By introducing the von Neumann entropy as a measure of the extent of noise, this paper discusses the entropy evolution in a two-level quantum feedback controlled system. The results show that the feedback control can ...By introducing the von Neumann entropy as a measure of the extent of noise, this paper discusses the entropy evolution in a two-level quantum feedback controlled system. The results show that the feedback control can induce the reduction of the degree of noise, and different control schemes exhibit different noise controlling ability, the extent of the reduction also related with the position of the target state on the Bloch sphere. It is shown that the evolution of entropy can provide a real time noise observation and a systematic guideline to make reasonable choice of control strategy.展开更多
We investigate the quantum speed limit time (QSLT) of a two-level atom under quantum-jump-based feedback control or homodyne-based feedback control. Our results show that the two different feedback control schemes h...We investigate the quantum speed limit time (QSLT) of a two-level atom under quantum-jump-based feedback control or homodyne-based feedback control. Our results show that the two different feedback control schemes have different influences on the evolutionary speed. By adjusting the feedback parameters, the quantum-jump-based feedback control can induce speedup of the atomic evolution from an excited state, but the homodyne-based feedback control cannot change the evolutionary speed. Additionally, the QSLT for the whole dynamical process is explored. Under the quantum-jump-based feedback control, the QSLT displays oscillatory behaviors, which implies multiple speed-up and speed-down processes during the evolution. While, the homodyne-based feedback control can accelerate the speed-up process and improve the uniform speed in the uniform evolution process.展开更多
We consider the system consisting of two qubits collectively damped, with the output being unit-efficiency measured and subsequently fed back to control the system state. Our primary goal in this paper is (i) to sol...We consider the system consisting of two qubits collectively damped, with the output being unit-efficiency measured and subsequently fed back to control the system state. Our primary goal in this paper is (i) to solve the feedback-modified master equation, (ii) to demonstrate the ability of feedback control based on the solutions, and (iii) to pick out different steady states by choosing different driving strengths and feedback strengths to counteract the effects of both damping and the measurement back-action on the system. We further investigate some properties of the equilibrium steady state, its distribution probability and entanglement vs. the driving and feedback amplitudes. We find that in our feedback model feedback plays a negative role in producing entanglement.展开更多
We consider an open quantum system subjected to a noise channel under measurement-based feedback control and two prototypical classes of decoherence channels are considered: phase damping and generalized amplitude da...We consider an open quantum system subjected to a noise channel under measurement-based feedback control and two prototypical classes of decoherence channels are considered: phase damping and generalized amplitude damping. Based on quantum trajectory theory, we obtain an extended master equation for the dynamics of the reduced system in the presence of feedback control. For a qubit system we analytically solve this master equation and obtain the solution of the state vector dynamics. Then we propose an effective feedback control scheme for preparing an arbitrary quantum pure state. We also study how to protect two nonorthogonai states effectively, and find that projective measurement with unbiazed basis is not optimal for this task, while weak measurement with biased basis could realize the best protection of two nonorthogonal states. Furthermore, the inefficiencies in the feedback process are also discussed展开更多
The purpose of this paper is to provide a brief review of some recent developments in quantum feedback networks and control.A quantum feedback network (QFN) is an interconnected system consisting of open quantum syste...The purpose of this paper is to provide a brief review of some recent developments in quantum feedback networks and control.A quantum feedback network (QFN) is an interconnected system consisting of open quantum systems linked by free fields and/or direct physical couplings.Basic network constructs,including series connections as well as feedback loops,are discussed.The quantum feedback network theory provides a natural framework for analysis and design.Basic properties such as dissipation,stability,passivity and gain of open quantum systems are discussed.Control system design is also discussed,primarily in the context of open linear quantum stochastic systems.The issue of physical realizability is discussed,and explicit criteria for stability,positive real lemma,and bounded real lemma are presented.Finally for linear quantum systems,coherent H∞ and LQG control are described.展开更多
