To further improve the utilization efficiency of solar energy and the performance of solar heat pump heating systems,a new heating mode of a solar air-source heat pump(SASHP)is proposed,and the characteristics and p...To further improve the utilization efficiency of solar energy and the performance of solar heat pump heating systems,a new heating mode of a solar air-source heat pump(SASHP)is proposed,and the characteristics and performance of the heat pump part of this new heating system are studied.Based on a SASHP with 10 kW,the mathematical model of this system is built,and the characteristics and performance are concluded from the simulation analysis at different environmental temperatures and output water temperatures.The results show that the performance of heat pumps can be greatly improved based on the new SASHP.When the environmental temperature is 7 ℃,the coefficient of performance(COP)of the air-source heat pump(ASHP)can be increased by 26% at most.This paper sets up a base for further study on the heating system with this new SASHP in the heating season.展开更多
A new type of microchannel condenser applied in the air source heat pump water heater(ASHPWH)with cyclic heating was proposed in this study.The operating performance of the ASHPWH was frst tested.Then,the structure of...A new type of microchannel condenser applied in the air source heat pump water heater(ASHPWH)with cyclic heating was proposed in this study.The operating performance of the ASHPWH was frst tested.Then,the structure of the microchannel condenser was optimized with the implement of vortex generators.Finally,a numerical model of the ASHPWH was established and the optimized microchannel condenser was studied.The experimental results showed that the average coefficient of performance(COP)of the 1HP(735 W)ASHPWH reached 3.48.In addition,the optimized microchannel condenser could be matched with a 3 HP(2430W)ASHPWH with an average heating capacity of 10.30 kW,and achieving an average COP of 4.24,14.6%higher than the limit value in the national standard.展开更多
Ground source heat pump systems demonstrate significant potential for northern rural heating applications;however,the effectiveness of these systems is often limited by challenging geological conditions.For instance,i...Ground source heat pump systems demonstrate significant potential for northern rural heating applications;however,the effectiveness of these systems is often limited by challenging geological conditions.For instance,in certain regions,the installation of buried pipes for heat exchangers may be complicated,and these pipes may not always serve as efficient low-temperature heat sources for the heat pumps of the system.To address this issue,the current study explored the use of solar-energy-collecting equipment to supplement buried pipes.In this design,both solar energy and geothermal energy provide low-temperature heat to the heat pump.First,a simulation model of a solar‒ground source heat pump coupling system was established using TRNSYS.The accuracy of this model was validated through experiments and simulations on various system configurations,including varying numbers of buried pipes,different areas of solar collectors,and varying volumes of water tanks.The simulations examined the coupling characteristics of these components and their influence on system performance.The results revealed that the operating parameters of the system remained consistent across the following configurations:three buried pipes,burial depth of 20 m,collector area of 6 m^(2),and water tank volume of 0.5 m^(3);four buried pipes,burial depth of 20 m,collector area of 3 m^(2),and water tank volume of 0.5 m^(3);and five buried pipes with a burial depth of 20 m.Furthermore,the heat collection capacity of the solar collectors spanning an area of 3 m^(2)was found to be equivalent to that of one buried pipe.Moreover,the findings revealed that the solar‒ground source heat pump coupling system demonstrated a lower annual cumulative energy consumption compared to the ground source heat pump system,presenting a reduction of 5.31%compared to the energy consumption of the latter.展开更多
In the United Kingdom, means of meeting domestic heating is being electrified to decarbonise in effort to reduce the greenhouse gases emissions from the burning of natural gas. Therefore, the uptake of heat pumps is o...In the United Kingdom, means of meeting domestic heating is being electrified to decarbonise in effort to reduce the greenhouse gases emissions from the burning of natural gas. Therefore, the uptake of heat pumps is on the increase. The operation and working principle of heat pumps must be well understood in the investigations of their impacts on the grid and the grid assets, especially distribution transformers which could be overloaded due to higher peak load demand. This work develops an operational model of heat pumps as combined space heating and domestic hot water provider implemented in MATLAB. The developed operational model of heat pumps is adaptable and repeatable for different input parameters. The developed model is used to generate daily average demand profiles of heat pumps for a typical winter weekday and a typical summer weekday. The generated demand profiles of heat pumps by the developed model compared well with the demand profiles of heat pumps generated from actual field projects which are usually expensive and time-tasking.展开更多
Although a new-class of heat pumps based on mechanically flexible nanoporous materials holds great poten-tial for the utilization of sustainable refrigerants with a considerably high coefficient of performance(COP),re...Although a new-class of heat pumps based on mechanically flexible nanoporous materials holds great poten-tial for the utilization of sustainable refrigerants with a considerably high coefficient of performance(COP),reducing their system volume remains a challenge.In this study,we explored the potential of this innovative type of heat pump in terms of COP and system volume.To broaden the scope of material exploration,we devised a new thermodynamic heat pump system applicable to soft mesoporous materials,in addition to the conventional system that is suitable only for flexible microporous materials.Several key factors have been identified through the comparison of various nanoporous materials and refrigerants.Our systematic investigation reveals that the combination of mechanically softer nanoporous materials with ammonia refrigerants can achieve a high COP and a reduced system volume.展开更多
