A pseudo-random coding side-lobe suppression method based on CLEAN algorithm is introduced.The CLEAN algorithm mainly processes pulse compression results of a pseudo-random coding,and estimates a target's distance by...A pseudo-random coding side-lobe suppression method based on CLEAN algorithm is introduced.The CLEAN algorithm mainly processes pulse compression results of a pseudo-random coding,and estimates a target's distance by a method named interpolation method,so that we can get an ideal pulse compression result of the target,and then use the adjusted ideal pulse compression side-lobe to cut the actual pulse compression result,so as to achieve the remarkable performance of side-lobe suppression for large targets,and let the adjacent small targets appear.The computer simulations by MATLAB with this method analyze the effect of side-lobe suppression in an ideal or noisy environment.It is proved that this method can effectively solve the problem due to the side-lobe of pseudo-random coding being too high,and can enhance the radar's multi-target detection ability.展开更多
Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbule...Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbulence intensities,the deep learning technique is proposed to the polarization code decoding in ACO-OFDM space optical communication system.Moreover,this system realizes the polarization code decoding and signal demodulation without frequency conduction with superior performance and robustness compared with the performance of traditional decoder.Simulations under different turbulence intensities as well as different mapping orders show that the convolutional neural network(CNN)decoder trained under weak-medium-strong turbulence atmospheric channels achieves a performance improvement of about 10^(2)compared to the conventional decoder at 4-quadrature amplitude modulation(4QAM),and the BERs for both 16QAM and 64QAM are in between those of the conventional decoder.展开更多
Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The...Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The XZZX surface code,with only one stabilizer generator on each face,demonstrates significant application potential under biased noise.However,the existing minimum weight perfect matching(MWPM)algorithm has high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoding method that combines graph neural networks(GNN)with multi-classifiers,the syndrome is transformed into an undirected graph,and the features are aggregated by convolutional layers,providing a more efficient and accurate decoding strategy.In the experiments,we evaluated the performance of the XZZX code under different biased noise conditions(bias=1,20,200)and different code distances(d=3,5,7,9,11).The experimental results show that under low bias noise(bias=1),the GNN decoder achieves a threshold of 0.18386,an improvement of approximately 19.12%compared to the MWPM decoder.Under high bias noise(bias=200),the GNN decoder reaches a threshold of 0.40542,improving by approximately 20.76%,overcoming the limitations of the conventional decoder.They demonstrate that the GNN decoding method exhibits superior performance and has broad application potential in the error correction of XZZX code.展开更多
Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-med...Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-medium length regime.However,this list decoding complexity becomes formidable as the decoding output list size increases.This is primarily incurred by the OSD.Addressing this challenge,this paper proposes the low complexity SCL decoding through reducing the complexity of component code decoding,and pruning the redundant SCL decoding paths.For the former,an efficient skipping rule is introduced for the OSD so that the higher order decoding can be skipped when they are not possible to provide a more likely codeword candidate.It is further extended to the OSD variant,the box-andmatch algorithm(BMA),in facilitating the component code decoding.Moreover,through estimating the correlation distance lower bounds(CDLBs)of the component code decoding outputs,a path pruning(PP)-SCL decoding is proposed to further facilitate the decoding of U-UV codes.In particular,its integration with the improved OSD and BMA is discussed.Simulation results show that significant complexity reduction can be achieved.Consequently,the U-UV codes can outperform the cyclic redundancy check(CRC)-polar codes with a similar decoding complexity.展开更多
Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum co...Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum computer. For this new topological stabilizer code-XYZ^(2) code defined on the cellular lattice, it is implemented on a hexagonal lattice of qubits and it encodes the logical qubits with the help of stabilizer measurements of weight six and weight two. However topological stabilizer codes in cellular lattice quantum systems suffer from the detrimental effects of noise due to interaction with the environment. Several decoding approaches have been proposed to address this problem. Here, we propose the use of a state-attention based reinforcement learning decoder to decode XYZ^(2) codes, which enables the decoder to more accurately focus on the information related to the current decoding position, and the error correction accuracy of our reinforcement learning decoder model under the optimisation conditions can reach 83.27% under the depolarizing noise model, and we have measured thresholds of 0.18856 and 0.19043 for XYZ^(2) codes at code spacing of 3–7 and 7–11, respectively. our study provides directions and ideas for applications of decoding schemes combining reinforcement learning attention mechanisms to other topological quantum error-correcting codes.展开更多
Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error corre...Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder.展开更多
Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved s...Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved segmented belief propagation list decoding based on bit flipping(SBPL-BF) is proposed. On the one hand, the proposed algorithm makes use of the cooperative characteristic in BPL decoding such that the codeword is decoded in different BP decoders. Based on this characteristic, the unreliable bits for flipping could be split into multiple subblocks and could be flipped in different decoders simultaneously. On the other hand, a more flexible and effective processing strategy for the priori information of the unfrozen bits that do not need to be flipped is designed to improve the decoding convergence. In addition, this is the first proposal in BPL decoding which jointly optimizes the bit flipping of the information bits and the code bits. In particular, for bit flipping of the code bits, a H-matrix aided bit-flipping algorithm is designed to enhance the accuracy in identifying erroneous code bits. The simulation results show that the proposed algorithm significantly improves the errorcorrection performance of BPL decoding for medium and long codes. It is more than 0.25 d B better than the state-of-the-art BPL decoding at a block error rate(BLER) of 10^(-5), and outperforms CA-SCL decoding in the low signal-to-noise(SNR) region for(1024, 0.5)polar codes.展开更多
Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information ...Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.展开更多
In the article“Deep Learning-Enhanced Brain Tumor Prediction via Entropy-Coded BPSO in CIELAB Color Space”by Mudassir Khalil,Muhammad Imran Sharif,Ahmed Naeem,Muhammad Umar Chaudhry,Hafiz Tayyab Rauf,Adham E.Ragab C...In the article“Deep Learning-Enhanced Brain Tumor Prediction via Entropy-Coded BPSO in CIELAB Color Space”by Mudassir Khalil,Muhammad Imran Sharif,Ahmed Naeem,Muhammad Umar Chaudhry,Hafiz Tayyab Rauf,Adham E.Ragab Computers,Materials&Continua,2023,Vol.77,No.2,pp.2031–2047.DOI:10.32604/cmc.2023.043687,URL:https://www.techscience.com/cmc/v77n2/54831,there was an error regarding the affiliation for the author Hafiz Tayyab Rauf.Instead of“Centre for Smart Systems,AI and Cybersecurity,Staffordshire University,Stoke-on-Trent,ST42DE,UK”,the affiliation should be“Independent Researcher,Bradford,BD80HS,UK”.展开更多
Multiple functional metasurfaces with high information capacity have attracted considerable attention from researchers.This study proposes a 2-bit tunable spin-decoupled coded metasurface designed for the terahertz ba...Multiple functional metasurfaces with high information capacity have attracted considerable attention from researchers.This study proposes a 2-bit tunable spin-decoupled coded metasurface designed for the terahertz band,which utilizes the tunable properties of Dirac semimetals(DSM)to create a novel multilayer structure.By incorporating both geometric and propagating phases into the metasurface design,we can effectively control the electromagnetic wave.When the Fermi level(EF)of the DSM is set at 6 meV,the electromagnetic wave is manipulated by the gold patch embedded in the DSM film,operating at a frequency of 1.3 THz.When the EF of the DSM is set at 80 meV,the electromagnetic wave is manipulated by the DSM patch,operating at a frequency of 1.4 THz.Both modes enable independent control of beam splitting under left-rotating circularly polarized(LCP)and rightrotating circularly polarized(RCP)wave excitation,resulting in the generation of vortex beams with distinct orbital angular momentum(OAM)modes.The findings of this study hold significant potential for enhancing information capacity and polarization multiplexing techniques in wireless communications.展开更多
