Terahertz(THz) radiation, spanning the frequency range 100 GHz to 10 THz, offers diverse applications in spectroscopy, materials characterization, medical diagnostics and environmental monitoring. Despite its potentia...Terahertz(THz) radiation, spanning the frequency range 100 GHz to 10 THz, offers diverse applications in spectroscopy, materials characterization, medical diagnostics and environmental monitoring. Despite its potential, the generation of high-intensity, tunable THz radiation remains a significant challenge. In this work, we explore a novel approach to the efficient generation of THz radiation based on laser–plasma interactions, utilizing the principles of photon deceleration.When a relativistic CO_(2) laser passes through a pre-ionized plasma, the laser induces a nonlinear wakefield, creating a strong refractive index gradient. This gradient, combined with the lower-density region of the wakefield, slows down the laser, facilitating the accumulation of THz radiation. The resulting THz pulse exhibits extreme collimation, high energy efficiency and tunability. Our work shows that this method can achieve up to 10% conversion efficiency with optimal plasma density near the critical density. This technique presents a promising solution for overcoming current limitations in THz source development and offers potential for diverse applications.展开更多
A novel deceleration traffic flow model is established based on the oscillatory congested states and the slow-tostart rule.The novel model considers human overreaction and mechanical restrictions as limited decelerati...A novel deceleration traffic flow model is established based on the oscillatory congested states and the slow-tostart rule.The novel model considers human overreaction and mechanical restrictions as limited deceleration capacity,effectively avoiding the unrealistic deceleration behavior found in most existing traffic flow models.In order to consider that the acceleration of a stationary vehicle is slower than that of a moving vehicle due to reasons such as driver inattention,the slow-to-start rule is introduced.In actual traffic,the driver will take different deceleration measures according to local traffic conditions,divided into ordinary and emergency deceleration.The deceleration setting in the deceleration model with only ordinary deceleration is modified.Computer simulations show that the novel model can achieve smooth,comfortable acceleration and deceleration behavior.Introducing the slow-to-start rule can realize the first-order transition from free flow to synchronized flow.The oscillatory congested states enable a first-order transition from synchronized flow to wide moving jam.Under periodic boundary conditions,the novel model can reproduce three traffic flow phases(free flow,synchronized flow,and wide moving jam)and two first-order transitions between three phases.In addition,the novel model can reproduce empirical results such as linear synchronized flow and headway distribution of free flow below 1 s.Under open boundary conditions,different congested patterns caused by on-ramps are analyzed.Compared with the classic deceleration model,this model can better reproduce the phenomenon and characteristics of actual traffic flow and provide more accurate decision support for daily traffic management of expressways.展开更多
Variable Cycle Engine(VCE)serves as the core system in achieving future advanced fighters with cross-generational performance and mission versatility.However,the resultant complex configuration and strong coupling of ...Variable Cycle Engine(VCE)serves as the core system in achieving future advanced fighters with cross-generational performance and mission versatility.However,the resultant complex configuration and strong coupling of control parameters present significant challenges in designing acceleration and deceleration control schedules.To thoroughly explore the performance potential of engine,a global integration design method for acceleration and deceleration control schedule based on inner and outer loop optimization is proposed.The outer loop optimization module employs Integrated Surrogate-Assisted Co-Differential Evolutionary(ISACDE)algorithm to optimize the variable geometry adjustment laws based on B-spline curve,and the inner loop optimization module adopts the fixed-state method to design the open-loop fuel–air ratio control schedules,which are aimed at minimizing the acceleration and deceleration time under multiple constraints.Simulation results demonstrate that the proposed global integration design method not only furthest shortens the acceleration and deceleration time,but also effectively safeguards the engine from overlimit.展开更多
The feedrate profile of non-uniform rational B-spline (NURBS) interpolation due to the contour errors is analyzed. A NURBS curve interpolator with adaptive acceleration-deceleration control is presented. In interpo-...The feedrate profile of non-uniform rational B-spline (NURBS) interpolation due to the contour errors is analyzed. A NURBS curve interpolator with adaptive acceleration-deceleration control is presented. In interpo- lation preprocessing, the sensitive zones of feedrate variations are processed with acceleration-deceleration control. By using the proposed algorithm, the machining accuracy is guaranteed and the feedrate is adaptively adjusted to he smoothed. The mechanical shock imposed in the servo system is avoided by the first and the second time derivatives of feedrates. A simulation of NURBS interpolation is given to demonstrate the validity and the effectiveness of the algorithm. The proposed interpolator can also be applied to the trajectory planning of the other parametric curves.展开更多