For an N-dimensional quantum system under the influence of continuous measurement, this paper presents a switching control scheme where the control law is of bang-bang type and achieves asymptotic preparation of an ar...For an N-dimensional quantum system under the influence of continuous measurement, this paper presents a switching control scheme where the control law is of bang-bang type and achieves asymptotic preparation of an arbitrarily given eigenstate of a non-degenerate and degenerate measurement operator, respectively. In the switching control strategy, we divide the state space into two parts: a set containing a target state, and its complementary set. By analyzing the stability of the stochastic system model under consideration, we design a constant control law and give some conditions that the control Hamiltonian satisfies so that the system trajectories in the complementary set converge to the set which contains the target state. Further, for the case of a non-degenerate measurement operator, we show that the system trajectories in the set containing the target state will automatically converge to the target state via quantum continuous measurement theory; while for the case of a degenerate measurement operator, the corresponding system trajectories will also converge to the target state via the construction of the control Hamiltonians. The convergence of the whole closed-loop systems under the cases of a non-degenerate and a degenerate measurement operator is strictly proved. The effectiveness of the proposed switching control scheme is verified by the simulation experiments on a finite-dimensional angular momentum system and a two-qubit system.展开更多
A robust and scalable scheme to generate a steady three-dimensional entangled state for a V-type atom and a A- type atom trapped in a strongly dissipative bimodal cavity is proposed by direct feedback control based on...A robust and scalable scheme to generate a steady three-dimensional entangled state for a V-type atom and a A- type atom trapped in a strongly dissipative bimodal cavity is proposed by direct feedback control based on quantum-jump detection. The robustness of this scheme reflects in the insensitivity to detection inefficiencies and the strong ability against the parameter fluctuations in the feedback, driving, and coupling strengths. The influence of atomic spontaneous emission can be suppressed by using the local feedback control. The scalability is ensured that N-dimensional entangled states of two atoms can be deterministically generated.展开更多
This paper studies quantum discord of two qutrits coupled to their own environments independently and coupled to the same environment simultaneously under quantum-jump-based feedback control. Our results show that spo...This paper studies quantum discord of two qutrits coupled to their own environments independently and coupled to the same environment simultaneously under quantum-jump-based feedback control. Our results show that spontaneous emission, quantum feedback parameters, classical driving, initial state, and detection efficiency all affect the evolution of quantum discord in a two-qutrit system. We find that under the condition of designing proper quantum-jump-based feedback parameters, quantum discord can be protected and prepared. In the case where two qutrits are independently coupled to their own environments, classical driving, spontaneous emission, and low detection efficiency have negative effect on the protection of quantum discord. For different initial states, it is found that the evolution of quantum discord under the control of appropriate parameters is similar. In the case where two qutrits are simultaneously coupled to the same environment,the classical driving plays a positive role in the generation of quantum discord, but spontaneous emission and low detection efficiency have negative impact on the generation of quantum discord. Most importantly, we find that the steady discord depends on feedback parameters, classical driving, and detection efficiency, but not on the initial state.展开更多
A 7.8-μm surface emitting second-order distributed feedback quantum cascade laser (DFB QCL) structure with metallized surface grating is studied. The modal property of this structure is described by utilizing coupl...A 7.8-μm surface emitting second-order distributed feedback quantum cascade laser (DFB QCL) structure with metallized surface grating is studied. The modal property of this structure is described by utilizing coupled-mode theory where the coupling coefficients are derived from exact Floquet-Bloch solutions of infinite periodic structure. Based on this theory, the influence of waveguide structure and grating topography as well as device length on the laser performance is numerically investigated. The optimized surface emitting second-order DFB QCL structure design exhibits a high surface outcoupling efficiency of 22% and a low threshold gain of 10 cm-1. Using a π phase-shift in the centre of the grating, a high-quality single-lobe far-field radiation pattern is obtained.展开更多