This study investigates the feasibility and efficiency of geothermal energy for heating applications in Azerbaijan,with a specific focus on the Khachmaz region.Despite the country’s growing interest in sustainable en...This study investigates the feasibility and efficiency of geothermal energy for heating applications in Azerbaijan,with a specific focus on the Khachmaz region.Despite the country’s growing interest in sustainable energy,limited research has addressed the potential of ground-source heat pump(GSHP)systems under local climatic and soil conditions.To address this gap,the study employs GeoT*SOL simulation to evaluate systemperformance,incorporating site-specific parameters such as soil thermal conductivity,heating demand profiles,and regional weather data.The results show that the GSHP system achieves a maximum seasonal performance factor(SPF)of 5.62 and an average SPF of 4.86,indicating high operational efficiency.Additionally,the system provides an estimated annual CO_(2) emissions reduction of 1956 kg per household,highlighting its environmental benefits.Comparative analysis with conventional heating systems demonstrates considerable energy savings and emissions mitigation.The study identifies technical(e.g.,initial installation complexity)and economic(e.g.,high upfront costs)challenges to widespread implementation.Based on these insights,practical recommendations are proposed:policymakers are encouraged to support financial incentives and policy frameworks;urban planners should consider GSHP integration in regional heating plans;and engineers may adopt the simulation-based approach presented here for feasibility studies.This research contributes to the strategic advancement of renewable heating technologies in Azerbaijan.展开更多
Recovering waste heat is essential for primary energy savings and carbon emission reduction.To provide direct and reliable suggestions for factories to recover waste heat,energetic,economic and exergoeconomic comparis...Recovering waste heat is essential for primary energy savings and carbon emission reduction.To provide direct and reliable suggestions for factories to recover waste heat,energetic,economic and exergoeconomic comparison between direct heat exchange(DHE)and open-cycle mechanical heat pump(MHP)under various operating conditions is carried out in this work.The price ratios R_(ES)(electricity to steam)and R_(HS)(hot water to steam)are introduced to quantify regional impacts and conduct quantitative analysis.A semi-empirical formula is obtained to explore the exergoeconomic performance of the two systems.For waste heat within 373.15-423.15 K,the exergy efficiency of the DHE with a temperature difference of 10-90 K is always lower than that of the MHP with a temperature lift of 10-50 K.The economic performance of the two systems has a break-even point,depending on the operating parameters and relative prices of electricity,steam,and hot water.Under the average R_(ES)(3.8)in China,if R_(HS)is higher than 0.748,the annual revenue of the DHE is always higher,whereas the MHP is more economical when R_(HS)is lower than 0.110.In regions where R_(ES)is higher than 4.353,the annual revenue of the MHP will be negative in some cases.展开更多
A new ground source heat pump system combined with radiant heating/cooling is proposed, and the principles and the advantages of the system are analyzed. A demonstration of the system is applied to a rebuilt building...A new ground source heat pump system combined with radiant heating/cooling is proposed, and the principles and the advantages of the system are analyzed. A demonstration of the system is applied to a rebuilt building: Xijindu exhibition hall, which is located in Zhenjiang city in China. Numerical studies on the thermal comfort and energy consumption of the system are carded out by using TRNSYS software. The results indicate that the system with the radiant floor method or the radiant ceiling method shows good thermal comfort without mechanical ventilation in winter. However, the system with either of the methods should add mechanical ventilation to ensure good comfort in summer. At the same level of thermal comfort, it can also be found that the annual energy consumption of the radiant ceiling system is less than that of the radiant floor system.展开更多
To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an impr...To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an improvement in the system’s heat generation coefficient,overall efficiency,and stability.In this study,we focus on a residential building located in Lhasa as the target for heating purposes.Initially,we simulate and analyze a solar-air source heat pump combined heating system.Subsequently,while ensuring the system meets user requirements,we examine the influence of solar collector installation angles and collector area on the performance of the solar-air source heat pump dual heating system.Through this analysis,we determine the optimal installation angle and collector area to optimize system performance.展开更多
In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1...In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 ℃) and condenser water inlet temperature(30-50℃). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 ℃ to 17.8 ℃, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 ℃ to 50 ℃. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature.展开更多
An air source heat pump system (ASHPS) used in an office building is set up and studied experimentally. Its operating performance in winter is evaluated based on test data and a comparative discussion is given on the ...An air source heat pump system (ASHPS) used in an office building is set up and studied experimentally. Its operating performance in winter is evaluated based on test data and a comparative discussion is given on the effect of climate conditions and heating load ratio on the operation behavior. Then heating capacity variation caused by evaporator frosting is analyzed as well. Finally, the defrosting parameters and the technical feasibility are studied for a constant heating demand. The experimental results indicate that both the outlet water temperature drop and the system COP should be taken into account when setting defrosting parameters, and ASHPS is a viable technology for space heating and hot-water production in winter in Tianjin, which can maintain the room temperature above 19 ℃ when the outdoor temperature is -2 ℃.展开更多
