The construction of the biproduct of Hopf algebras, which consists of smash product and the dual notion of smash coproduct, was first formulated by Radford. In this paper we study the quasitriangular structures over b...The construction of the biproduct of Hopf algebras, which consists of smash product and the dual notion of smash coproduct, was first formulated by Radford. In this paper we study the quasitriangular structures over biproduct Hopf algebras B*H. We show the necessary and sufficient conditions for biproduct Hopf algebras to be quasitriangular. For the case when they are, we determine completely the unique formula of the quasitriangular structures. And so we find a way to construct solutions of the Yang-Baxter equation over biproduct Hopf algebras in the sense of (Majid, 1990).展开更多
Let HLB be the category of generalized Long modules, that is, H-modules and B-comodules over Hopf algebras B and H. We describe a new Turaev braided group category over generalized Long module HLB (S(π)) where th...Let HLB be the category of generalized Long modules, that is, H-modules and B-comodules over Hopf algebras B and H. We describe a new Turaev braided group category over generalized Long module HLB (S(π)) where the opposite group S(π) of the semidirect product of the opposite group πopof a group π by π. As an application, we show that this is a Turaev braided group-category HLBfor a quasitriangular Turaev group-coalgebra H and a coquasitriangular Turaev group-algebra B.展开更多
In this paper, the notion of a twisted partial Hopf coaction is introduced. The conditions on partial cocycles are established in order to construct partial crossed coproducts. Then the classification of partial cross...In this paper, the notion of a twisted partial Hopf coaction is introduced. The conditions on partial cocycles are established in order to construct partial crossed coproducts. Then the classification of partial crossed coproducts is discussed. Finally, some necessary and sufficient conditions for a class of partial crossed coproducts to be quasitriangular bialgebras are given.展开更多
文摘The construction of the biproduct of Hopf algebras, which consists of smash product and the dual notion of smash coproduct, was first formulated by Radford. In this paper we study the quasitriangular structures over biproduct Hopf algebras B*H. We show the necessary and sufficient conditions for biproduct Hopf algebras to be quasitriangular. For the case when they are, we determine completely the unique formula of the quasitriangular structures. And so we find a way to construct solutions of the Yang-Baxter equation over biproduct Hopf algebras in the sense of (Majid, 1990).
基金The NSF (11101128) of Chinathe NSF (102300410049) of Henan Provincethe NSF (BK2012736) of Jiangsu Province
文摘Let HLB be the category of generalized Long modules, that is, H-modules and B-comodules over Hopf algebras B and H. We describe a new Turaev braided group category over generalized Long module HLB (S(π)) where the opposite group S(π) of the semidirect product of the opposite group πopof a group π by π. As an application, we show that this is a Turaev braided group-category HLBfor a quasitriangular Turaev group-coalgebra H and a coquasitriangular Turaev group-algebra B.
基金Acknowledgements This Foundation of China (Grant work was supported by Nos. 11471186, 11261063), the National Natural Science the Natural Science Foundation of Shandong Province (Nos. ZR2014AQ027 and ZR2014AQ024), and the Fund of the Key Disciplines in the General Colleges and Universities of Xin Jiang Uygur Autonomous Region (No. 2012ZDXK03).
文摘In this paper, the notion of a twisted partial Hopf coaction is introduced. The conditions on partial cocycles are established in order to construct partial crossed coproducts. Then the classification of partial crossed coproducts is discussed. Finally, some necessary and sufficient conditions for a class of partial crossed coproducts to be quasitriangular bialgebras are given.