We report on the room-temperature cascade laser (QCL) at λ -4.7μm. cw operation of a surface grating Both grating design and material distributed feedback (DFB) quantum optimization are used to decrease the thre...We report on the room-temperature cascade laser (QCL) at λ -4.7μm. cw operation of a surface grating Both grating design and material distributed feedback (DFB) quantum optimization are used to decrease the threshold current density and to increase the output power. For a high-reflectivity-coated 13-μm-wide and 4- mm-long laser, high wall-plug efficiency of 6% is obtained at 20℃ from a single facet producing over I W of ew output power. The threshold current density of DFB QCL is as low as 1.13kA/cm^2 at 10℃ and 1.34kA/cm2 at 30℃ in cw mode. Stable single-mode emission with a side-mode suppression ratio of about 30 dB is observed in tile working temperature range of 20-50℃.展开更多
Quantum cascade lasers(QCLs) have broad application potentials in infrared countermeasure system,free-space optical communication and trace gas detection.Compared with traditional Fabry-Pérot(FP) cavity and exter...Quantum cascade lasers(QCLs) have broad application potentials in infrared countermeasure system,free-space optical communication and trace gas detection.Compared with traditional Fabry-Pérot(FP) cavity and external cavity,distributed feedback quantum cascade lasers(DFB-QCLs) can obtain narrower laser linewidth and higher integration.In this paper,the structure design,numerical simulation and optimization of the Bragg grating of DFB-QCLs are carried out to obtain the transmission spectrum with central wavelength at 4.6 μm.We analyze the relationship among the structure parameters,the central wavelength shift and transmission efficiency using coupled-wave theory and finite-difference time-domain(FDTD) method.It is shown that the increase in the number of grating periods enhances the capabilities of mode selectivity,while the grating length of a single period adjustment directly determines the Bragg wavelength.Additionally,variations in etching depth and duty cycle lead to blue and red shifts in the central wavelength,respectively.Based on the numerical simulation results,the optimized design parameters for the upper buffer layer and the upper cladding grating are proposed,which gives an optional scheme for component fabrication and performance improvement in the future.展开更多
In quantum information technologies,quantum weak measurement is beneficial for protecting coherence of systems.In order to further improve the protection effect of quantum weak measurement on coherence,we propose an o...In quantum information technologies,quantum weak measurement is beneficial for protecting coherence of systems.In order to further improve the protection effect of quantum weak measurement on coherence,we propose an optimization scheme of quantum Fisher information(QFI)protection in an open quantum system by combing no-knowledge quantum feedback control with quantum weak measurement.On the basis of solving the dynamic equations of a stochastic two-level quantum system under feedback control,we compare the effects of different feedback Hamiltonians on QFI and find that via no-knowledge quantum feedback,the observation operatorσx(orσx andσz)can protect QFI for a long time.Namely,no-knowledge quantum feedback can improve the estimation precision of feedback coefficient as well as that of detection coefficient.展开更多
Based on Bures distance, a Lyapunov function that represents the distance between a desired state and the actual state of a quantum system is selected. Considering the cases that an initial state is and is not orthogo...Based on Bures distance, a Lyapunov function that represents the distance between a desired state and the actual state of a quantum system is selected. Considering the cases that an initial state is and is not orthogonal to the desired state respectively, we propose a class of control strategies with state feedback that ensures the stability of the closed-loop control system. Especially, the asymptotic stability of the control system is analyzed, deduced and proved in detail. Finally, a simulation experiment on a spin-1/2 particle system is done and the relation between the system state evolution time and control value is analyzed with diffierent parameters . Research results have general theoretical meaning for control of quantum systems.展开更多
Reservoir engineering is the term used in quantum control and information technologies to describe manipulating the environment within which an open quantum system operates. Reservoir engineering is essential in appli...Reservoir engineering is the term used in quantum control and information technologies to describe manipulating the environment within which an open quantum system operates. Reservoir engineering is essential in applications where storing quantum information is required. From the control theory perspective, a quantum system is capable of storing quantum information if it possesses a so-called decoherence free subsystem (DFS). This paper explores pole placement techniques to facilitate synthesis of decoherence free subsystems via coherent quantum feedback control. We discuss limitations of the conventional 'open loop' approach and propose a constructive feedback design methodology for decoherence free subsystem engineering. It captures a quite general dynamic coherent feedback structure which allows systems with decoherence free modes to be synthesized from components which do not have such modes.展开更多
