In this paper,we prove the existence of martingale solutions of a class of stochastic equations with a monotone drift of polynomial growth of arbitrary order and a continuous diffusion term with superlinear growth.Bot...In this paper,we prove the existence of martingale solutions of a class of stochastic equations with a monotone drift of polynomial growth of arbitrary order and a continuous diffusion term with superlinear growth.Both the nonlinear drift and diffusion terms are not required to be locally Lipschitz continuous.We then apply the abstract result to establish the existence of martingale solutions of the fractional stochastic reaction-diffusion equation with polynomial drift driven by a superlinear noise.The pseudo-monotonicity techniques and the Skorokhod-Jakubowski representation theorem in a topological space are used to pass to the limit of a sequence of approximate solutions defined by the Galerkin method.展开更多
In this paper, we consider the existence of pullback random exponential attractor for non-autonomous random reaction-diffusion equation driven by nonlinear colored noise defined onR^(N) . The key steps of the proof ar...In this paper, we consider the existence of pullback random exponential attractor for non-autonomous random reaction-diffusion equation driven by nonlinear colored noise defined onR^(N) . The key steps of the proof are the tails estimate and to demonstrate the Lipschitz continuity and random squeezing property of the solution for the equation defined on R^(N) .展开更多
This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic diff...This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic differential equations.Then we obtain a comparison theorem in one-dimensional situation.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite differ...In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite difference scheme is discussed by means of variational approximation method in this function space. The approach used is of a simple characteristic in gaining the stability condition of the scheme.展开更多
This paper is concerned with the stability of traveling wavefronts for a population dynamics model with time delay. Combining the weighted energy method and the comparison principle, the global exponential stability o...This paper is concerned with the stability of traveling wavefronts for a population dynamics model with time delay. Combining the weighted energy method and the comparison principle, the global exponential stability of noncritical traveling wavefronts (waves with speeds c 〉 c*, where c=c* is the minimal speed) is established, when the initial perturbations around the wavefront decays to zero exponentially in space as x → -∞, but it can be allowed arbitrary large in other locations, which improves the results in[9, 18, 21].展开更多
AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:...AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:Totally 716 eyes of 716 patients with primary open angle glaucoma(POAG)with at least 5 reliable 24-2 test results and 2y of follow-up were selected.The functional GEE model was used to detect perimetric progression in the training dataset(501 eyes).In the testing dataset(215 eyes),progression was evaluated the functional GEE model,mean deviation(MD)and visual field index(VFI)rates of change,Advanced Glaucoma Intervention Study(AGIS)and Collaborative Initial Glaucoma Treatment Study(CIGTS)scores,and pointwise linear regression(PLR).RESULTS:The proposed method showed the highest proportion of eyes detected as progression(54.4%),followed by the VFI rate(34.4%),PLR(23.3%),and MD rate(21.4%).The CIGTS and AGIS scores had a lower proportion of eyes detected as progression(7.9%and 5.1%,respectively).The time to detection of progression was significantly shorter for the proposed method than that of other algorithms(adjusted P≤0.019).The VFI rate displayed moderate pairwise agreement with the proposed method(k=0.47).CONCLUSION:The functional GEE model shows the highest proportion of eyes detected as perimetric progression and the shortest time to detect perimetric progression in patients with POAG.展开更多
This paper deals with the special nonlinear reaction-diffusion equation. The finite difference scheme with incremental unknowns approximating to the differential equation (2.1) is set up by means of introducing incr...This paper deals with the special nonlinear reaction-diffusion equation. The finite difference scheme with incremental unknowns approximating to the differential equation (2.1) is set up by means of introducing incremental unknowns methods. Through the stability analyzing for the scheme, it was shown that the stability conditions of the finite difference schemes with the incremental unknowns are greatly improved when compared with the stability conditions of the corresponding classic difference scheme.展开更多