This study was to investigate the changes of autonomic nerve function and hemodynamics in patients with vasovagal syncope(VVS) during head-up tilt-table testing(HUT). HUT was performed in 68 patients with unexplained ...This study was to investigate the changes of autonomic nerve function and hemodynamics in patients with vasovagal syncope(VVS) during head-up tilt-table testing(HUT). HUT was performed in 68 patients with unexplained syncope and 18 healthy subjects served as control group. According to whether bradycardia, hypotension or both took place during the onset of syncope, the patients were divided during the test into three subgroups: vasodepressor syncope(VD), cardioinhibitory syncope(CI) and mixed syncope(MX) subgroups. Heart rate, blood pressure, heart rate variability(HRV), and deceleration capacity(DC) were continuously analyzed during HUT. For all the subjects with positive responses, the normalized low frequency(LFn) and the LF/HF ratio markedly decreased whereas normalized high frequency(HFn) increased when syncope occurred. Syncopal period also caused more significant increase in the power of the DC in positive groups. These changes were more exaggerated compared to controls. All the patients were indicative of a sympathetic surge in the presence of withdrawal vagal activity before syncope and a sympathetic inhibition with a vagal predominance at the syncopal stage by the frequency-domain analysis of HRV. With the measurements of DC, a decreased vagal tone before syncope stage and a vagal activation at the syncopal stage were observed. The vagal tone was higher in subjects showing cardioinhibitory responses at the syncopal stage. DC may provide an alternative method to understand the autonomic profile of VVS patients.展开更多
Generally complex 3D contours are divided into a lot of continuous small line blocks by CAD/CAM software. When these small line blocks are used in conventional way,machine tool has to stop at the end of one move befor...Generally complex 3D contours are divided into a lot of continuous small line blocks by CAD/CAM software. When these small line blocks are used in conventional way,machine tool has to stop at the end of one move before continuing on to the next to meet accuracy requirement,which results in inefficiency.Look-ahead is an intelligent function that aims at adjusting the feed rate automatically to achieve maximum productivity while maintaining accuracy.By now most researchers just utilize the simplest linear acceleration(ACC)and deceleration(DEC)to deal with look-ahead intelligence.A generalized ACC/DEC ap- proach and corresponding optimal look-ahead algorithm based on dynamic back tracking along a doubly linked list are proposed.An improved rounding strategy for reducing interpolation errors is also presented.By using the proposed techniques,arbitrary velocity profiles that offer look-ahead feature and have the desired ACC/DEC characteristics for movement of a lot of continuous line blocks can be generated efficiently.Both simulations and experiments showed the productivity was dramatically increased without sacri- fice of accuracy.展开更多
When facing a sudden danger or aversive condition while engaged in on-going forward motion,animals transiently slow down and make a turn to escape.The neural mechanisms underlying stimulation-induced deceleration in a...When facing a sudden danger or aversive condition while engaged in on-going forward motion,animals transiently slow down and make a turn to escape.The neural mechanisms underlying stimulation-induced deceleration in avoidance behavior are largely unknown.Here, we report that in Drosophila larvae, light-induced deceleration was commanded by a continuous neural pathway that included prothoracicotropic hormone neurons, eclosion hormone neurons, and tyrosine decarboxylase 2 motor neurons(the PET pathway). Inhibiting neurons in the PET pathway led to defects in lightavoidance due to insufficient deceleration and head casting.On the other hand, activation of PET pathway neurons specifically caused immediate deceleration in larval locomotion. Our findings reveal a neural substrate for the emergent deceleration response and provide a new understanding of the relationship between behavioral modules in animal avoidance responses.展开更多
To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed c...To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed control model provides continuity of acceleration, which avoids the intense vibration in high speed NC machining. Based on the discrete characteristic of the data sampling interpolation, the acc/dec control discrete mathematical model is also set up and the discrete expression of the theoretical deceleration length is obtained furthermore. Aiming at the question of hardly predetermining the deceleration point in acc/dec control before interpolation, the adaptive acc/dec control algorithm is deduced from the expressions of the theoretical deceleration length. The experimental result proves that the acc/dec control model has the characteristic of easy implementation, stable movement and low impact. The model has been applied in multi-axes high speed micro fabrication machining successfully.展开更多
Laser-assisted Stark deceleration scheme was proposed to decelerate the high-field-seeking molecule IC1 in its rovibronic ground state. However, the laser intensity of 1.0×10^10W/cm^2 is hard to realize in experi...Laser-assisted Stark deceleration scheme was proposed to decelerate the high-field-seeking molecule IC1 in its rovibronic ground state. However, the laser intensity of 1.0×10^10W/cm^2 is hard to realize in experiment. The time-of-flight signals of HC2n+1N (n=2, 3 and 4) by three-dimensional Monte-Carlo simulation suggest that deceleration of such molecules is more feasible experimentally as only one-tenth laser intensity is needed.展开更多
We propose a promising scheme to decelerate a CW molecular beam by using a red-detuned quasi-cw semi-Gaussian laser beam (SGB). We study the dynamical process of the deceleration for a CW deuterated ammonia (ND3) ...We propose a promising scheme to decelerate a CW molecular beam by using a red-detuned quasi-cw semi-Gaussian laser beam (SGB). We study the dynamical process of the deceleration for a CW deuterated ammonia (ND3) molecular beam by Monte-Carlo simulation method. Our study shows that we can obtain a ND3 molecular beam with a relative average kinetic energy loss of about 10% and a relative output molecular number of more than 90% by using a single quasi-cw SGB with a power of 1.5kW and a maximum optical well depth of 7.33mK.展开更多