This paper outlines our studies of bifurcation, quasi-periodic road to chaos and other dynamic characteristics in an external-cavity multi-quantum-well laser with delay optical feedback. The bistable state of the lase...This paper outlines our studies of bifurcation, quasi-periodic road to chaos and other dynamic characteristics in an external-cavity multi-quantum-well laser with delay optical feedback. The bistable state of the laser is predicted by finding theoretically that the gain shifts abruptly between two values due to the feedback. We make a linear stability analysis of the dynamic behavior of the laser. We predict the stability scenario by using the characteristic equation while we make an approximate analysis of the stability of the equilibrium point and discuss the quantitative criteria of bifurcation. We deduce a formula for the relaxation oscillation frequency and prove theoretically that this formula function relates to the loss of carriers transferring between well regime and barrier regime, the feedback level, the delayed time and the other intrinsic parameters. We demonstrate the dynamic distribution and double relaxation oscillation frequency abruptly changing in periodic states and find the multi-frequency characteristic in a chaotic state. We illustrate a road to chaos from a stable state to quasi-periodic states by increasing the feedback level. The effects of the transfers of carriers and the escaping of carriers on dynamic behavior are analyzed, showing that they are contrary to each other via the bifurcation diagram. Also,we show another road to chaos after bifurcation through changing the linewidth enhancement factor, the photon loss rate and the transfer rate of carriers.展开更多
A rubidium-beam microwave clock, optically pumped by a distributed feedback diode laser, is experimentally investigated. The clock is composed of a physical package, optical systems, and electric servo loops. The phys...A rubidium-beam microwave clock, optically pumped by a distributed feedback diode laser, is experimentally investigated. The clock is composed of a physical package, optical systems, and electric servo loops. The physical package realizes the microwave interrogation of a rubidium-atomic beam. The optical systems, equipped with two 780-nm distributed feedback laser diodes, yield light for pumping and detecting. The servo loops control the frequency of a local oscillator with respect to the microwave spectrum. With the experimental systems, the microwave spectrum, which has an amplitude of 4 n A and a line width of 700 Hz, is obtained. Preliminary tests show that the clock short-term frequency stability is 7 × 10^-11 at 1 s, and 3 × 10^-12 at 1000 s. These experimental results demonstrate the feasibility of the scheme for a manufactured clock.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10374025).
文摘By introducing the von Neumann entropy as a measure of the extent of noise, this paper discusses the entropy evolution in a two-level quantum feedback controlled system. The results show that the feedback control can induce the reduction of the degree of noise, and different control schemes exhibit different noise controlling ability, the extent of the reduction also related with the position of the target state on the Bloch sphere. It is shown that the evolution of entropy can provide a real time noise observation and a systematic guideline to make reasonable choice of control strategy.
基金Project supported by the National Natural Science Foundation of China(Grant No.11374096)Hunan Provincial Innovation Foundation for Postgraduate,China(Grant No.CX2017B177)the Scientific Research Project of Hunan Provincial Education Department,China(Grant No.16C0949)
文摘We investigate the quantum speed limit time (QSLT) of a two-level atom under quantum-jump-based feedback control or homodyne-based feedback control. Our results show that the two different feedback control schemes have different influences on the evolutionary speed. By adjusting the feedback parameters, the quantum-jump-based feedback control can induce speedup of the atomic evolution from an excited state, but the homodyne-based feedback control cannot change the evolutionary speed. Additionally, the QSLT for the whole dynamical process is explored. Under the quantum-jump-based feedback control, the QSLT displays oscillatory behaviors, which implies multiple speed-up and speed-down processes during the evolution. While, the homodyne-based feedback control can accelerate the speed-up process and improve the uniform speed in the uniform evolution process.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10775100,10974137 and 10805034the Fund of Theoretical Nuclear Center of HIRFL of Chinathe Scientific Research Foundation of CUIT under Grant No.KYTZ201024