The electrification of building heating is an effective way to meet the global carbon target. As a clean and sustainable electrified heating technology, air-source heat pumps (ASHPs) are widely used in areas lacking c...The electrification of building heating is an effective way to meet the global carbon target. As a clean and sustainable electrified heating technology, air-source heat pumps (ASHPs) are widely used in areas lacking central heating. However, as a major component of space heating, heating terminals might not fit well with ASHP in order to achieve both intermittency and comfort. Therefore, this study proposes a novel radiation-adjustable heating terminal combined with an ASHP to achieve electrification, intermittency, and better thermal comfort. Radiant terminals currently suffer from three major problems: limited maximum heating capacity, inability to freely adapt, and difficulty with combining them with ASHPs. These problems were solved by improving the structural design of the novel terminal (Improvement A–E). Results showed that the maximum heating capacity increased by 23.6% and radiation heat transfer ratio from 10.1% to 30.9% was provided for users with the novel terminal. Further, new flat heat pipe (FHP) design improved stability (compressor oil return), intermittency (refrigerant thermal inertia), and safety (refrigerant leakage risk) by reducing the length of exposed refrigerant pipes. Furthermore, a new phased operation strategy was proposed for the novel terminal, and the adjustability of the terminal was improved. The results can be used as reference information for decarbonizing buildings by electrifying heating terminals.展开更多
For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving e...For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases.展开更多
The building sector contributes a large ratio of final energy consumption,and improving building energy efficiency is expected to play a significant role in mitigating its carbon dioxide emission.Herein,we collected t...The building sector contributes a large ratio of final energy consumption,and improving building energy efficiency is expected to play a significant role in mitigating its carbon dioxide emission.Herein,we collected the on-site measurement data to investigate the techno-economic performances of different heat pump types that exist in building space heating projects in Qingdao,China.An in-depth analysis revealed the temperature variations of measured low-grade heat sources over the whole heating supply period,and urban sewage water shows high stable heat energy quality compared with seawater and geothermal heat resources.Operational behaviors including cycling inlet and outlet temperature of the selected heat pumps were illustrated,and analysis evaluated detailed effects of operational parameters on energy efficiency performances.Then the relationship between COPs distributions of heat pumps and operational conditions was examined further,and the positive effect of the rising temperature of heat sources on energy efficiency improvement of heat pump is highlighted when the heating supply temperature is higher.Furthermore,we analyzed the economic and carbon emission performance of the heat pump system,and results show that electricity price plays a vital role in the lifespan energy cost saving potential,and the heat pump could serve as a promising approach in reducing CO_(2) related to the building space heating.Finally,we recommended suggestions for improving the overall energy efficiency and cost competitiveness of decentralized heat pump systems for building space heating.展开更多
Preliminary investigation shows that air sourced type heat pumps by energy efficiency are competitive with gas boilers having 93% of coefficient of performance (COP) if heat pumps are used in climatic zones, having ...Preliminary investigation shows that air sourced type heat pumps by energy efficiency are competitive with gas boilers having 93% of coefficient of performance (COP) if heat pumps are used in climatic zones, having outside air temperature higher than (-3 ℃ to -5 ℃). But, in such conditions the heat pump's evaporator is covered by ice crust, which cuts off the flow of outside air-heat source through the evaporator of heat pump. For avoiding stating problems it is recommended to use as heat source a mixture of waste warm gases. In this article a high efficiency heating-cooling system is developed, consisting of warm gases mixture sourced heat pump, heating boiler operating simultaneously with heat pump and solar air heater. The heating demand of the served house is shared between boiler and heat pump. Instead of outside air the warm gases mixture enters into evaporator of heat pump. A new construction of heat exchanger was developed. The article presents the structure and principle of operation, as well as the method for optimization and design of suggested system. Analysis proved high energy efficiency and cost effectiveness of the new system.展开更多
In unconsolidated sandstone reservoirs,presence of numerous movable grains and a complex grain size composition necessitates a clear understanding of the physical clogging process for effective groundwater recharge in...In unconsolidated sandstone reservoirs,presence of numerous movable grains and a complex grain size composition necessitates a clear understanding of the physical clogging process for effective groundwater recharge in groundwater-source heat pump systems.To investigate this,a series of seepage experiments was conducted under in situ stress conditions using unconsolidated sandstone samples with varying grain compositions.The clogging phenomenon arises from the combined effects of grain migration and compaction,wherein the migration of both original and secondary crushed fine-grain particles blocks the seepage channels.Notably,grain composition influences the migration and transport properties of the grains.For samples composed of smaller grains,the apparent permeability demonstrates a transition from stability to decrease.In contrast,samples with larger grains experience a skip at the stability stage and directly enter the decrease stage,with a minor exception of a slight increase observed.Furthermore,a unique failure mode characterized by diameter shrinkage in the upper part of the sample is observed due to the combined effects of grain migration and in situ stress-induced compaction.These testing results contribute to a better understanding of the clogging mechanism caused by the coupled effects of grain migration and compaction during groundwater recharge in unconsolidated sandstone reservoirs used in groundwater-source heat pump systems.展开更多
Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Her...Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Here the thermal behavior of deep borehole exchangers(DBHEs)ranging from 1 to 2 km was analyzed for various heat flow profiles.A strong correlation between thermal energy extraction and power output from DBHEs was found,also influenced by the heating profile employed.Longer operating time over the year typically resulted in higher energy production,while shorter one yielded higher average thermal power output,highlighting the importance of the choice of heating strategy and system design for optimal performance of DBHEs.Short breaks in operation for regenerating the borehole,for example,with waste heat,proved to be favorable for the performance yielding an overall heat output close to the same as with continuous extraction of heat.The results demonstrate the usefulness of deep boreholes for dense urban areas with less available space.As the heat production from a single DBHE in Finnish conditions ranges from half up to even a few GWh a year,the technology is best suitable for larger heat loads.展开更多
This study introduces a novel artificial heating technique aimed at addressing frost heave issues in embankments on frozen ground,offering a sustainable solution.Initial evaluations assessed various heating systems,in...This study introduces a novel artificial heating technique aimed at addressing frost heave issues in embankments on frozen ground,offering a sustainable solution.Initial evaluations assessed various heating systems,including boilers,heat pumps,solar heaters,and electric heaters,focusing on their thermal performance and applicability.The study subsequently designed and implemented a direct-expansion ground source heat pump(DX-GSHP)system as the primary heat source for embankment warming.Rigorous testing confirmed the DX-GSHP system's ability to maintain a heat-supply temperature above 40℃ and a heat-absorption temperature below -3.5℃,effectively extracting geothermal energy for transfer to the topsoil layers.With a demonstrated coefficient of performance(COP)of 3.49,the DX-GSHP system not only proves its energy efficiency but also suggests a potential role in reducing the strain on electricity supply systems.Installation of DX-GSHPs,with heating capacities ranging from 1.0 to 2.0 kW and spaced at intervals of 2.0-4.0 m,provides a rapid thermal response to frost heave in singletrack railway embankments,thereby potentially mitigating frost-induced damage in cold climate regions.展开更多
Aligning with ambitious targets and commitments towards carbon neutrality,countries around the world are desperately seeking an energy transition to cope with the stark reality of the climate crisis and the surge in d...Aligning with ambitious targets and commitments towards carbon neutrality,countries around the world are desperately seeking an energy transition to cope with the stark reality of the climate crisis and the surge in demand for heating and cooling.Increased penetration of renewable power is foreshadowing a shift in global energy dominance,from fossil fuel based heating to renewable power based heating.However,we have to address four underlying challenges in energy transition,including(1)to achieve heat electrification,(2)to utilize decommissioned thermal power plants,(3)to meet the demand for large-scale heat storage,and(4)to puzzle out thefinal“10%”emissions.Given the above challenges,we put forth four heat pump-assisted approaches to break the bottleneck of energy transition and facilitate effective incentive strategies for policymakers.We highlight that the efficiency andflexibility of heat pumps in thermal energy regulation enable them to push forward an immense influence on the future energy transition for the heating/cooling supply that accounts for 50%of the energy consumption for users and the last“10%”carbon emissions.展开更多
In order to investigate the alternate operation characteristics of a solar-ground source heat pump system(SGSHPS),various alternate operation modes are put forward and defined.A two-dimensional mathematical model wi...In order to investigate the alternate operation characteristics of a solar-ground source heat pump system(SGSHPS),various alternate operation modes are put forward and defined.A two-dimensional mathematical model with freezing/melting phase changes is developed for the heat transfer analysis of the soil.Based on the numerical solution of the model,the variation trends of underground soil temperature of the SGSHPS operated in various alternate operation modes are discussed.The results indicate that,for the day-night and short-time interval alternate operation modes without solar energy,the operation time fraction of a solar heat source should be confined to from 50% to 58% when operated in an alternate period of 24 h.Meanwhile,the disadvantages of a natural resumption of soil temperature can be overcome effectively by solar energy filling,and an optimal operation effect can be achieved by integrating the mode of solar energy filling with other alternate modes.In addition,the accuracy of the presented model is verified by the experimental data of borehole wall temperatures.The conclusions can provide a reference for the optimization operation of the SGSHPS.展开更多
基金The National Natural Science Foundation of China(No.50676018)the National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2008BAJ12B02)
文摘To further improve the utilization efficiency of solar energy and the performance of solar heat pump heating systems,a new heating mode of a solar air-source heat pump(SASHP)is proposed,and the characteristics and performance of the heat pump part of this new heating system are studied.Based on a SASHP with 10 kW,the mathematical model of this system is built,and the characteristics and performance are concluded from the simulation analysis at different environmental temperatures and output water temperatures.The results show that the performance of heat pumps can be greatly improved based on the new SASHP.When the environmental temperature is 7 ℃,the coefficient of performance(COP)of the air-source heat pump(ASHP)can be increased by 26% at most.This paper sets up a base for further study on the heating system with this new SASHP in the heating season.