This paper deals with the properties of the solution to a class of nonlocal degenerate reaction-diffusion equation with nonlocal source,subject to the null Dirichlet boundary condition.We first give sufficient conditi...This paper deals with the properties of the solution to a class of nonlocal degenerate reaction-diffusion equation with nonlocal source,subject to the null Dirichlet boundary condition.We first give sufficient conditions for that the solution exists globally or blows up in the finite time.Then the blow-up time is also given.At last,we obtain a property differing from the local source which the blow-up set is the entire interval.展开更多
In this paper, we introduce new invariant sets, and the invariant sets and exact solutions to general reactiondiffusion equation are discussed. It is shown that there exist a class of exact solutions to the equations ...In this paper, we introduce new invariant sets, and the invariant sets and exact solutions to general reactiondiffusion equation are discussed. It is shown that there exist a class of exact solutions to the equations that belong to the invariant sets.展开更多
A new approach, is established to show that the semigroup {S(t)≥0 generated by a reaction-diffusion equation with supercritical exponent is uniformly quasi-differentiable in L^q(Ω) (2 ≤ q 〈 ∞) with respect ...A new approach, is established to show that the semigroup {S(t)≥0 generated by a reaction-diffusion equation with supercritical exponent is uniformly quasi-differentiable in L^q(Ω) (2 ≤ q 〈 ∞) with respect to the initial value. As an application, this proves the upper-bound of fractal dimension for its global attractor in the corresponding space.展开更多
In this letter, a class of reaction-diffusion equations, which arise in chemical reaction or ecology and other fields of physics, are investigated. A more general analytical solution of the equation is obtained by usi...In this letter, a class of reaction-diffusion equations, which arise in chemical reaction or ecology and other fields of physics, are investigated. A more general analytical solution of the equation is obtained by using the first integral method.展开更多
In this paper, a detailed Lie symmetry analysis of the(2+1)-dimensional coupled nonlinear extension of the reaction-diffusion equation is presented. The general finite transformation group is derived via a simple dire...In this paper, a detailed Lie symmetry analysis of the(2+1)-dimensional coupled nonlinear extension of the reaction-diffusion equation is presented. The general finite transformation group is derived via a simple direct method,which is equivalent to Lie point symmetry group actually. Similarity reduction and some exact solutions of the original equation are obtained based on the optimal system of one-dimensional subalgebras. In addition, conservation laws are constructed by employing the new conservation theorem.展开更多
In this paper, we prove the existence of random attractors for a stochastic reaction-diffusion equation with distribution derivatives on unbounded domains. The nonlinearity is dissipative for large values of the state...In this paper, we prove the existence of random attractors for a stochastic reaction-diffusion equation with distribution derivatives on unbounded domains. The nonlinearity is dissipative for large values of the state and the stochastic nature of the equation appears spatially distributed temporal white noise. The stochastic reaction-diffusion equation is recast as a continuous random dynamical system and asymptotic compactness for this demonstrated by using uniform estimates far-field values of solutions. The results are new and appear to be optimal.展开更多
1 INTRODUCTIONThe concentration distribution of reactant in porouscatalyst pellet not only is the basis of calculating theeffectiveness factor,but also has a great significancein investigating the reaction and mass tr...1 INTRODUCTIONThe concentration distribution of reactant in porouscatalyst pellet not only is the basis of calculating theeffectiveness factor,but also has a great significancein investigating the reaction and mass transfer in thecatalyst pellet.In principle,the concentration distri-bution and the effectiveness factor of a catalyst pelletcan be obtained by solving the reaction-diffusion equation.However,most of the differential equations haveno analytical solution except for some simple cases.The previous investigators have made great efforts to calculate the effectiveness factors of catalysts.They first obtained asymptotic solutions of effective-ness factor in the cases of the Thiele modulus φ→Oand φ→oo by means of perturbation method,thensynthesized the information of the asymptotic solu-展开更多
This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their...This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their expressions and asymptotical stability criteria.Second,for the semi-discrete and one-parameter fully-discrete finite element methods solving the above equations,we work out the sufficient conditions for assuring that the finite element solutions are asymptotically stable.Finally,with a typical example with numerical experiments,we illustrate the applicability of the obtained theoretical results.展开更多
