Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing ...Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility.展开更多
As a complicated optimization problem,parallel batch processing machines scheduling problem(PBPMSP)exists in many real-life manufacturing industries such as textiles and semiconductors.Machine eligibility means that a...As a complicated optimization problem,parallel batch processing machines scheduling problem(PBPMSP)exists in many real-life manufacturing industries such as textiles and semiconductors.Machine eligibility means that at least one machine is not eligible for at least one job.PBPMSP and scheduling problems with machine eligibility are frequently considered;however,PBPMSP with machine eligibility is seldom explored.This study investigates PBPMSP with machine eligibility in fabric dyeing and presents a novel shuffled frog-leaping algorithm with competition(CSFLA)to minimize makespan.In CSFLA,the initial population is produced in a heuristic and random way,and the competitive search of memeplexes comprises two phases.Competition between any two memeplexes is done in the first phase,then iteration times are adjusted based on competition,and search strategies are adjusted adaptively based on the evolution quality of memeplexes in the second phase.An adaptive population shuffling is given.Computational experiments are conducted on 100 instances.The computational results showed that the new strategies of CSFLA are effective and that CSFLA has promising advantages in solving the considered PBPMSP.展开更多
This study focuses on the scheduling problem of unrelated parallel batch processing machines(BPM)with release times,a scenario derived from the moulding process in a foundry.In this process,a batch is initially formed...This study focuses on the scheduling problem of unrelated parallel batch processing machines(BPM)with release times,a scenario derived from the moulding process in a foundry.In this process,a batch is initially formed,placed in a sandbox,and then the sandbox is positioned on a BPM formoulding.The complexity of the scheduling problem increases due to the consideration of BPM capacity and sandbox volume.To minimize the makespan,a new cooperated imperialist competitive algorithm(CICA)is introduced.In CICA,the number of empires is not a parameter,and four empires aremaintained throughout the search process.Two types of assimilations are achieved:The strongest and weakest empires cooperate in their assimilation,while the remaining two empires,having a close normalization total cost,combine in their assimilation.A new form of imperialist competition is proposed to prevent insufficient competition,and the unique features of the problem are effectively utilized.Computational experiments are conducted across several instances,and a significant amount of experimental results show that the newstrategies of CICAare effective,indicating promising advantages for the considered BPMscheduling problems.展开更多
A new fault-diagnosis method to be used in batch processes based on multi-phase regression is presented to overcome the difficulty arising in the processes due to non-uniform sample data in each phase.Support vector m...A new fault-diagnosis method to be used in batch processes based on multi-phase regression is presented to overcome the difficulty arising in the processes due to non-uniform sample data in each phase.Support vector machine is first used for phase identification,and for each phase,improved artificial immune network is developed to analyze and recognize fault patterns.A new cell elimination role is proposed to enhance the incremental clustering capability of the immune network.The proposed method has been applied to glutamic acid fermentation,comparison results have indicated that the proposed approach can better classify fault samples and yield higher diagnosis precision.展开更多
The casting production process typically involves single jobs and small batches,with multiple constraints in the molding and smelting operations.To address the discrete optimization challenge of casting production sch...The casting production process typically involves single jobs and small batches,with multiple constraints in the molding and smelting operations.To address the discrete optimization challenge of casting production scheduling,this paper presents a multi-objective batch scheduling model for molding and smelting operations on unrelated batch processing machines with incompatible job families and non-identical job sizes.The model aims to minimise the makespan,number of batches,and average vacancy rate of sandboxes.Based on the genetic algorithm,virus optimization algorithm,and two local search strategies,a hybrid algorithm(GA-VOA-BMS)has been designed to solve the model.The GA-VOA-BMS applies a novel Batch First Fit(BFF)heuristic for incompatible job families to improve the quality of the initial population,adopting the batch moving strategy and batch merging strategy to further enhance the quality of the solution and accelerate the convergence of the algorithm.The proposed algorithm was then compared with multi-objective swarm optimization algorithms,namely NSGA-ll,SPEA-l,and PESA-ll,to evaluate its effectiveness.The results of the performance comparison indicate that the proposed algorithm outperforms the others in terms of both qualityand stability.展开更多
文摘Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility.