The global oceanic/atmospheric tides exert decelerating/accelerating secular torques on the Earth rotation. We developed new formulations to accurately calculate amounts of two kinds of secular tidal torques. After Me...The global oceanic/atmospheric tides exert decelerating/accelerating secular torques on the Earth rotation. We developed new formulations to accurately calculate amounts of two kinds of secular tidal torques. After Melchior, we found that an additional factor 1+k-l = 1.216, which has been formerly neglected, must be multiplied unto the tidal torque integral. By using our refined formulations and the recent oceanic/atmospheric global tide models, we found that:(i) semidiurnal oceanic lunar/solar tides exert decelerating torques of about-4.462 × 10^(16)/-0.676 × 10^(16) Nm respectively and(ii) atmospheric S_2 tide exerts accelerating torque of 1.55 × 10^(15) Nm. Former estimates of the atmospheric S_2 tidal torque were twice as large as our estimate due to improper consideration of loading effect. We took the load Love number for atmospheric loading effect from Guo et al.(2004). For atmospheric loading of spherical harmonic degree two, the value of k′=-0.6031 is different from that for ocean loading as k′ =-0.3052,while the latter is currently used for both cases-ocean/atmospheric loading-without distinction. We discuss(i) the amount of solid Earth tidal dissipation(which has been left most uncertain) and(ii) secular changes of the dynamical state of the Earth-Moon-Sun system. Our estimate of the solid Earth tidal torque is-4.94×10^(15) Nm.展开更多
Studies show that different geometries of a Variable Cycle Engine(VCE)can be adjusted during the transient stage of the engine operation to improve the engine performance.However,this improvement increases the complex...Studies show that different geometries of a Variable Cycle Engine(VCE)can be adjusted during the transient stage of the engine operation to improve the engine performance.However,this improvement increases the complexity of the acceleration and deceleration control schedule.In order to resolve this problem,the Transient-state Reverse Method(TRM)is established in the present study based on the Steady-state Reverse Method(SRM)and the Virtual Power Extraction Method(VPEM).The state factors in the component-based engine performance models are replaced by variable geometry parameters to establish the TRM for a double bypass VCE.Obtained results are compared with the conventional component-based model from different aspects,including the accuracy and the convergence rate.The TRM is then employed to optimize the control schedule of a VCE.Obtained results show that the accuracy and the convergence rate of the proposed method are consistent with that of the conventional model.On the other hand,it is found that the new-model-optimized control schedules reduce the acceleration and deceleration time by 45%and 54%,respectively.Meanwhile,the surge margin of compressors,fuel–air ratio and the turbine inlet temperature maintained are within the acceptable criteria.It is concluded that the proposed TRM is a powerful method to design the acceleration and deceleration control schedule of the VCE.展开更多
The acceleration saltation of the traditional S-type acceleration model in the speed planning of the NURBS curve will result in the vibration and flexible impact of the machine tool.It will affect the surface quality ...The acceleration saltation of the traditional S-type acceleration model in the speed planning of the NURBS curve will result in the vibration and flexible impact of the machine tool.It will affect the surface quality of the components.The high speed smooth S-type acceleration and deceleration model deals with flexible impact,but the calculation is tedious.Aimed at the above problems,the traditional S-type acceleration and deceleration model is improved to make the jerk change linearly at a certain slope to reduce the flexible impact.Before the speed planning,it is needed to find the arc length and curvature of each point on the NURBS curve with a tiny step,and to determine the speed sensitivity point on the curve accordingly.According to the speed sensitive point,the NURBS curve is segmented.The attribute parameters of each section are determined by adaptive speed planning.Then,the speed planning can be performed on the NURBS curve according to the speed characteristics classification.The simulation results show that the algorithm can effectively reduce the flexible impact,improve the machining precision and efficiency,and simplify the classification of speed characteristics.展开更多
The relationship between the average penetration velocity,UˉUˉ,and the initial impact velocity, V0V0,in long-rod penetration has been studied recently. Experimental and simulation results all show the linear relatio...The relationship between the average penetration velocity,UˉUˉ,and the initial impact velocity, V0V0,in long-rod penetration has been studied recently. Experimental and simulation results all show the linear relationship between UˉUˉ and V0V0 over a wide range of V0V0 for different combinations of rod and target materials. However, the physical essence has not been fully revealed.In this paper, the Uˉ?V0Uˉ?V0relationship is profoundly analyzed using hydrodynamic model and Alekseevskii-Tate model. Especially, the explicitUˉ?V0Uˉ?V0 relationships are derived fromapproximate solutions of Alekseevskii-Tate model. Besides, the decelerationin long-rod penetration is discussed. The decelerationdegree is quantified by adeceleration index,α=2μˉ/(KΦJp)≈Ypρ?1/2p(ρ?1/2p+ρ?1/2t)V?20α=2μˉ/(KΦJp)≈Ypρp?1/2(ρp?1/2+ρt?1/2)V0?2, which is mostly related to the impact velocity, rod strength and rod/target densities. Thus, the state of penetration process can be identified and designed in experiments.展开更多
A new method of confirming the desired safety headway distance and desired deceleration is put forward according to the detected static or moving target and its simulation results in Matlab are also presented. The val...A new method of confirming the desired safety headway distance and desired deceleration is put forward according to the detected static or moving target and its simulation results in Matlab are also presented. The validity of the algorithm to calculate the reference speeds of both the ACC vehicle and the targeted car according to the vector quadrangle composed of the relative distance, the relative azimuth angle, the relative speeds of the vehicles has also been demonstrated through numerical example in Matlab. New laws to obtain the desired deceleration by estimating the braking force according to the vehicle analyses force equation are established too.展开更多