The methods of L-p estimation are used to discuss the extinction phenomena of the solutions to the following reaction-diffusion equations with initial-boundary values partial derivativeu/partial derivativet = Deltau -...The methods of L-p estimation are used to discuss the extinction phenomena of the solutions to the following reaction-diffusion equations with initial-boundary values partial derivativeu/partial derivativet = Deltau - lambda \u\(gamma-1) u - betau ((x, t) is an element of Omega x (0, + infinity)), u(x, t) \(partial derivativeOmegax (0, +infinity)) = 0, u(x, 0) = u(0) (x) is an element of H-0(1) (Omega) boolean AND L1+gamma(Omega) (x is an element of Omega). Sufficient and necessary conditions about the extinction of the solutions is given. Here lambda > 0, gamma > 0, beta > 0 are constants, Omega is an element of R-N is bounded with smooth boundary partial derivativeOmega. At last, it is simulated with a higher order equation by using the present methods.展开更多
In this paper, two different numerical schemes, namely the Runge-Kutta fourth order method and the implicit Euler method with perturbation method of the second degree, are applied to solve the nonlinear thermal wave i...In this paper, two different numerical schemes, namely the Runge-Kutta fourth order method and the implicit Euler method with perturbation method of the second degree, are applied to solve the nonlinear thermal wave in one and two dimensions using the differential quadrature method. The aim of this paper is to make comparison between previous numerical schemes and detect which is more efficient and more accurate by comparing the obtained results with the available analytical ones and computing the computational time.展开更多
The initial boundary value problem of wave equations and reaction-diffusion equations with several nonlinear source terms in a bounded domain is studied by potential well method. The invarianee of some sets under the ...The initial boundary value problem of wave equations and reaction-diffusion equations with several nonlinear source terms in a bounded domain is studied by potential well method. The invarianee of some sets under the flow of these problems and the vacuum isolation of solutions are obtained by introducing a family of potential wells. Then the threshold result of global existence and nonexistence of solutions are given. Finally, the problem with critical initial conditions are discussed.展开更多
A nonlinear reaction-diffusion equation is studied numerically by a Petrov-Galerkin finite element method, which has been proved to be 2nd-order accurate in time and 4th-order in space. The comparison between the exac...A nonlinear reaction-diffusion equation is studied numerically by a Petrov-Galerkin finite element method, which has been proved to be 2nd-order accurate in time and 4th-order in space. The comparison between the exact and numerical solutions of progressive waves shows that this numerical scheme is quite accurate, stable andefflcient. It is also shown that any local disturbance will spread, have a full growth and finally form two progressive waves propagating in both directions. The shape and the speed of the long term progressive waves are determined by the system itself, and do not depend on the details of the initial values.展开更多
文摘In this paper,we prove the existence of martingale solutions of a class of stochastic equations with a monotone drift of polynomial growth of arbitrary order and a continuous diffusion term with superlinear growth.Both the nonlinear drift and diffusion terms are not required to be locally Lipschitz continuous.We then apply the abstract result to establish the existence of martingale solutions of the fractional stochastic reaction-diffusion equation with polynomial drift driven by a superlinear noise.The pseudo-monotonicity techniques and the Skorokhod-Jakubowski representation theorem in a topological space are used to pass to the limit of a sequence of approximate solutions defined by the Galerkin method.
基金supported by the NSFC(12271141)supported by the Fundamental Research Funds for the Central Universities(B240205026)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX24_0821).
文摘In this paper, we consider the existence of pullback random exponential attractor for non-autonomous random reaction-diffusion equation driven by nonlinear colored noise defined onR^(N) . The key steps of the proof are the tails estimate and to demonstrate the Lipschitz continuity and random squeezing property of the solution for the equation defined on R^(N) .
基金Supported by the National Natural Science Foundation of China(12001074)the Research Innovation Program of Graduate Students in Hunan Province(CX20220258)+1 种基金the Research Innovation Program of Graduate Students of Central South University(1053320214147)the Key Scientific Research Project of Higher Education Institutions in Henan Province(25B110025)。
文摘This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic differential equations.Then we obtain a comparison theorem in one-dimensional situation.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
文摘In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite difference scheme is discussed by means of variational approximation method in this function space. The approach used is of a simple characteristic in gaining the stability condition of the scheme.