A two-stage algorithm based on deep learning for the detection and recognition of can bottom spray codes and numbers is proposed to address the problems of small character areas and fast production line speeds in can ...A two-stage algorithm based on deep learning for the detection and recognition of can bottom spray codes and numbers is proposed to address the problems of small character areas and fast production line speeds in can bottom spray code number recognition.In the coding number detection stage,Differentiable Binarization Network is used as the backbone network,combined with the Attention and Dilation Convolutions Path Aggregation Network feature fusion structure to enhance the model detection effect.In terms of text recognition,using the Scene Visual Text Recognition coding number recognition network for end-to-end training can alleviate the problem of coding recognition errors caused by image color distortion due to variations in lighting and background noise.In addition,model pruning and quantization are used to reduce the number ofmodel parameters to meet deployment requirements in resource-constrained environments.A comparative experiment was conducted using the dataset of tank bottom spray code numbers collected on-site,and a transfer experiment was conducted using the dataset of packaging box production date.The experimental results show that the algorithm proposed in this study can effectively locate the coding of cans at different positions on the roller conveyor,and can accurately identify the coding numbers at high production line speeds.The Hmean value of the coding number detection is 97.32%,and the accuracy of the coding number recognition is 98.21%.This verifies that the algorithm proposed in this paper has high accuracy in coding number detection and recognition.展开更多
The care of a patient involved in major trauma with exsanguinating haemorrhage is time-critical to achieve definitive haemorrhage control,and it requires coordinated multidisciplinary care.During initial resuscitation...The care of a patient involved in major trauma with exsanguinating haemorrhage is time-critical to achieve definitive haemorrhage control,and it requires coordinated multidisciplinary care.During initial resuscitation of a patient in the emergency department(ED),Code Crimson activation facilitates rapid decisionmaking by multi-disciplinary specialists for definitive haemorrhage control in operating theatre(OT)and/or interventional radiology(IR)suite.Once this decision has been made,there may still be various factors that lead to delay in transporting the patient from ED to OT/IR.Red Blanket protocol identifies and addresses these factors and processes which cause delay,and aims to facilitate rapid and safe transport of the haemodynamically unstable patient from ED to OT,while minimizing delay in resuscitation during the transfer.The two processes,Code Crimson and Red Blanket,complement each other.It would be ideal to merge the two processes into a single protocol rather than having two separate workflows.Introducing these quality improvement strategies and coor-dinated processes within the trauma framework of the hospitals/healthcare systems will help in further improving the multi-disciplinary care for the complex trauma patients requiring rapid and definitive haemorrhage control.展开更多
Fraction repetition(FR)codes are integral in distributed storage systems(DSS)with exact repair-by-transfer,while pliable fraction repetition codes are vital for DSSs in which both the per-node storage and repetition d...Fraction repetition(FR)codes are integral in distributed storage systems(DSS)with exact repair-by-transfer,while pliable fraction repetition codes are vital for DSSs in which both the per-node storage and repetition degree can easily be adjusted simultaneously.This paper introduces a new type of pliable FR codes,called absolute balanced pliable FR(ABPFR)codes,in which the access balancing in DSS is considered.Additionally,the equivalence between pliable FR codes and resolvable transversal packings in combinatorial design theory is presented.Then constructions of pliable FR codes and ABPFR codes based on resolvable transversal packings are presented.展开更多
Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitat...Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitations,a novel two-level serially concatenated MLC scheme,in which the bitlevels with similar reliability are bundled and transmitted together,is proposed.The proposed scheme hierarchically protects the two bit-level sets:the bitlevel sets at the higher level are sufficiently reliable and do not require excessive resources for protection,whereas only the bit-level sets at the lower level are encoded by polar codes.The proposed scheme has the advantages of low power consumption,low delay and high reliability.Moreover,an optimized constellation signal labeling rule that can enhance the performance is proposed.Finally,the superiority of the proposed scheme is validated through the theoretical analysis and simulation results.Compared with the bit interleaving coding modulation(BICM)scheme,under 256-quadrature amplitude modulation(QAM),the proposed scheme attains a performance gain of 1.0 dB while reducing the decoding complexity by 54.55%.展开更多