Fetal heart rate (FHR) decelerations are the commonest aberrant feature on cardiotocograph (CTG) thus having a major influence on classification ofFHRpatterns into the three tier system. The unexplained paradox of ear...Fetal heart rate (FHR) decelerations are the commonest aberrant feature on cardiotocograph (CTG) thus having a major influence on classification ofFHRpatterns into the three tier system. The unexplained paradox of early decelerations (head compression—an invariable phenomenon in labor) being extremely rare [1] should prompt a debate about scientific validity of current categorization. This paper demonstrates that there appear to be major fallacies in the pathophysiological hypothesis (cord compression—baroreceptor mechanism) underpinning of vast majority of (variable?) decelerations. Rapid decelerations during contractions with nadir matching peak of contractions are consistent with “pure” vagal reflex (head compression) rather than result of fetal blood pressure or oxygenation changes from cord compression. Hence, many American authors have reported that the abrupt FHR decelerations attributed to cord compression are actually due to head compression [2-6]. The paper debates if there are major fundamental fallacies in current categorization of FHR decelerations based concomitantly on rate of descent (reflecting putative aetiology?) and time relationship to contractions. Decelerations with consistently early timing (constituting majority) seem to get classed as “variable” because of rapid descent. A distorted unscientific categorization of FHR decelerations could lead to clinically unhelpful three tier classification system. Hence, the current unphysiological classification needs a fresh debate with consideration of alternative models and re-evaluation of clinical studies to test these. Open debate improves patient care and safety. The clue to benign reflex versus hypoxic nature of decelerations seems to be in the timing rather than the rate of descent. Although the likelihood of fetal hypxemia is related to depth and duration ofFHRdecelerations, the cut-offs are likely to be different for early/late/variable decelerations and it seems to be of paramount importance to get this discrimination right for useful visual or computerized system of CTG interpretation.展开更多
A near-resonant, red-detuning laser-assisted Stark deceleration scheme is proposed to slow CaF in its high-fieldseeking rovibronic ground state. The assisting Gaussian laser beam can confine CaF molecules transversely...A near-resonant, red-detuning laser-assisted Stark deceleration scheme is proposed to slow CaF in its high-fieldseeking rovibronic ground state. The assisting Gaussian laser beam can confine CaF molecules transversely owing to the optical Stark effect. Simulations suggest that the present scheme is superior to previous Stark decelerators. Under typical experimental conditions, when the assisting laser frequency is red-detuned to the molecular transition(λ~606.3 nm) by5.0 GHz and the laser power is about 5.6 W, the proposed decelerator can achieve a total number at the order of 10~4 CaF molecules with a number density at the order of 10~8 cm^(-3). The equivalent temperature of the obtained cold CaF molecules is 2.3 mK. Additionally, the desired assisting laser power can be as low as about 1.2 W if keeping the red-detuning value to be 1.0 GHz, which further suggests its experimental feasibility.展开更多
In this paper, the properties of dark energy are investigated according to the parameterized deceleration parameter q(z), which is used to describe the extent of the accelerating expansion of the universe. The poten...In this paper, the properties of dark energy are investigated according to the parameterized deceleration parameter q(z), which is used to describe the extent of the accelerating expansion of the universe. The potential of dark energy V(φ) and the cosmological parameters, such as the dimensionless energy density Ωφ, Ωm, and the state parameter wφ, are connected to it. Concretely, by giving two kinds of parameterized deceleration parameters q(z) = a + bz/(1 + z) and q(z) = 1/2 + (az + b)/(1 + z)^2, the evolution of these parameters and the reconstructed potentials V(φ) are plotted and analysed. It is found that the potentials run away with the evolution of universe.展开更多
Cold molecules have great scientific significance in high-resolution spectroscopy, precision measurement of physical constants, cold collision, and cold chemistry. Supersonic expansion is a conventional and versatile ...Cold molecules have great scientific significance in high-resolution spectroscopy, precision measurement of physical constants, cold collision, and cold chemistry. Supersonic expansion is a conventional and versatile method to produce cold molecules with high kinetic energies. We theoretically show here that fast-moving molecules from supersonic expansion can be effectively decelerated to any desired velocity with a rotating laser beam. The orbiting focus spot of the red-detuned laser serves as a two-dimensional potential well for the molecules. We analyze the dynamics of the molecules inside the decelerating potential well and investigate the dependence of their phase acceptance by the potential well on the tilting angle of the laser beam. ND_3 molecules are used in the test of the scheme and their trajectories under the impact of the decelerating potential well are numerically simulated using the Monte Carlo method. For instance, with a laser beam of20 k W in power focused into a pot of 40 μm in waist radius, ND3 molecules of 250 m/s can be brought to a standstill by the decelerating potential well within a time interval of about 0.73 ms. The total angle covered by the rotating laser beam is about 5.24?with the distance travelled by the potential well being about 9.13 cm. In fact, the molecules can be decelerated to any desired velocity depending on the parameters adopted. This scheme is simple in structure and easy to be realized in experiment. In addition, it is applicable to decelerating both molecules and atoms.展开更多