基金the National Natural Science Foundation of China(No.51776117)。
文摘A new type of microchannel condenser applied in the air source heat pump water heater(ASHPWH)with cyclic heating was proposed in this study.The operating performance of the ASHPWH was frst tested.Then,the structure of the microchannel condenser was optimized with the implement of vortex generators.Finally,a numerical model of the ASHPWH was established and the optimized microchannel condenser was studied.The experimental results showed that the average coefficient of performance(COP)of the 1HP(735 W)ASHPWH reached 3.48.In addition,the optimized microchannel condenser could be matched with a 3 HP(2430W)ASHPWH with an average heating capacity of 10.30 kW,and achieving an average COP of 4.24,14.6%higher than the limit value in the national standard.
基金supported by 2024 Central Guidance Local Science and Technology Development Fund Project"Study on the mechanism and evaluation method of thermal pollution in water bodies,as well as research on thermal carrying capacity".(Grant 246Z4506G)Key Research and Development Project in Hebei Province:"Key Technologies and Equipment Research and Demonstration of Multiple Energy Complementary(Electricity,Heat,Cold System)for Solar Energy,Geothermal Energy,Phase Change Energy"(Grant 236Z4310G)the Hebei Academy of Sciences Key Research and Development Program"Research on Heat Transfer Mechanisms and Efficient Applications of Intermediate and Deep Geothermal Energy"(22702)。
文摘Ground source heat pump systems demonstrate significant potential for northern rural heating applications;however,the effectiveness of these systems is often limited by challenging geological conditions.For instance,in certain regions,the installation of buried pipes for heat exchangers may be complicated,and these pipes may not always serve as efficient low-temperature heat sources for the heat pumps of the system.To address this issue,the current study explored the use of solar-energy-collecting equipment to supplement buried pipes.In this design,both solar energy and geothermal energy provide low-temperature heat to the heat pump.First,a simulation model of a solar‒ground source heat pump coupling system was established using TRNSYS.The accuracy of this model was validated through experiments and simulations on various system configurations,including varying numbers of buried pipes,different areas of solar collectors,and varying volumes of water tanks.The simulations examined the coupling characteristics of these components and their influence on system performance.The results revealed that the operating parameters of the system remained consistent across the following configurations:three buried pipes,burial depth of 20 m,collector area of 6 m^(2),and water tank volume of 0.5 m^(3);four buried pipes,burial depth of 20 m,collector area of 3 m^(2),and water tank volume of 0.5 m^(3);and five buried pipes with a burial depth of 20 m.Furthermore,the heat collection capacity of the solar collectors spanning an area of 3 m^(2)was found to be equivalent to that of one buried pipe.Moreover,the findings revealed that the solar‒ground source heat pump coupling system demonstrated a lower annual cumulative energy consumption compared to the ground source heat pump system,presenting a reduction of 5.31%compared to the energy consumption of the latter.
文摘In the United Kingdom, means of meeting domestic heating is being electrified to decarbonise in effort to reduce the greenhouse gases emissions from the burning of natural gas. Therefore, the uptake of heat pumps is on the increase. The operation and working principle of heat pumps must be well understood in the investigations of their impacts on the grid and the grid assets, especially distribution transformers which could be overloaded due to higher peak load demand. This work develops an operational model of heat pumps as combined space heating and domestic hot water provider implemented in MATLAB. The developed operational model of heat pumps is adaptable and repeatable for different input parameters. The developed model is used to generate daily average demand profiles of heat pumps for a typical winter weekday and a typical summer weekday. The generated demand profiles of heat pumps by the developed model compared well with the demand profiles of heat pumps generated from actual field projects which are usually expensive and time-tasking.
文摘Although a new-class of heat pumps based on mechanically flexible nanoporous materials holds great poten-tial for the utilization of sustainable refrigerants with a considerably high coefficient of performance(COP),reducing their system volume remains a challenge.In this study,we explored the potential of this innovative type of heat pump in terms of COP and system volume.To broaden the scope of material exploration,we devised a new thermodynamic heat pump system applicable to soft mesoporous materials,in addition to the conventional system that is suitable only for flexible microporous materials.Several key factors have been identified through the comparison of various nanoporous materials and refrigerants.Our systematic investigation reveals that the combination of mechanically softer nanoporous materials with ammonia refrigerants can achieve a high COP and a reduced system volume.