In the process of quantum key distribution(QKD), the communicating parties need to randomly determine quantum states and measurement bases. To ensure the security of key distribution, we aim to use true random sequenc...In the process of quantum key distribution(QKD), the communicating parties need to randomly determine quantum states and measurement bases. To ensure the security of key distribution, we aim to use true random sequences generated by true random number generators as the source of randomness. In practical systems, due to the difficulty of obtaining true random numbers, pseudo-random number generators are used instead. Although the random numbers generated by pseudorandom number generators are statistically random, meeting the requirements of uniform distribution and independence,they rely on an initial seed to generate corresponding pseudo-random sequences. Attackers may predict future elements from the initial elements of the random sequence, posing a security risk to quantum key distribution. This paper analyzes the problems existing in current pseudo-random number generators and proposes corresponding attack methods and applicable scenarios based on the vulnerabilities in the pseudo-random sequence generation process. Under certain conditions, it is possible to obtain the keys of the communicating parties with very low error rates, thus effectively attacking the quantum key system. This paper presents new requirements for the use of random numbers in quantum key systems, which can effectively guide the security evaluation of quantum key distribution protocols.展开更多
In this paper,we first generalize the constant dimension and orbit codes over finite fields to the constant rank and orbit codes over finite chain rings.Then we provide a relationship between constant rank codes over ...In this paper,we first generalize the constant dimension and orbit codes over finite fields to the constant rank and orbit codes over finite chain rings.Then we provide a relationship between constant rank codes over finite chain rings and constant dimension codes over the residue fields.In particular,we prove that an orbit submodule code over a finite chain ring is a constant rank code.Finally,for special finite chain ring F_(q)+γF_(q),we define a Gray mapφfrom(F_(q)+γF_(q))^(n)to F^(2n)_(q),and by using cyclic codes over F_(q)+γF_(q),we obtain a method of constructing an optimum distance constant dimension code over F_(q).展开更多
Neuroscience (also known as neurobiology) is a science that studies the structure, function, development, pharmacology and pathology of the nervous system. In recent years, C. Cotardo has introduced coding theory into...Neuroscience (also known as neurobiology) is a science that studies the structure, function, development, pharmacology and pathology of the nervous system. In recent years, C. Cotardo has introduced coding theory into neuroscience, proposing the concept of combinatorial neural codes. And it was further studied in depth using algebraic methods by C. Curto. In this paper, we construct a class of combinatorial neural codes with special properties based on classical combinatorial structures such as orthogonal Latin rectangle, disjoint Steiner systems, groupable designs and transversal designs. These neural codes have significant weight distribution properties and large minimum distances, and are thus valuable for potential applications in information representation and neuroscience. This study provides new ideas for the construction method and property analysis of combinatorial neural codes, and enriches the study of algebraic coding theory.展开更多
文摘A pseudo-random coding side-lobe suppression method based on CLEAN algorithm is introduced.The CLEAN algorithm mainly processes pulse compression results of a pseudo-random coding,and estimates a target's distance by a method named interpolation method,so that we can get an ideal pulse compression result of the target,and then use the adjusted ideal pulse compression side-lobe to cut the actual pulse compression result,so as to achieve the remarkable performance of side-lobe suppression for large targets,and let the adjacent small targets appear.The computer simulations by MATLAB with this method analyze the effect of side-lobe suppression in an ideal or noisy environment.It is proved that this method can effectively solve the problem due to the side-lobe of pseudo-random coding being too high,and can enhance the radar's multi-target detection ability.
基金supported by the National Natural Science Foundation of China(No.12104141).
文摘Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbulence intensities,the deep learning technique is proposed to the polarization code decoding in ACO-OFDM space optical communication system.Moreover,this system realizes the polarization code decoding and signal demodulation without frequency conduction with superior performance and robustness compared with the performance of traditional decoder.Simulations under different turbulence intensities as well as different mapping orders show that the convolutional neural network(CNN)decoder trained under weak-medium-strong turbulence atmospheric channels achieves a performance improvement of about 10^(2)compared to the conventional decoder at 4-quadrature amplitude modulation(4QAM),and the BERs for both 16QAM and 64QAM are in between those of the conventional decoder.
基金supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021MF049)the Joint Fund of Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2022LL.Z012 and ZR2021LLZ001)the Key Research and Development Program of Shandong Province,China(Grant No.2023CXGC010901).