Ion beam deceleration properties of a newly developed low-energy ion beam implantation system were studied. The objective of this system was to produce general purpose low-energy (5 to 15 keV) implantations with high ...Ion beam deceleration properties of a newly developed low-energy ion beam implantation system were studied. The objective of this system was to produce general purpose low-energy (5 to 15 keV) implantations with high current beam of hundreds of μA level, providing the most wide implantation area possible and allowing continuously magnetic scanning of the beam over the sample(s). This paper describes the developed system installed in the high-current ion implanter at the Laboratory of Accelerators and Radiation Technologies of the Nuclear and Technological Cam-pus, Sacavém, Portugal (CTN).展开更多
基金Project supported by the China Postdoctoral Science Foundation (Grant No. 2024T170021)the Beijing Municipal Science & Technology Commission, Administrative Commission of Zhongguancun Science Park (Grant No. Z231100006023003)+2 种基金the National Natural Science Foundation of China (Grant Nos. 12175058, 12205007, and 11921006)the National Science Fund of Hunan Province for Distinguished Young Scholars (Grant No. 2024JJ2009)The computing was supported by the High-performance Computing Platform of Peking University。
文摘Terahertz(THz) radiation, spanning the frequency range 100 GHz to 10 THz, offers diverse applications in spectroscopy, materials characterization, medical diagnostics and environmental monitoring. Despite its potential, the generation of high-intensity, tunable THz radiation remains a significant challenge. In this work, we explore a novel approach to the efficient generation of THz radiation based on laser–plasma interactions, utilizing the principles of photon deceleration.When a relativistic CO_(2) laser passes through a pre-ionized plasma, the laser induces a nonlinear wakefield, creating a strong refractive index gradient. This gradient, combined with the lower-density region of the wakefield, slows down the laser, facilitating the accumulation of THz radiation. The resulting THz pulse exhibits extreme collimation, high energy efficiency and tunability. Our work shows that this method can achieve up to 10% conversion efficiency with optimal plasma density near the critical density. This technique presents a promising solution for overcoming current limitations in THz source development and offers potential for diverse applications.
基金supported by the National Natural Science Foundation of China(Grant No.71671109)the National Key Research and Development Program of China(Grant No.2020YFB1600500)the Key Research and Development Program of Heilongjiang Province,China(Grant No.GZ20220089)。
文摘A novel deceleration traffic flow model is established based on the oscillatory congested states and the slow-tostart rule.The novel model considers human overreaction and mechanical restrictions as limited deceleration capacity,effectively avoiding the unrealistic deceleration behavior found in most existing traffic flow models.In order to consider that the acceleration of a stationary vehicle is slower than that of a moving vehicle due to reasons such as driver inattention,the slow-to-start rule is introduced.In actual traffic,the driver will take different deceleration measures according to local traffic conditions,divided into ordinary and emergency deceleration.The deceleration setting in the deceleration model with only ordinary deceleration is modified.Computer simulations show that the novel model can achieve smooth,comfortable acceleration and deceleration behavior.Introducing the slow-to-start rule can realize the first-order transition from free flow to synchronized flow.The oscillatory congested states enable a first-order transition from synchronized flow to wide moving jam.Under periodic boundary conditions,the novel model can reproduce three traffic flow phases(free flow,synchronized flow,and wide moving jam)and two first-order transitions between three phases.In addition,the novel model can reproduce empirical results such as linear synchronized flow and headway distribution of free flow below 1 s.Under open boundary conditions,different congested patterns caused by on-ramps are analyzed.Compared with the classic deceleration model,this model can better reproduce the phenomenon and characteristics of actual traffic flow and provide more accurate decision support for daily traffic management of expressways.
基金supported by the Basic Research on Dynamic Real-time Modeling and Onboard Adaptive Modeling of Aero Engine,China(No.QZPY202308)。
文摘Variable Cycle Engine(VCE)serves as the core system in achieving future advanced fighters with cross-generational performance and mission versatility.However,the resultant complex configuration and strong coupling of control parameters present significant challenges in designing acceleration and deceleration control schedules.To thoroughly explore the performance potential of engine,a global integration design method for acceleration and deceleration control schedule based on inner and outer loop optimization is proposed.The outer loop optimization module employs Integrated Surrogate-Assisted Co-Differential Evolutionary(ISACDE)algorithm to optimize the variable geometry adjustment laws based on B-spline curve,and the inner loop optimization module adopts the fixed-state method to design the open-loop fuel–air ratio control schedules,which are aimed at minimizing the acceleration and deceleration time under multiple constraints.Simulation results demonstrate that the proposed global integration design method not only furthest shortens the acceleration and deceleration time,but also effectively safeguards the engine from overlimit.
基金Supported by the Natural Science Foundation of Jiangsu Province(BK2003005)~~
文摘The feedrate profile of non-uniform rational B-spline (NURBS) interpolation due to the contour errors is analyzed. A NURBS curve interpolator with adaptive acceleration-deceleration control is presented. In interpo- lation preprocessing, the sensitive zones of feedrate variations are processed with acceleration-deceleration control. By using the proposed algorithm, the machining accuracy is guaranteed and the feedrate is adaptively adjusted to he smoothed. The mechanical shock imposed in the servo system is avoided by the first and the second time derivatives of feedrates. A simulation of NURBS interpolation is given to demonstrate the validity and the effectiveness of the algorithm. The proposed interpolator can also be applied to the trajectory planning of the other parametric curves.