文摘This study investigates the feasibility and efficiency of geothermal energy for heating applications in Azerbaijan,with a specific focus on the Khachmaz region.Despite the country’s growing interest in sustainable energy,limited research has addressed the potential of ground-source heat pump(GSHP)systems under local climatic and soil conditions.To address this gap,the study employs GeoT*SOL simulation to evaluate systemperformance,incorporating site-specific parameters such as soil thermal conductivity,heating demand profiles,and regional weather data.The results show that the GSHP system achieves a maximum seasonal performance factor(SPF)of 5.62 and an average SPF of 4.86,indicating high operational efficiency.Additionally,the system provides an estimated annual CO_(2) emissions reduction of 1956 kg per household,highlighting its environmental benefits.Comparative analysis with conventional heating systems demonstrates considerable energy savings and emissions mitigation.The study identifies technical(e.g.,initial installation complexity)and economic(e.g.,high upfront costs)challenges to widespread implementation.Based on these insights,practical recommendations are proposed:policymakers are encouraged to support financial incentives and policy frameworks;urban planners should consider GSHP integration in regional heating plans;and engineers may adopt the simulation-based approach presented here for feasibility studies.This research contributes to the strategic advancement of renewable heating technologies in Azerbaijan.
基金Financial support from the National Natural Science Foundation of China(21736008)。
文摘Recovering waste heat is essential for primary energy savings and carbon emission reduction.To provide direct and reliable suggestions for factories to recover waste heat,energetic,economic and exergoeconomic comparison between direct heat exchange(DHE)and open-cycle mechanical heat pump(MHP)under various operating conditions is carried out in this work.The price ratios R_(ES)(electricity to steam)and R_(HS)(hot water to steam)are introduced to quantify regional impacts and conduct quantitative analysis.A semi-empirical formula is obtained to explore the exergoeconomic performance of the two systems.For waste heat within 373.15-423.15 K,the exergy efficiency of the DHE with a temperature difference of 10-90 K is always lower than that of the MHP with a temperature lift of 10-50 K.The economic performance of the two systems has a break-even point,depending on the operating parameters and relative prices of electricity,steam,and hot water.Under the average R_(ES)(3.8)in China,if R_(HS)is higher than 0.748,the annual revenue of the DHE is always higher,whereas the MHP is more economical when R_(HS)is lower than 0.110.In regions where R_(ES)is higher than 4.353,the annual revenue of the MHP will be negative in some cases.
基金The National Natural Science Foundation of China(No. 51036001 )the Natural Science Foundation of Jiangsu Province(No. BK2010043)
文摘A new ground source heat pump system combined with radiant heating/cooling is proposed, and the principles and the advantages of the system are analyzed. A demonstration of the system is applied to a rebuilt building: Xijindu exhibition hall, which is located in Zhenjiang city in China. Numerical studies on the thermal comfort and energy consumption of the system are carded out by using TRNSYS software. The results indicate that the system with the radiant floor method or the radiant ceiling method shows good thermal comfort without mechanical ventilation in winter. However, the system with either of the methods should add mechanical ventilation to ensure good comfort in summer. At the same level of thermal comfort, it can also be found that the annual energy consumption of the radiant ceiling system is less than that of the radiant floor system.
文摘To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an improvement in the system’s heat generation coefficient,overall efficiency,and stability.In this study,we focus on a residential building located in Lhasa as the target for heating purposes.Initially,we simulate and analyze a solar-air source heat pump combined heating system.Subsequently,while ensuring the system meets user requirements,we examine the influence of solar collector installation angles and collector area on the performance of the solar-air source heat pump dual heating system.Through this analysis,we determine the optimal installation angle and collector area to optimize system performance.
基金Project(hx2013-87)supported by the Qingdao Economic and Technology Development Zone Haier Water-Heater Co.Ltd.,China
文摘In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 ℃) and condenser water inlet temperature(30-50℃). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 ℃ to 17.8 ℃, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 ℃ to 50 ℃. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature.
基金Supported bythe"11th Five-Year Plan"for National Plans of Major Technology Projects
文摘An air source heat pump system (ASHPS) used in an office building is set up and studied experimentally. Its operating performance in winter is evaluated based on test data and a comparative discussion is given on the effect of climate conditions and heating load ratio on the operation behavior. Then heating capacity variation caused by evaporator frosting is analyzed as well. Finally, the defrosting parameters and the technical feasibility are studied for a constant heating demand. The experimental results indicate that both the outlet water temperature drop and the system COP should be taken into account when setting defrosting parameters, and ASHPS is a viable technology for space heating and hot-water production in winter in Tianjin, which can maintain the room temperature above 19 ℃ when the outdoor temperature is -2 ℃.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(51825802).
