To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, a...To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Qo(M : (Q0, 1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ~ is, the larger the error rate Q is. When the noise level ~ is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q 〈 0.153. Similarly, if error rate Q〉 0.153 = Q0, eavesdropping information I 〉 1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore.展开更多
The model of a three-terminal thermoelectric refrigerator with ideal tunneling quantum dots is established. It consists of a cavity connected to two quantum dots embedded between two electron reservoirs at different t...The model of a three-terminal thermoelectric refrigerator with ideal tunneling quantum dots is established. It consists of a cavity connected to two quantum dots embedded between two electron reservoirs at different temperatures and chemical potentials. According to the Landauer formula the expressions for the heat current, the cooling rate and the coefficient of performance (COP) are derived analytically. The performance characteristic curves of the cooling rate versus the coefficient of performance are plotted with numerical calculation. The optimal regions of the cooling rate and the COP are determined. Moreover, we optimize the cooling rate and the COP with respect to the position of energy level of the right quantum dot, respectively. The influence of the width of energy level and the temperature ratio on performance of the three-terminal thermoelectric refrigerator is analyzed. Lastly, when the width of energy level is small enough, the optimal performance of the refrigerator is discussed in detail.展开更多
Principal component analysis(PCA)is a widely used tool in machine learning algorithms,but it can be computationally expensive.In 2014,Lloyd,Mohseni&Rebentrost proposed a quantum PCA(qPCA)algorithm[Nat.Phys.10,631(...Principal component analysis(PCA)is a widely used tool in machine learning algorithms,but it can be computationally expensive.In 2014,Lloyd,Mohseni&Rebentrost proposed a quantum PCA(qPCA)algorithm[Nat.Phys.10,631(2014)]that has not yet been experimentally demonstrated due to challenges in preparing multiple quantum state copies and implementing quantum phase estimations.In this study,we presented a hardware-efficient approach for qPCA,utilizing an iterative approach that effectively resets the relevant qubits in a nuclear magnetic resonance(NMR)quantum processor.Additionally,we introduced a quantum scattering circuit that efficiently determines the eigenvalues and eigenvectors(principal components).As an important application of PCA,we focused on classifying thoracic CT images from COVID-19 patients and achieved high accuracy in image classification using the qPCA circuit implemented on the NMR system.Our experiment highlights the potential of near-term quantum devices to accelerate qPCA,opening up new avenues for practical applications of quantum machine learning algorithms.展开更多
In this paper, using the Guichardet space technique, the relationship between Fermion quantum stochastic calculus and non-causal calculus in Segal space L^2(H) is discussed, and an anticipating quantum stochastic calc...In this paper, using the Guichardet space technique, the relationship between Fermion quantum stochastic calculus and non-causal calculus in Segal space L^2(H) is discussed, and an anticipating quantum stochastic calculus is naturally given.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 61472048,61402058,61272511,61472046,61202082 and 61370194the Beijing Natural Science Foundation under Grant No 4152038the China Postdoctoral Science Foundation Funded Project under Grant No 2014M561826
文摘To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Qo(M : (Q0, 1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ~ is, the larger the error rate Q is. When the noise level ~ is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q 〈 0.153. Similarly, if error rate Q〉 0.153 = Q0, eavesdropping information I 〉 1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore.
基金Supported by the National Natural Science Foundation of China under Grant No 11365015
文摘The model of a three-terminal thermoelectric refrigerator with ideal tunneling quantum dots is established. It consists of a cavity connected to two quantum dots embedded between two electron reservoirs at different temperatures and chemical potentials. According to the Landauer formula the expressions for the heat current, the cooling rate and the coefficient of performance (COP) are derived analytically. The performance characteristic curves of the cooling rate versus the coefficient of performance are plotted with numerical calculation. The optimal regions of the cooling rate and the COP are determined. Moreover, we optimize the cooling rate and the COP with respect to the position of energy level of the right quantum dot, respectively. The influence of the width of energy level and the temperature ratio on performance of the three-terminal thermoelectric refrigerator is analyzed. Lastly, when the width of energy level is small enough, the optimal performance of the refrigerator is discussed in detail.
基金supported by the National Key Research and Development Program of China(No.2019YFA0308100)the National Natural Science Foundation of China(Nos.12075110 and 12104213)+3 种基金the Science,Technology and Innovation Commission of Shenzhen Municipality(Nos.KQTD20190929173815000 and JCYJ20200109140803865)Pengcheng Scholars,Guangdong Innovative and Entrepreneurial Research Team Program(No.2019ZT08C044)Guangdong Provincial Key Laboratory(No.2019B121203002)Guangdong Basic and Applied Basic Research Foundation(No.2020A1515110987).
文摘Principal component analysis(PCA)is a widely used tool in machine learning algorithms,but it can be computationally expensive.In 2014,Lloyd,Mohseni&Rebentrost proposed a quantum PCA(qPCA)algorithm[Nat.Phys.10,631(2014)]that has not yet been experimentally demonstrated due to challenges in preparing multiple quantum state copies and implementing quantum phase estimations.In this study,we presented a hardware-efficient approach for qPCA,utilizing an iterative approach that effectively resets the relevant qubits in a nuclear magnetic resonance(NMR)quantum processor.Additionally,we introduced a quantum scattering circuit that efficiently determines the eigenvalues and eigenvectors(principal components).As an important application of PCA,we focused on classifying thoracic CT images from COVID-19 patients and achieved high accuracy in image classification using the qPCA circuit implemented on the NMR system.Our experiment highlights the potential of near-term quantum devices to accelerate qPCA,opening up new avenues for practical applications of quantum machine learning algorithms.
文摘In this paper, using the Guichardet space technique, the relationship between Fermion quantum stochastic calculus and non-causal calculus in Segal space L^2(H) is discussed, and an anticipating quantum stochastic calculus is naturally given.