基金supported by a grant from the Wuhan Science and Technology Program of China(No.2014060101010032)
文摘This study was to investigate the changes of autonomic nerve function and hemodynamics in patients with vasovagal syncope(VVS) during head-up tilt-table testing(HUT). HUT was performed in 68 patients with unexplained syncope and 18 healthy subjects served as control group. According to whether bradycardia, hypotension or both took place during the onset of syncope, the patients were divided during the test into three subgroups: vasodepressor syncope(VD), cardioinhibitory syncope(CI) and mixed syncope(MX) subgroups. Heart rate, blood pressure, heart rate variability(HRV), and deceleration capacity(DC) were continuously analyzed during HUT. For all the subjects with positive responses, the normalized low frequency(LFn) and the LF/HF ratio markedly decreased whereas normalized high frequency(HFn) increased when syncope occurred. Syncopal period also caused more significant increase in the power of the DC in positive groups. These changes were more exaggerated compared to controls. All the patients were indicative of a sympathetic surge in the presence of withdrawal vagal activity before syncope and a sympathetic inhibition with a vagal predominance at the syncopal stage by the frequency-domain analysis of HRV. With the measurements of DC, a decreased vagal tone before syncope stage and a vagal activation at the syncopal stage were observed. The vagal tone was higher in subjects showing cardioinhibitory responses at the syncopal stage. DC may provide an alternative method to understand the autonomic profile of VVS patients.
文摘Generally complex 3D contours are divided into a lot of continuous small line blocks by CAD/CAM software. When these small line blocks are used in conventional way,machine tool has to stop at the end of one move before continuing on to the next to meet accuracy requirement,which results in inefficiency.Look-ahead is an intelligent function that aims at adjusting the feed rate automatically to achieve maximum productivity while maintaining accuracy.By now most researchers just utilize the simplest linear acceleration(ACC)and deceleration(DEC)to deal with look-ahead intelligence.A generalized ACC/DEC ap- proach and corresponding optimal look-ahead algorithm based on dynamic back tracking along a doubly linked list are proposed.An improved rounding strategy for reducing interpolation errors is also presented.By using the proposed techniques,arbitrary velocity profiles that offer look-ahead feature and have the desired ACC/DEC characteristics for movement of a lot of continuous line blocks can be generated efficiently.Both simulations and experiments showed the productivity was dramatically increased without sacri- fice of accuracy.
基金supported by grants from the National Basic Research Development Program of China (973 Program, 2013CB945603)the National Natural Science Foundation of China (31070944, 31271147, 31471063, 31671074, and 61572433)+1 种基金the Natural Science Foundation of Zhejiang Province, China (LR13C090001 and LZ14F020002)the Fundamental Research Funds for the Central Universities, China (2017FZA7003)
文摘When facing a sudden danger or aversive condition while engaged in on-going forward motion,animals transiently slow down and make a turn to escape.The neural mechanisms underlying stimulation-induced deceleration in avoidance behavior are largely unknown.Here, we report that in Drosophila larvae, light-induced deceleration was commanded by a continuous neural pathway that included prothoracicotropic hormone neurons, eclosion hormone neurons, and tyrosine decarboxylase 2 motor neurons(the PET pathway). Inhibiting neurons in the PET pathway led to defects in lightavoidance due to insufficient deceleration and head casting.On the other hand, activation of PET pathway neurons specifically caused immediate deceleration in larval locomotion. Our findings reveal a neural substrate for the emergent deceleration response and provide a new understanding of the relationship between behavioral modules in animal avoidance responses.
基金the Hi-Tech Research and Development Pro-gram (863) of China (No. 2006AA04Z233)the National NaturalScience Foundation of China (No. 50575205)the Natural ScienceFoundation of Zhejiang Province (Nos. Y104243 and Y105686),China
文摘To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed control model provides continuity of acceleration, which avoids the intense vibration in high speed NC machining. Based on the discrete characteristic of the data sampling interpolation, the acc/dec control discrete mathematical model is also set up and the discrete expression of the theoretical deceleration length is obtained furthermore. Aiming at the question of hardly predetermining the deceleration point in acc/dec control before interpolation, the adaptive acc/dec control algorithm is deduced from the expressions of the theoretical deceleration length. The experimental result proves that the acc/dec control model has the characteristic of easy implementation, stable movement and low impact. The model has been applied in multi-axes high speed micro fabrication machining successfully.
基金This work was supported by the National Natural Science Foundation of China (No.20273066).
文摘Laser-assisted Stark deceleration scheme was proposed to decelerate the high-field-seeking molecule IC1 in its rovibronic ground state. However, the laser intensity of 1.0×10^10W/cm^2 is hard to realize in experiment. The time-of-flight signals of HC2n+1N (n=2, 3 and 4) by three-dimensional Monte-Carlo simulation suggest that deceleration of such molecules is more feasible experimentally as only one-tenth laser intensity is needed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10374029, 10434060 and 10674047)the National Key Basic Research and Development Program of China (Grant No 2006CB921604)+2 种基金the Key Basic Program of Shanghai Municipality (Grant No 07JC14017)the Program for Changjiang Scholar and Innovative Research TeamShanghai Leading Academic Discipline Project (Grant No B408)
文摘We propose a promising scheme to decelerate a CW molecular beam by using a red-detuned quasi-cw semi-Gaussian laser beam (SGB). We study the dynamical process of the deceleration for a CW deuterated ammonia (ND3) molecular beam by Monte-Carlo simulation method. Our study shows that we can obtain a ND3 molecular beam with a relative average kinetic energy loss of about 10% and a relative output molecular number of more than 90% by using a single quasi-cw SGB with a power of 1.5kW and a maximum optical well depth of 7.33mK.