基金supported by NSF of China(11401478)Gansu Provincial Natural Science Foundation(145RJZA220)
文摘This paper is concerned with the stability of traveling wavefronts for a population dynamics model with time delay. Combining the weighted energy method and the comparison principle, the global exponential stability of noncritical traveling wavefronts (waves with speeds c 〉 c*, where c=c* is the minimal speed) is established, when the initial perturbations around the wavefront decays to zero exponentially in space as x → -∞, but it can be allowed arbitrary large in other locations, which improves the results in[9, 18, 21].
基金Supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(No.HR20C0026)the National Research Foundation of Korea(NRF)(No.RS-2023-00247504)the Patient-Centered Clinical Research Coordinating Center,funded by the Ministry of Health&Welfare,Republic of Korea(No.HC19C0276).
文摘AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:Totally 716 eyes of 716 patients with primary open angle glaucoma(POAG)with at least 5 reliable 24-2 test results and 2y of follow-up were selected.The functional GEE model was used to detect perimetric progression in the training dataset(501 eyes).In the testing dataset(215 eyes),progression was evaluated the functional GEE model,mean deviation(MD)and visual field index(VFI)rates of change,Advanced Glaucoma Intervention Study(AGIS)and Collaborative Initial Glaucoma Treatment Study(CIGTS)scores,and pointwise linear regression(PLR).RESULTS:The proposed method showed the highest proportion of eyes detected as progression(54.4%),followed by the VFI rate(34.4%),PLR(23.3%),and MD rate(21.4%).The CIGTS and AGIS scores had a lower proportion of eyes detected as progression(7.9%and 5.1%,respectively).The time to detection of progression was significantly shorter for the proposed method than that of other algorithms(adjusted P≤0.019).The VFI rate displayed moderate pairwise agreement with the proposed method(k=0.47).CONCLUSION:The functional GEE model shows the highest proportion of eyes detected as perimetric progression and the shortest time to detect perimetric progression in patients with POAG.
文摘This paper deals with the special nonlinear reaction-diffusion equation. The finite difference scheme with incremental unknowns approximating to the differential equation (2.1) is set up by means of introducing incremental unknowns methods. Through the stability analyzing for the scheme, it was shown that the stability conditions of the finite difference schemes with the incremental unknowns are greatly improved when compared with the stability conditions of the corresponding classic difference scheme.
基金Supported by the National Natural Science Foundation of China(10571024)
文摘This paper deals with the properties of the solution to a class of nonlocal degenerate reaction-diffusion equation with nonlocal source,subject to the null Dirichlet boundary condition.We first give sufficient conditions for that the solution exists globally or blows up in the finite time.Then the blow-up time is also given.At last,we obtain a property differing from the local source which the blow-up set is the entire interval.
基金National Natural Science Foundation of China under Grant Nos.10472091,10332030 and 10502042the Natural Science Foundation of Shanxi Province under Grant No.2003A03
文摘In this paper, we introduce new invariant sets, and the invariant sets and exact solutions to general reactiondiffusion equation are discussed. It is shown that there exist a class of exact solutions to the equations that belong to the invariant sets.
基金Supported by NSFC Grant(11401100,10601021)the foundation of Fujian Education Department(JB14021)the innovation foundation of Fujian Normal University(IRTL1206)
文摘A new approach, is established to show that the semigroup {S(t)≥0 generated by a reaction-diffusion equation with supercritical exponent is uniformly quasi-differentiable in L^q(Ω) (2 ≤ q 〈 ∞) with respect to the initial value. As an application, this proves the upper-bound of fractal dimension for its global attractor in the corresponding space.
文摘In this letter, a class of reaction-diffusion equations, which arise in chemical reaction or ecology and other fields of physics, are investigated. A more general analytical solution of the equation is obtained by using the first integral method.