文摘The electrification of building heating is an effective way to meet the global carbon target. As a clean and sustainable electrified heating technology, air-source heat pumps (ASHPs) are widely used in areas lacking central heating. However, as a major component of space heating, heating terminals might not fit well with ASHP in order to achieve both intermittency and comfort. Therefore, this study proposes a novel radiation-adjustable heating terminal combined with an ASHP to achieve electrification, intermittency, and better thermal comfort. Radiant terminals currently suffer from three major problems: limited maximum heating capacity, inability to freely adapt, and difficulty with combining them with ASHPs. These problems were solved by improving the structural design of the novel terminal (Improvement A–E). Results showed that the maximum heating capacity increased by 23.6% and radiation heat transfer ratio from 10.1% to 30.9% was provided for users with the novel terminal. Further, new flat heat pipe (FHP) design improved stability (compressor oil return), intermittency (refrigerant thermal inertia), and safety (refrigerant leakage risk) by reducing the length of exposed refrigerant pipes. Furthermore, a new phased operation strategy was proposed for the novel terminal, and the adjustability of the terminal was improved. The results can be used as reference information for decarbonizing buildings by electrifying heating terminals.
基金This work was supported by the National Key Research and Development Program of China(No.2019YFE0193200 KY202001)Science and Technology Planning Project of Beijing(No.Z201100008320001 KY191004).
文摘For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases.
基金This research was funded by Development of the Healthy and Low-Carbon Residential House with Smart Home Environment Management System,Grant No.2019GSF110003Research on the energy efficiency and health performance improvement of building operations based on lifecycle carbon emissions reduction Grant No.2018YFE0106100.We gratefully acknowledge the help from ASSURAN International Scholarship Foundation.
文摘The building sector contributes a large ratio of final energy consumption,and improving building energy efficiency is expected to play a significant role in mitigating its carbon dioxide emission.Herein,we collected the on-site measurement data to investigate the techno-economic performances of different heat pump types that exist in building space heating projects in Qingdao,China.An in-depth analysis revealed the temperature variations of measured low-grade heat sources over the whole heating supply period,and urban sewage water shows high stable heat energy quality compared with seawater and geothermal heat resources.Operational behaviors including cycling inlet and outlet temperature of the selected heat pumps were illustrated,and analysis evaluated detailed effects of operational parameters on energy efficiency performances.Then the relationship between COPs distributions of heat pumps and operational conditions was examined further,and the positive effect of the rising temperature of heat sources on energy efficiency improvement of heat pump is highlighted when the heating supply temperature is higher.Furthermore,we analyzed the economic and carbon emission performance of the heat pump system,and results show that electricity price plays a vital role in the lifespan energy cost saving potential,and the heat pump could serve as a promising approach in reducing CO_(2) related to the building space heating.Finally,we recommended suggestions for improving the overall energy efficiency and cost competitiveness of decentralized heat pump systems for building space heating.
文摘Preliminary investigation shows that air sourced type heat pumps by energy efficiency are competitive with gas boilers having 93% of coefficient of performance (COP) if heat pumps are used in climatic zones, having outside air temperature higher than (-3 ℃ to -5 ℃). But, in such conditions the heat pump's evaporator is covered by ice crust, which cuts off the flow of outside air-heat source through the evaporator of heat pump. For avoiding stating problems it is recommended to use as heat source a mixture of waste warm gases. In this article a high efficiency heating-cooling system is developed, consisting of warm gases mixture sourced heat pump, heating boiler operating simultaneously with heat pump and solar air heater. The heating demand of the served house is shared between boiler and heat pump. Instead of outside air the warm gases mixture enters into evaporator of heat pump. A new construction of heat exchanger was developed. The article presents the structure and principle of operation, as well as the method for optimization and design of suggested system. Analysis proved high energy efficiency and cost effectiveness of the new system.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFE0137200)National Natural Science Foundation of China(Grant Nos.52309147 and 52179114).
文摘In unconsolidated sandstone reservoirs,presence of numerous movable grains and a complex grain size composition necessitates a clear understanding of the physical clogging process for effective groundwater recharge in groundwater-source heat pump systems.To investigate this,a series of seepage experiments was conducted under in situ stress conditions using unconsolidated sandstone samples with varying grain compositions.The clogging phenomenon arises from the combined effects of grain migration and compaction,wherein the migration of both original and secondary crushed fine-grain particles blocks the seepage channels.Notably,grain composition influences the migration and transport properties of the grains.For samples composed of smaller grains,the apparent permeability demonstrates a transition from stability to decrease.In contrast,samples with larger grains experience a skip at the stability stage and directly enter the decrease stage,with a minor exception of a slight increase observed.Furthermore,a unique failure mode characterized by diameter shrinkage in the upper part of the sample is observed due to the combined effects of grain migration and in situ stress-induced compaction.These testing results contribute to a better understanding of the clogging mechanism caused by the coupled effects of grain migration and compaction during groundwater recharge in unconsolidated sandstone reservoirs used in groundwater-source heat pump systems.
