We investigate the mixed-state entanglement between two spins embedded in the XXZ Heisenberg chain under thermal equilibrium.By deriving an analytical expression for the entanglement of two-spin thermal states and ext...We investigate the mixed-state entanglement between two spins embedded in the XXZ Heisenberg chain under thermal equilibrium.By deriving an analytical expression for the entanglement of two-spin thermal states and extending this analysis to larger spin chains,we demonstrate that mixed-state entanglement is profoundly shaped by both disorder and temperature.Our results reveal a sharp distinction between many-body localized and ergodic phases,with entanglement vanishing above diferent fnite temperature thresholds.Furthermore,by analyzing non-adjacent spins,we uncover an approximate exponential decay of entanglement with separation.This work advances the understanding of the quantum-to-classical transition by linking the entanglement properties of small subsystems to the broader thermal environment,ofering an explanation for the absence of entanglement in macroscopic systems.These fndings provide critical insights into quantum many-body physics,bridging concepts from thermalization,localization,and quantum information theory.展开更多
Recent experiments have demonstrated the realization of the three-dimensional quantum Hall effect in highly anisotropic crystalline materials, such as ZrTe|_5 and BaMnSb_2. Such a system supports chiral surface states...Recent experiments have demonstrated the realization of the three-dimensional quantum Hall effect in highly anisotropic crystalline materials, such as ZrTe|_5 and BaMnSb_2. Such a system supports chiral surface states in the presence of a strong magnetic field, which exhibit a one-dimensional metal-insulator crossover due to suppression of surface diffusion by disorder potential. We study the nontrivial surface states in a lattice model and find a wide crossover of the level-spacing distribution through a semi-Poisson distribution. We also discover a nonmonotonic evolution of the level statistics due to the disorder-induced mixture of surface and bulk states.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.92365202,12475011,and 11921005)the National Key R&D Program of China(Grant No.2024YFA1409002)Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)。
文摘We investigate the mixed-state entanglement between two spins embedded in the XXZ Heisenberg chain under thermal equilibrium.By deriving an analytical expression for the entanglement of two-spin thermal states and extending this analysis to larger spin chains,we demonstrate that mixed-state entanglement is profoundly shaped by both disorder and temperature.Our results reveal a sharp distinction between many-body localized and ergodic phases,with entanglement vanishing above diferent fnite temperature thresholds.Furthermore,by analyzing non-adjacent spins,we uncover an approximate exponential decay of entanglement with separation.This work advances the understanding of the quantum-to-classical transition by linking the entanglement properties of small subsystems to the broader thermal environment,ofering an explanation for the absence of entanglement in macroscopic systems.These fndings provide critical insights into quantum many-body physics,bridging concepts from thermalization,localization,and quantum information theory.
基金Supported by the National Natural Science Foundation of China (Grant No.11674282)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB28000000)。
文摘Recent experiments have demonstrated the realization of the three-dimensional quantum Hall effect in highly anisotropic crystalline materials, such as ZrTe|_5 and BaMnSb_2. Such a system supports chiral surface states in the presence of a strong magnetic field, which exhibit a one-dimensional metal-insulator crossover due to suppression of surface diffusion by disorder potential. We study the nontrivial surface states in a lattice model and find a wide crossover of the level-spacing distribution through a semi-Poisson distribution. We also discover a nonmonotonic evolution of the level statistics due to the disorder-induced mixture of surface and bulk states.