期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Low Light Image Enhancement Method Based on Dehazing Physical Model 被引量:1
1
作者 Wencheng Wang Baoxin Yin +2 位作者 Lei Li Lun Li Hongtao Liu 《Computer Modeling in Engineering & Sciences》 2025年第5期1595-1616,共22页
In low-light environments,captured images often exhibit issues such as insufficient clarity and detail loss,which significantly degrade the accuracy of subsequent target recognition tasks.To tackle these challenges,th... In low-light environments,captured images often exhibit issues such as insufficient clarity and detail loss,which significantly degrade the accuracy of subsequent target recognition tasks.To tackle these challenges,this study presents a novel low-light image enhancement algorithm that leverages virtual hazy image generation through dehazing models based on statistical analysis.The proposed algorithm initiates the enhancement process by transforming the low-light image into a virtual hazy image,followed by image segmentation using a quadtree method.To improve the accuracy and robustness of atmospheric light estimation,the algorithm incorporates a genetic algorithm to optimize the quadtree-based estimation of atmospheric light regions.Additionally,this method employs an adaptive window adjustment mechanism to derive the dark channel prior image,which is subsequently refined using morphological operations and guided filtering.The final enhanced image is reconstructed through the hazy image degradation model.Extensive experimental evaluations across multiple datasets verify the superiority of the designed framework,achieving a peak signal-to-noise ratio(PSNR)of 17.09 and a structural similarity index(SSIM)of 0.74.These results indicate that the proposed algorithm not only effectively enhances image contrast and brightness but also outperforms traditional methods in terms of subjective and objective evaluation metrics. 展开更多
关键词 Dark channel prior quadtree decomposition genetic algorithm atmospheric light image enhancement
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部