文摘We consider the system consisting of two qubits collectively damped, with the output being unit-efficiency measured and subsequently fed back to control the system state. Our primary goal in this paper is (i) to solve the feedback-modified master equation, (ii) to demonstrate the ability of feedback control based on the solutions, and (iii) to pick out different steady states by choosing different driving strengths and feedback strengths to counteract the effects of both damping and the measurement back-action on the system. We further investigate some properties of the equilibrium steady state, its distribution probability and entanglement vs. the driving and feedback amplitudes. We find that in our feedback model feedback plays a negative role in producing entanglement.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11274043 and 11375025
文摘We consider an open quantum system subjected to a noise channel under measurement-based feedback control and two prototypical classes of decoherence channels are considered: phase damping and generalized amplitude damping. Based on quantum trajectory theory, we obtain an extended master equation for the dynamics of the reduced system in the presence of feedback control. For a qubit system we analytically solve this master equation and obtain the solution of the state vector dynamics. Then we propose an effective feedback control scheme for preparing an arbitrary quantum pure state. We also study how to protect two nonorthogonai states effectively, and find that projective measurement with unbiazed basis is not optimal for this task, while weak measurement with biased basis could realize the best protection of two nonorthogonal states. Furthermore, the inefficiencies in the feedback process are also discussed
基金supported by the National Natural Science Foundation of China(60804015)RGC Poly U5203/10EAFOSR Grant FA2386-09-1-4089AOARD094089
文摘The purpose of this paper is to provide a brief review of some recent developments in quantum feedback networks and control.A quantum feedback network (QFN) is an interconnected system consisting of open quantum systems linked by free fields and/or direct physical couplings.Basic network constructs,including series connections as well as feedback loops,are discussed.The quantum feedback network theory provides a natural framework for analysis and design.Basic properties such as dissipation,stability,passivity and gain of open quantum systems are discussed.Control system design is also discussed,primarily in the context of open linear quantum stochastic systems.The issue of physical realizability is discussed,and explicit criteria for stability,positive real lemma,and bounded real lemma are presented.Finally for linear quantum systems,coherent H∞ and LQG control are described.
基金This paper is dedicated to Professor lan R. Petersen on the occasion of his 60th birthday. This work was supported by the Anhui Provincial Natural Science Foundation (No. 1708085MF144) and the National Natural Science Foundation of China (No. 61573330).Acknowledgements We thank Dr. Daoyi Dong for helpful discussion.
文摘For an N-dimensional quantum system under the influence of continuous measurement, this paper presents a switching control scheme where the control law is of bang-bang type and achieves asymptotic preparation of an arbitrarily given eigenstate of a non-degenerate and degenerate measurement operator, respectively. In the switching control strategy, we divide the state space into two parts: a set containing a target state, and its complementary set. By analyzing the stability of the stochastic system model under consideration, we design a constant control law and give some conditions that the control Hamiltonian satisfies so that the system trajectories in the complementary set converge to the set which contains the target state. Further, for the case of a non-degenerate measurement operator, we show that the system trajectories in the set containing the target state will automatically converge to the target state via quantum continuous measurement theory; while for the case of a degenerate measurement operator, the corresponding system trajectories will also converge to the target state via the construction of the control Hamiltonians. The convergence of the whole closed-loop systems under the cases of a non-degenerate and a degenerate measurement operator is strictly proved. The effectiveness of the proposed switching control scheme is verified by the simulation experiments on a finite-dimensional angular momentum system and a two-qubit system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61068001 and 11264042)the Postdoctoral Science Foundation of China(Grant No.2012M520612)the Talent Program of Yanbian University of China(Grant No.950010001)
文摘A robust and scalable scheme to generate a steady three-dimensional entangled state for a V-type atom and a A- type atom trapped in a strongly dissipative bimodal cavity is proposed by direct feedback control based on quantum-jump detection. The robustness of this scheme reflects in the insensitivity to detection inefficiencies and the strong ability against the parameter fluctuations in the feedback, driving, and coupling strengths. The influence of atomic spontaneous emission can be suppressed by using the local feedback control. The scalability is ensured that N-dimensional entangled states of two atoms can be deterministically generated.