基金supported by the Space Geodesy Technology Development Program of Korea Astronomy and Space Science Institutesupported by the NSFC(grant Nos.41631072,41721003,41574007 and 41429401)the Discipline Innovative Engineering Plan of Modern Geodesy and Geodynamics(grant No.B17033)
文摘The global oceanic/atmospheric tides exert decelerating/accelerating secular torques on the Earth rotation. We developed new formulations to accurately calculate amounts of two kinds of secular tidal torques. After Melchior, we found that an additional factor 1+k-l = 1.216, which has been formerly neglected, must be multiplied unto the tidal torque integral. By using our refined formulations and the recent oceanic/atmospheric global tide models, we found that:(i) semidiurnal oceanic lunar/solar tides exert decelerating torques of about-4.462 × 10^(16)/-0.676 × 10^(16) Nm respectively and(ii) atmospheric S_2 tide exerts accelerating torque of 1.55 × 10^(15) Nm. Former estimates of the atmospheric S_2 tidal torque were twice as large as our estimate due to improper consideration of loading effect. We took the load Love number for atmospheric loading effect from Guo et al.(2004). For atmospheric loading of spherical harmonic degree two, the value of k′=-0.6031 is different from that for ocean loading as k′ =-0.3052,while the latter is currently used for both cases-ocean/atmospheric loading-without distinction. We discuss(i) the amount of solid Earth tidal dissipation(which has been left most uncertain) and(ii) secular changes of the dynamical state of the Earth-Moon-Sun system. Our estimate of the solid Earth tidal torque is-4.94×10^(15) Nm.
基金supported by the Aviation Power Foundation of China(6141B09050382)。
文摘Studies show that different geometries of a Variable Cycle Engine(VCE)can be adjusted during the transient stage of the engine operation to improve the engine performance.However,this improvement increases the complexity of the acceleration and deceleration control schedule.In order to resolve this problem,the Transient-state Reverse Method(TRM)is established in the present study based on the Steady-state Reverse Method(SRM)and the Virtual Power Extraction Method(VPEM).The state factors in the component-based engine performance models are replaced by variable geometry parameters to establish the TRM for a double bypass VCE.Obtained results are compared with the conventional component-based model from different aspects,including the accuracy and the convergence rate.The TRM is then employed to optimize the control schedule of a VCE.Obtained results show that the accuracy and the convergence rate of the proposed method are consistent with that of the conventional model.On the other hand,it is found that the new-model-optimized control schedules reduce the acceleration and deceleration time by 45%and 54%,respectively.Meanwhile,the surge margin of compressors,fuel–air ratio and the turbine inlet temperature maintained are within the acceptable criteria.It is concluded that the proposed TRM is a powerful method to design the acceleration and deceleration control schedule of the VCE.
基金the National Key Basic Research Program of China(973 Program)(No.2014CB046501)。
文摘The acceleration saltation of the traditional S-type acceleration model in the speed planning of the NURBS curve will result in the vibration and flexible impact of the machine tool.It will affect the surface quality of the components.The high speed smooth S-type acceleration and deceleration model deals with flexible impact,but the calculation is tedious.Aimed at the above problems,the traditional S-type acceleration and deceleration model is improved to make the jerk change linearly at a certain slope to reduce the flexible impact.Before the speed planning,it is needed to find the arc length and curvature of each point on the NURBS curve with a tiny step,and to determine the speed sensitivity point on the curve accordingly.According to the speed sensitive point,the NURBS curve is segmented.The attribute parameters of each section are determined by adaptive speed planning.Then,the speed planning can be performed on the NURBS curve according to the speed characteristics classification.The simulation results show that the algorithm can effectively reduce the flexible impact,improve the machining precision and efficiency,and simplify the classification of speed characteristics.
基金The work was supported by the National Natural Science Foundation of China (Grant 11872118)The authors want to express deep gratitude to the reviewers for their sound comments and helpful suggestions.
文摘The relationship between the average penetration velocity,UˉUˉ,and the initial impact velocity, V0V0,in long-rod penetration has been studied recently. Experimental and simulation results all show the linear relationship between UˉUˉ and V0V0 over a wide range of V0V0 for different combinations of rod and target materials. However, the physical essence has not been fully revealed.In this paper, the Uˉ?V0Uˉ?V0relationship is profoundly analyzed using hydrodynamic model and Alekseevskii-Tate model. Especially, the explicitUˉ?V0Uˉ?V0 relationships are derived fromapproximate solutions of Alekseevskii-Tate model. Besides, the decelerationin long-rod penetration is discussed. The decelerationdegree is quantified by adeceleration index,α=2μˉ/(KΦJp)≈Ypρ?1/2p(ρ?1/2p+ρ?1/2t)V?20α=2μˉ/(KΦJp)≈Ypρp?1/2(ρp?1/2+ρt?1/2)V0?2, which is mostly related to the impact velocity, rod strength and rod/target densities. Thus, the state of penetration process can be identified and designed in experiments.