基金supported by the National Natural Science Foundation of China(Grant Number 61573264).
文摘As a complicated optimization problem,parallel batch processing machines scheduling problem(PBPMSP)exists in many real-life manufacturing industries such as textiles and semiconductors.Machine eligibility means that at least one machine is not eligible for at least one job.PBPMSP and scheduling problems with machine eligibility are frequently considered;however,PBPMSP with machine eligibility is seldom explored.This study investigates PBPMSP with machine eligibility in fabric dyeing and presents a novel shuffled frog-leaping algorithm with competition(CSFLA)to minimize makespan.In CSFLA,the initial population is produced in a heuristic and random way,and the competitive search of memeplexes comprises two phases.Competition between any two memeplexes is done in the first phase,then iteration times are adjusted based on competition,and search strategies are adjusted adaptively based on the evolution quality of memeplexes in the second phase.An adaptive population shuffling is given.Computational experiments are conducted on 100 instances.The computational results showed that the new strategies of CSFLA are effective and that CSFLA has promising advantages in solving the considered PBPMSP.
基金the National Natural Science Foundation of China(Grant Number 61573264).
文摘This study focuses on the scheduling problem of unrelated parallel batch processing machines(BPM)with release times,a scenario derived from the moulding process in a foundry.In this process,a batch is initially formed,placed in a sandbox,and then the sandbox is positioned on a BPM formoulding.The complexity of the scheduling problem increases due to the consideration of BPM capacity and sandbox volume.To minimize the makespan,a new cooperated imperialist competitive algorithm(CICA)is introduced.In CICA,the number of empires is not a parameter,and four empires aremaintained throughout the search process.Two types of assimilations are achieved:The strongest and weakest empires cooperate in their assimilation,while the remaining two empires,having a close normalization total cost,combine in their assimilation.A new form of imperialist competition is proposed to prevent insufficient competition,and the unique features of the problem are effectively utilized.Computational experiments are conducted across several instances,and a significant amount of experimental results show that the newstrategies of CICAare effective,indicating promising advantages for the considered BPMscheduling problems.
基金Sponsored by the Research Foundation of Beijing Institute of Technology (20080642001)
文摘A new fault-diagnosis method to be used in batch processes based on multi-phase regression is presented to overcome the difficulty arising in the processes due to non-uniform sample data in each phase.Support vector machine is first used for phase identification,and for each phase,improved artificial immune network is developed to analyze and recognize fault patterns.A new cell elimination role is proposed to enhance the incremental clustering capability of the immune network.The proposed method has been applied to glutamic acid fermentation,comparison results have indicated that the proposed approach can better classify fault samples and yield higher diagnosis precision.
文摘The casting production process typically involves single jobs and small batches,with multiple constraints in the molding and smelting operations.To address the discrete optimization challenge of casting production scheduling,this paper presents a multi-objective batch scheduling model for molding and smelting operations on unrelated batch processing machines with incompatible job families and non-identical job sizes.The model aims to minimise the makespan,number of batches,and average vacancy rate of sandboxes.Based on the genetic algorithm,virus optimization algorithm,and two local search strategies,a hybrid algorithm(GA-VOA-BMS)has been designed to solve the model.The GA-VOA-BMS applies a novel Batch First Fit(BFF)heuristic for incompatible job families to improve the quality of the initial population,adopting the batch moving strategy and batch merging strategy to further enhance the quality of the solution and accelerate the convergence of the algorithm.The proposed algorithm was then compared with multi-objective swarm optimization algorithms,namely NSGA-ll,SPEA-l,and PESA-ll,to evaluate its effectiveness.The results of the performance comparison indicate that the proposed algorithm outperforms the others in terms of both qualityand stability.