基金Project supported by the National Natural Science Foundation of China(Grant No.11374096)
文摘This paper studies quantum discord of two qutrits coupled to their own environments independently and coupled to the same environment simultaneously under quantum-jump-based feedback control. Our results show that spontaneous emission, quantum feedback parameters, classical driving, initial state, and detection efficiency all affect the evolution of quantum discord in a two-qutrit system. We find that under the condition of designing proper quantum-jump-based feedback parameters, quantum discord can be protected and prepared. In the case where two qutrits are independently coupled to their own environments, classical driving, spontaneous emission, and low detection efficiency have negative effect on the protection of quantum discord. For different initial states, it is found that the evolution of quantum discord under the control of appropriate parameters is similar. In the case where two qutrits are simultaneously coupled to the same environment,the classical driving plays a positive role in the generation of quantum discord, but spontaneous emission and low detection efficiency have negative impact on the generation of quantum discord. Most importantly, we find that the steady discord depends on feedback parameters, classical driving, and detection efficiency, but not on the initial state.
基金Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 60525406)the National Natural Science Foundation of China (Grant Nos. 60736031,60806018,and 60906026)+1 种基金the National Basic Research Program of China (Grant No. 2006CB604903)the National High Technology Research and Development Program of China (Grant Nos. 2007AA03Z446 and 2009AA03Z403)
文摘A 7.8-μm surface emitting second-order distributed feedback quantum cascade laser (DFB QCL) structure with metallized surface grating is studied. The modal property of this structure is described by utilizing coupled-mode theory where the coupling coefficients are derived from exact Floquet-Bloch solutions of infinite periodic structure. Based on this theory, the influence of waveguide structure and grating topography as well as device length on the laser performance is numerically investigated. The optimized surface emitting second-order DFB QCL structure design exhibits a high surface outcoupling efficiency of 22% and a low threshold gain of 10 cm-1. Using a π phase-shift in the centre of the grating, a high-quality single-lobe far-field radiation pattern is obtained.
基金Supported by the National Basic Research Program of China under Grant Nos 2013CB632801 and 2013CB632803the National Natural Science Foundation of China under Grant Nos 61435014,61306058 and 61274094the Beijing Natural Science Foundation under Grant No 4144086
文摘We report on the room-temperature cascade laser (QCL) at λ -4.7μm. cw operation of a surface grating Both grating design and material distributed feedback (DFB) quantum optimization are used to decrease the threshold current density and to increase the output power. For a high-reflectivity-coated 13-μm-wide and 4- mm-long laser, high wall-plug efficiency of 6% is obtained at 20℃ from a single facet producing over I W of ew output power. The threshold current density of DFB QCL is as low as 1.13kA/cm^2 at 10℃ and 1.34kA/cm2 at 30℃ in cw mode. Stable single-mode emission with a side-mode suppression ratio of about 30 dB is observed in tile working temperature range of 20-50℃.
基金supported by the Scientific Research Project of Beijing Municipal Education Commission (No.KM202411232020)the Young Backbone Teacher Support Plan (No.YBT202408)the Scientific Researchof Beijing Information Science and Technology University (No.2023XJJ08)。
文摘Quantum cascade lasers(QCLs) have broad application potentials in infrared countermeasure system,free-space optical communication and trace gas detection.Compared with traditional Fabry-Pérot(FP) cavity and external cavity,distributed feedback quantum cascade lasers(DFB-QCLs) can obtain narrower laser linewidth and higher integration.In this paper,the structure design,numerical simulation and optimization of the Bragg grating of DFB-QCLs are carried out to obtain the transmission spectrum with central wavelength at 4.6 μm.We analyze the relationship among the structure parameters,the central wavelength shift and transmission efficiency using coupled-wave theory and finite-difference time-domain(FDTD) method.It is shown that the increase in the number of grating periods enhances the capabilities of mode selectivity,while the grating length of a single period adjustment directly determines the Bragg wavelength.Additionally,variations in etching depth and duty cycle lead to blue and red shifts in the central wavelength,respectively.Based on the numerical simulation results,the optimized design parameters for the upper buffer layer and the upper cladding grating are proposed,which gives an optional scheme for component fabrication and performance improvement in the future.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61663016 and 11264015)。
文摘In quantum information technologies,quantum weak measurement is beneficial for protecting coherence of systems.In order to further improve the protection effect of quantum weak measurement on coherence,we propose an optimization scheme of quantum Fisher information(QFI)protection in an open quantum system by combing no-knowledge quantum feedback control with quantum weak measurement.On the basis of solving the dynamic equations of a stochastic two-level quantum system under feedback control,we compare the effects of different feedback Hamiltonians on QFI and find that via no-knowledge quantum feedback,the observation operatorσx(orσx andσz)can protect QFI for a long time.Namely,no-knowledge quantum feedback can improve the estimation precision of feedback coefficient as well as that of detection coefficient.