文摘A new method of confirming the desired safety headway distance and desired deceleration is put forward according to the detected static or moving target and its simulation results in Matlab are also presented. The validity of the algorithm to calculate the reference speeds of both the ACC vehicle and the targeted car according to the vector quadrangle composed of the relative distance, the relative azimuth angle, the relative speeds of the vehicles has also been demonstrated through numerical example in Matlab. New laws to obtain the desired deceleration by estimating the braking force according to the vehicle analyses force equation are established too.
文摘Fetal heart rate (FHR) decelerations are the commonest aberrant feature on cardiotocograph (CTG) thus having a major influence on classification ofFHRpatterns into the three tier system. The unexplained paradox of early decelerations (head compression—an invariable phenomenon in labor) being extremely rare [1] should prompt a debate about scientific validity of current categorization. This paper demonstrates that there appear to be major fallacies in the pathophysiological hypothesis (cord compression—baroreceptor mechanism) underpinning of vast majority of (variable?) decelerations. Rapid decelerations during contractions with nadir matching peak of contractions are consistent with “pure” vagal reflex (head compression) rather than result of fetal blood pressure or oxygenation changes from cord compression. Hence, many American authors have reported that the abrupt FHR decelerations attributed to cord compression are actually due to head compression [2-6]. The paper debates if there are major fundamental fallacies in current categorization of FHR decelerations based concomitantly on rate of descent (reflecting putative aetiology?) and time relationship to contractions. Decelerations with consistently early timing (constituting majority) seem to get classed as “variable” because of rapid descent. A distorted unscientific categorization of FHR decelerations could lead to clinically unhelpful three tier classification system. Hence, the current unphysiological classification needs a fresh debate with consideration of alternative models and re-evaluation of clinical studies to test these. Open debate improves patient care and safety. The clue to benign reflex versus hypoxic nature of decelerations seems to be in the timing rather than the rate of descent. Although the likelihood of fetal hypxemia is related to depth and duration ofFHRdecelerations, the cut-offs are likely to be different for early/late/variable decelerations and it seems to be of paramount importance to get this discrimination right for useful visual or computerized system of CTG interpretation.
基金Project supported by the National Natural Science Foundation of China(Grant No.11604164)
文摘A near-resonant, red-detuning laser-assisted Stark deceleration scheme is proposed to slow CaF in its high-fieldseeking rovibronic ground state. The assisting Gaussian laser beam can confine CaF molecules transversely owing to the optical Stark effect. Simulations suggest that the present scheme is superior to previous Stark decelerators. Under typical experimental conditions, when the assisting laser frequency is red-detuned to the molecular transition(λ~606.3 nm) by5.0 GHz and the laser power is about 5.6 W, the proposed decelerator can achieve a total number at the order of 10~4 CaF molecules with a number density at the order of 10~8 cm^(-3). The equivalent temperature of the obtained cold CaF molecules is 2.3 mK. Additionally, the desired assisting laser power can be as low as about 1.2 W if keeping the red-detuning value to be 1.0 GHz, which further suggests its experimental feasibility.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10573003 and 10703001)Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070141034)
文摘In this paper, the properties of dark energy are investigated according to the parameterized deceleration parameter q(z), which is used to describe the extent of the accelerating expansion of the universe. The potential of dark energy V(φ) and the cosmological parameters, such as the dimensionless energy density Ωφ, Ωm, and the state parameter wφ, are connected to it. Concretely, by giving two kinds of parameterized deceleration parameters q(z) = a + bz/(1 + z) and q(z) = 1/2 + (az + b)/(1 + z)^2, the evolution of these parameters and the reconstructed potentials V(φ) are plotted and analysed. It is found that the potentials run away with the evolution of universe.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11504112,91536218,and 11604100)
文摘Cold molecules have great scientific significance in high-resolution spectroscopy, precision measurement of physical constants, cold collision, and cold chemistry. Supersonic expansion is a conventional and versatile method to produce cold molecules with high kinetic energies. We theoretically show here that fast-moving molecules from supersonic expansion can be effectively decelerated to any desired velocity with a rotating laser beam. The orbiting focus spot of the red-detuned laser serves as a two-dimensional potential well for the molecules. We analyze the dynamics of the molecules inside the decelerating potential well and investigate the dependence of their phase acceptance by the potential well on the tilting angle of the laser beam. ND_3 molecules are used in the test of the scheme and their trajectories under the impact of the decelerating potential well are numerically simulated using the Monte Carlo method. For instance, with a laser beam of20 k W in power focused into a pot of 40 μm in waist radius, ND3 molecules of 250 m/s can be brought to a standstill by the decelerating potential well within a time interval of about 0.73 ms. The total angle covered by the rotating laser beam is about 5.24?with the distance travelled by the potential well being about 9.13 cm. In fact, the molecules can be decelerated to any desired velocity depending on the parameters adopted. This scheme is simple in structure and easy to be realized in experiment. In addition, it is applicable to decelerating both molecules and atoms.
文摘Ion beam deceleration properties of a newly developed low-energy ion beam implantation system were studied. The objective of this system was to produce general purpose low-energy (5 to 15 keV) implantations with high current beam of hundreds of μA level, providing the most wide implantation area possible and allowing continuously magnetic scanning of the beam over the sample(s). This paper describes the developed system installed in the high-current ion implanter at the Laboratory of Accelerators and Radiation Technologies of the Nuclear and Technological Cam-pus, Sacavém, Portugal (CTN).