study reveals that due to the increase in the boundary slip,the concentration decreases and the velocity increases.On the other hand,with an increase in the magneticfield and mass suction,both boundary layer thicknesses decreased.As the Schmidt number and the reaction rate parameter increases,the concentration decreases and the mass transfer increases.展开更多
基金Projects(2013CB6322022013CB632205)supported by the National Basic Research Program of China
文摘The reactive diffusion in Mg-Gd binary system was studied at 773 K by optical microscopy(OM), scanning electron microscopy(SEM) and electron probe micro-analysis(EPMA). After annealing at 773 K for 12-48 h, four different intermetallic layers, Mg5 Gd, Mg3 Gd, Mg2 Gd and Mg Gd, form at the Mg/Gd interfaces in the diffusion couples. The thicknesses of intermetallic layers δi(i stands for the phases of Mg5 Gd, Mg3 Gd, Mg2 Gd and Mg Gd, respectively) are proportional to the square root of annealing time t1/2, which indicates that the growth behavior of the intermetallics is controlled by the diffusion rate. The ratio of thickness of each intermetallic layer to the total thickness is constant with increasing the annealing time, which means that the growth behavior is constant at a certain annealing temperature. The diffusion coefficient of Gd in different intermetallics was calculated by Matano method.
基金the National Natural Science Foundation of China under grant No.50175004
文摘Mixed Al-Si and Al-Cu powders were investigated as insert layers to reactive diffusion bond SiCp/6063 metal matrix composite (MMC). The results show that SiCp/6063 MMC joints bonded by the insert layers of the mixed Al-Si and Al-Cu powders have a dense joining layer of high quality. The mass transfer between the bonded materials and insert layers during bonding leads to the hypoeutectic microstructure of the joining layers bonded by both the mixed Al-Si and Al-Cu powders with eutectic composition. At fixed bonding time (temperature), the shear strength of the joints by both insert layers of the mixed Al-Si and Al-Cu powders increases with increasing the bonding temperature (time), but get maxima at bonding temperature 600℃ (time 90 min).
基金This work was financially supported by the National Natural Science Foundation of China (No. 50175004)
文摘Mixed Al-Si and Al-Si-SiC powders were employed as insert layers to reactive diffusion bond SiCp/6063 MMC (metal matrix composites). The results show that SiCp/6063 MMC joints bonded by the insert layer of the mixed Al-Si powder have a dense joining layer with a typical hypoeutectic microstructtn'e. Using the mixed Al-Si-SiC powder as the insert layer, SiCp/6063 MMC can be reactive diffusion bonded by a composite joint. Because of the SiC segregation, however, there are a number of porous zones in the joining layer, which results in the bad shear strength of the joints reactive diffusion bonded by the insert layer of the mixed A1-Si- SiC powder, even lower than that of the joints reactive diffusion bonded by the insert layer of the mixed Al-Si powder. Ti and Mg added in the insert layers obviously improve the strength of the joints reactive diffusion bonded by the insert layer of the mixed Al- Si-SiC powder, especially, Mg has a more obvious effect.
基金Item Sponsored by National Natural Science Foundation of China(51404084)Scientific Research Foundation of Hainan University of China(hyqd1629)Opening Project of Guangdong Key Laboratory for Advanced Metallic Materials Processing(South China University of Technology)of China(GJ201609)
文摘A review of the periodic layered structure (PLS) formed during reactive diffusion was presented. The formation of PLS is a very interesting and complex phenomenon during the reactive diffusion process. It was firstly discovered occasionally. The formation of PLS has been reported in various solid state diffusion couples such as Zn/ Ni3 Si, Mg/SiO2, Zn/Cux Tiy and so on, and some controversial theoretical models and formation mechanism of PLS were put forward. However, there have been few reports about the PLS formed during hot dip. The development of PLS was reviewed, and the recent progress referring to the formation of PLS during the hot dip aluminizing of a no- vel Fe-Cr-B cast steel was especially introduced. However, not all of the borides could form PLS in their interracial reaction with molten Al. PLS only formed at the Cr-rich Fe2B/Al interface, while Mo-rich Fe2B fractured. A general qualitative description for the interracial reaction of Fe-Cr-B cast steel with molten Al was represented. Further inves- tigation on the constituents of the alternating phases and formation mechanism of PLS needs to be done. At last, the development trends of PLS were proposed.
基金the start-up fund provided by the Engineering Science and Mechanics Department, College of Engineering, and Materials Research Institute at the Pennsylvania State University (215-37 1001 cc:H.Cheng)
文摘Transient electronics are an emerging class of electronics with the unique characteristic to completely dissolve within a programmed period of time. Since no harmful byproducts are released, these electronics can be used in the human body as a diagnostic tool, for instance, or they can be used as environmentally friendly alternatives to existing electronics which disintegrate when exposed to water. Thus, the most crucial aspect of transient electronics is their ability to disintegrate in a practical manner and a review of the literature on this topic is essential for understanding the current capabilities of transient electronics and areas of future research. In the past, only partial dissolution of transient electronics was possible, however, total dissolution has been achieved with a recent discovery that silicon nanomembrane undergoes hydrolysis. The use of single- and multi-layered structures has also been explored as a way to extend the lifetime of the electronics. Analytical models have been developed to study the dissolution of various functional materials as well as the devices constructed from this set of functional materials and these models prove to be useful in the design of the transient electronics.
基金gratefully acknowledges the financial support from the National Board for Higher Mathematics(NBHM),DAE,Mumbai,India to pursue this work.
文摘The magnetohydrodynamic(MHD)boundary layer slipflow and solute transfer over a porous plate in the presence of a chemical reaction are investigated.The governing equations were transformed into self-similar ordinary differential equations by adopting the similarity transformation technique.Then the numerical solutions are obtained by a shooting technique using the fourth order Runge-Kutta method.The study reveals that due to the increase in the boundary slip,the concentration decreases and the velocity increases.On the other hand,with an increase in the magneticfield and mass suction,both boundary layer thicknesses decreased.As the Schmidt number and the reaction rate parameter increases,the concentration decreases and the mass transfer increases.