文摘Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Here the thermal behavior of deep borehole exchangers(DBHEs)ranging from 1 to 2 km was analyzed for various heat flow profiles.A strong correlation between thermal energy extraction and power output from DBHEs was found,also influenced by the heating profile employed.Longer operating time over the year typically resulted in higher energy production,while shorter one yielded higher average thermal power output,highlighting the importance of the choice of heating strategy and system design for optimal performance of DBHEs.Short breaks in operation for regenerating the borehole,for example,with waste heat,proved to be favorable for the performance yielding an overall heat output close to the same as with continuous extraction of heat.The results demonstrate the usefulness of deep boreholes for dense urban areas with less available space.As the heat production from a single DBHE in Finnish conditions ranges from half up to even a few GWh a year,the technology is best suitable for larger heat loads.
基金supported by the National Natural Science Foundation of China(Grant Nos.42001059,52178340)the Natural Science Foundation of Hebei Province,China(Grant No.E2020210044)+1 种基金the Key Laboratory of Mechanical Behavior Evolution and Control of Traffic Engineering Structures in Hebei(Grant No.SZ 2022-03)the Overseas Expertise Introduction Project for Discipline Innovation("111 Project",Grant No.B21011).
文摘This study introduces a novel artificial heating technique aimed at addressing frost heave issues in embankments on frozen ground,offering a sustainable solution.Initial evaluations assessed various heating systems,including boilers,heat pumps,solar heaters,and electric heaters,focusing on their thermal performance and applicability.The study subsequently designed and implemented a direct-expansion ground source heat pump(DX-GSHP)system as the primary heat source for embankment warming.Rigorous testing confirmed the DX-GSHP system's ability to maintain a heat-supply temperature above 40℃ and a heat-absorption temperature below -3.5℃,effectively extracting geothermal energy for transfer to the topsoil layers.With a demonstrated coefficient of performance(COP)of 3.49,the DX-GSHP system not only proves its energy efficiency but also suggests a potential role in reducing the strain on electricity supply systems.Installation of DX-GSHPs,with heating capacities ranging from 1.0 to 2.0 kW and spaced at intervals of 2.0-4.0 m,provides a rapid thermal response to frost heave in singletrack railway embankments,thereby potentially mitigating frost-induced damage in cold climate regions.
基金funded by the National Natural Science Foundation of China(No.52036004,52293411)Shanghai International collaborative research program(No.22160711300)supported by“the Fundamental Research Funds for the Central Universities”.
文摘Aligning with ambitious targets and commitments towards carbon neutrality,countries around the world are desperately seeking an energy transition to cope with the stark reality of the climate crisis and the surge in demand for heating and cooling.Increased penetration of renewable power is foreshadowing a shift in global energy dominance,from fossil fuel based heating to renewable power based heating.However,we have to address four underlying challenges in energy transition,including(1)to achieve heat electrification,(2)to utilize decommissioned thermal power plants,(3)to meet the demand for large-scale heat storage,and(4)to puzzle out thefinal“10%”emissions.Given the above challenges,we put forth four heat pump-assisted approaches to break the bottleneck of energy transition and facilitate effective incentive strategies for policymakers.We highlight that the efficiency andflexibility of heat pumps in thermal energy regulation enable them to push forward an immense influence on the future energy transition for the heating/cooling supply that accounts for 50%of the energy consumption for users and the last“10%”carbon emissions.
基金The National Key Technology R&D Program of Chinaduring the 11th Five-Year Plan Period(No.2008BAJ12B04)China Postdoctoral Science Foundation(No.20090461050)+1 种基金the Project of Researchand Development of Ministry of Housing and Urban-Rural Development ofChina(No.2008-K1-26)the New Century Talent Project of Yangzhou University for Excellent Young Backbone Teacher(2008)
文摘In order to investigate the alternate operation characteristics of a solar-ground source heat pump system(SGSHPS),various alternate operation modes are put forward and defined.A two-dimensional mathematical model with freezing/melting phase changes is developed for the heat transfer analysis of the soil.Based on the numerical solution of the model,the variation trends of underground soil temperature of the SGSHPS operated in various alternate operation modes are discussed.The results indicate that,for the day-night and short-time interval alternate operation modes without solar energy,the operation time fraction of a solar heat source should be confined to from 50% to 58% when operated in an alternate period of 24 h.Meanwhile,the disadvantages of a natural resumption of soil temperature can be overcome effectively by solar energy filling,and an optimal operation effect can be achieved by integrating the mode of solar energy filling with other alternate modes.In addition,the accuracy of the presented model is verified by the experimental data of borehole wall temperatures.The conclusions can provide a reference for the optimization operation of the SGSHPS.