基金Supported by the National Natural Science Foundation of China under Grant No.11275072Research Fund for the Doctoral Program of Higher Education of China under Grant No.20120076110024+3 种基金Innovative Research Team Program of the National Natural Science Foundation of China under Grant No.61321064Shanghai Knowledge Service Platform Project under Grant No.ZF1213Shanghai Minhang District Talents of High Level Scientific Research ProjectTalent Fund and K.C.Wong Magna Fund in Ningbo University
文摘In this paper, a detailed Lie symmetry analysis of the(2+1)-dimensional coupled nonlinear extension of the reaction-diffusion equation is presented. The general finite transformation group is derived via a simple direct method,which is equivalent to Lie point symmetry group actually. Similarity reduction and some exact solutions of the original equation are obtained based on the optimal system of one-dimensional subalgebras. In addition, conservation laws are constructed by employing the new conservation theorem.
文摘In this paper, we prove the existence of random attractors for a stochastic reaction-diffusion equation with distribution derivatives on unbounded domains. The nonlinearity is dissipative for large values of the state and the stochastic nature of the equation appears spatially distributed temporal white noise. The stochastic reaction-diffusion equation is recast as a continuous random dynamical system and asymptotic compactness for this demonstrated by using uniform estimates far-field values of solutions. The results are new and appear to be optimal.
基金Supported by the Natural Science Foundation of Fujian Province.
文摘1 INTRODUCTIONThe concentration distribution of reactant in porouscatalyst pellet not only is the basis of calculating theeffectiveness factor,but also has a great significancein investigating the reaction and mass transfer in thecatalyst pellet.In principle,the concentration distri-bution and the effectiveness factor of a catalyst pelletcan be obtained by solving the reaction-diffusion equation.However,most of the differential equations haveno analytical solution except for some simple cases.The previous investigators have made great efforts to calculate the effectiveness factors of catalysts.They first obtained asymptotic solutions of effective-ness factor in the cases of the Thiele modulus φ→Oand φ→oo by means of perturbation method,thensynthesized the information of the asymptotic solu-
文摘This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their expressions and asymptotical stability criteria.Second,for the semi-discrete and one-parameter fully-discrete finite element methods solving the above equations,we work out the sufficient conditions for assuring that the finite element solutions are asymptotically stable.Finally,with a typical example with numerical experiments,we illustrate the applicability of the obtained theoretical results.
文摘The methods of L-p estimation are used to discuss the extinction phenomena of the solutions to the following reaction-diffusion equations with initial-boundary values partial derivativeu/partial derivativet = Deltau - lambda \u\(gamma-1) u - betau ((x, t) is an element of Omega x (0, + infinity)), u(x, t) \(partial derivativeOmegax (0, +infinity)) = 0, u(x, 0) = u(0) (x) is an element of H-0(1) (Omega) boolean AND L1+gamma(Omega) (x is an element of Omega). Sufficient and necessary conditions about the extinction of the solutions is given. Here lambda > 0, gamma > 0, beta > 0 are constants, Omega is an element of R-N is bounded with smooth boundary partial derivativeOmega. At last, it is simulated with a higher order equation by using the present methods.
文摘In this paper, two different numerical schemes, namely the Runge-Kutta fourth order method and the implicit Euler method with perturbation method of the second degree, are applied to solve the nonlinear thermal wave in one and two dimensions using the differential quadrature method. The aim of this paper is to make comparison between previous numerical schemes and detect which is more efficient and more accurate by comparing the obtained results with the available analytical ones and computing the computational time.
基金the National Natural Science Foundation of China(No.10271034)the Basic Research Foundation of Harbin Engineering University(No.HEUF04012)
文摘The initial boundary value problem of wave equations and reaction-diffusion equations with several nonlinear source terms in a bounded domain is studied by potential well method. The invarianee of some sets under the flow of these problems and the vacuum isolation of solutions are obtained by introducing a family of potential wells. Then the threshold result of global existence and nonexistence of solutions are given. Finally, the problem with critical initial conditions are discussed.
文摘A nonlinear reaction-diffusion equation is studied numerically by a Petrov-Galerkin finite element method, which has been proved to be 2nd-order accurate in time and 4th-order in space. The comparison between the exact and numerical solutions of progressive waves shows that this numerical scheme is quite accurate, stable andefflcient. It is also shown that any local disturbance will spread, have a full growth and finally form two progressive waves propagating in both directions. The shape and the speed of the long term progressive waves are determined by the system itself, and do not depend on the details of the initial values.