基金Supported by National Natural Science Foundation of P.R.China(No. 50375148)
文摘Based on Bures distance, a Lyapunov function that represents the distance between a desired state and the actual state of a quantum system is selected. Considering the cases that an initial state is and is not orthogonal to the desired state respectively, we propose a class of control strategies with state feedback that ensures the stability of the closed-loop control system. Especially, the asymptotic stability of the control system is analyzed, deduced and proved in detail. Finally, a simulation experiment on a spin-1/2 particle system is done and the relation between the system state evolution time and control value is analyzed with diffierent parameters . Research results have general theoretical meaning for control of quantum systems.
文摘Reservoir engineering is the term used in quantum control and information technologies to describe manipulating the environment within which an open quantum system operates. Reservoir engineering is essential in applications where storing quantum information is required. From the control theory perspective, a quantum system is capable of storing quantum information if it possesses a so-called decoherence free subsystem (DFS). This paper explores pole placement techniques to facilitate synthesis of decoherence free subsystems via coherent quantum feedback control. We discuss limitations of the conventional 'open loop' approach and propose a constructive feedback design methodology for decoherence free subsystem engineering. It captures a quite general dynamic coherent feedback structure which allows systems with decoherence free modes to be synthesized from components which do not have such modes.
文摘This paper outlines our studies of bifurcation, quasi-periodic road to chaos and other dynamic characteristics in an external-cavity multi-quantum-well laser with delay optical feedback. The bistable state of the laser is predicted by finding theoretically that the gain shifts abruptly between two values due to the feedback. We make a linear stability analysis of the dynamic behavior of the laser. We predict the stability scenario by using the characteristic equation while we make an approximate analysis of the stability of the equilibrium point and discuss the quantitative criteria of bifurcation. We deduce a formula for the relaxation oscillation frequency and prove theoretically that this formula function relates to the loss of carriers transferring between well regime and barrier regime, the feedback level, the delayed time and the other intrinsic parameters. We demonstrate the dynamic distribution and double relaxation oscillation frequency abruptly changing in periodic states and find the multi-frequency characteristic in a chaotic state. We illustrate a road to chaos from a stable state to quasi-periodic states by increasing the feedback level. The effects of the transfers of carriers and the escaping of carriers on dynamic behavior are analyzed, showing that they are contrary to each other via the bifurcation diagram. Also,we show another road to chaos after bifurcation through changing the linewidth enhancement factor, the photon loss rate and the transfer rate of carriers.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174015)
文摘A rubidium-beam microwave clock, optically pumped by a distributed feedback diode laser, is experimentally investigated. The clock is composed of a physical package, optical systems, and electric servo loops. The physical package realizes the microwave interrogation of a rubidium-atomic beam. The optical systems, equipped with two 780-nm distributed feedback laser diodes, yield light for pumping and detecting. The servo loops control the frequency of a local oscillator with respect to the microwave spectrum. With the experimental systems, the microwave spectrum, which has an amplitude of 4 n A and a line width of 700 Hz, is obtained. Preliminary tests show that the clock short-term frequency stability is 7 × 10^-11 at 1 s, and 3 × 10^-12 at 1000 s. These experimental results demonstrate the feasibility of the scheme for a manufactured clock.