文摘Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The XZZX surface code,with only one stabilizer generator on each face,demonstrates significant application potential under biased noise.However,the existing minimum weight perfect matching(MWPM)algorithm has high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoding method that combines graph neural networks(GNN)with multi-classifiers,the syndrome is transformed into an undirected graph,and the features are aggregated by convolutional layers,providing a more efficient and accurate decoding strategy.In the experiments,we evaluated the performance of the XZZX code under different biased noise conditions(bias=1,20,200)and different code distances(d=3,5,7,9,11).The experimental results show that under low bias noise(bias=1),the GNN decoder achieves a threshold of 0.18386,an improvement of approximately 19.12%compared to the MWPM decoder.Under high bias noise(bias=200),the GNN decoder reaches a threshold of 0.40542,improving by approximately 20.76%,overcoming the limitations of the conventional decoder.They demonstrate that the GNN decoding method exhibits superior performance and has broad application potential in the error correction of XZZX code.
基金supported by the National Natural Science Foundation of China(NSFC)with project ID 62071498the Guangdong National Science Foundation(GDNSF)with project ID 2024A1515010213.
文摘Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-medium length regime.However,this list decoding complexity becomes formidable as the decoding output list size increases.This is primarily incurred by the OSD.Addressing this challenge,this paper proposes the low complexity SCL decoding through reducing the complexity of component code decoding,and pruning the redundant SCL decoding paths.For the former,an efficient skipping rule is introduced for the OSD so that the higher order decoding can be skipped when they are not possible to provide a more likely codeword candidate.It is further extended to the OSD variant,the box-andmatch algorithm(BMA),in facilitating the component code decoding.Moreover,through estimating the correlation distance lower bounds(CDLBs)of the component code decoding outputs,a path pruning(PP)-SCL decoding is proposed to further facilitate the decoding of U-UV codes.In particular,its integration with the improved OSD and BMA is discussed.Simulation results show that significant complexity reduction can be achieved.Consequently,the U-UV codes can outperform the cyclic redundancy check(CRC)-polar codes with a similar decoding complexity.
基金supported by the Natural Science Foundation of Shandong Province,China (Grant No. ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos. ZR2022LLZ012 and ZR2021LLZ001)。
文摘Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum computer. For this new topological stabilizer code-XYZ^(2) code defined on the cellular lattice, it is implemented on a hexagonal lattice of qubits and it encodes the logical qubits with the help of stabilizer measurements of weight six and weight two. However topological stabilizer codes in cellular lattice quantum systems suffer from the detrimental effects of noise due to interaction with the environment. Several decoding approaches have been proposed to address this problem. Here, we propose the use of a state-attention based reinforcement learning decoder to decode XYZ^(2) codes, which enables the decoder to more accurately focus on the information related to the current decoding position, and the error correction accuracy of our reinforcement learning decoder model under the optimisation conditions can reach 83.27% under the depolarizing noise model, and we have measured thresholds of 0.18856 and 0.19043 for XYZ^(2) codes at code spacing of 3–7 and 7–11, respectively. our study provides directions and ideas for applications of decoding schemes combining reinforcement learning attention mechanisms to other topological quantum error-correcting codes.
基金Project supported by Natural Science Foundation of Shandong Province,China (Grant Nos.ZR2021MF049,ZR2022LLZ012,and ZR2021LLZ001)。
文摘Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder.
基金funded by the Key Project of NSFC-Guangdong Province Joint Program(Grant No.U2001204)the National Natural Science Foundation of China(Grant Nos.61873290 and 61972431)+1 种基金the Science and Technology Program of Guangzhou,China(Grant No.202002030470)the Funding Project of Featured Major of Guangzhou Xinhua University(2021TZ002).
文摘Belief propagation list(BPL) decoding for polar codes has attracted more attention due to its inherent parallel nature. However, a large gap still exists with CRC-aided SCL(CA-SCL) decoding.In this work, an improved segmented belief propagation list decoding based on bit flipping(SBPL-BF) is proposed. On the one hand, the proposed algorithm makes use of the cooperative characteristic in BPL decoding such that the codeword is decoded in different BP decoders. Based on this characteristic, the unreliable bits for flipping could be split into multiple subblocks and could be flipped in different decoders simultaneously. On the other hand, a more flexible and effective processing strategy for the priori information of the unfrozen bits that do not need to be flipped is designed to improve the decoding convergence. In addition, this is the first proposal in BPL decoding which jointly optimizes the bit flipping of the information bits and the code bits. In particular, for bit flipping of the code bits, a H-matrix aided bit-flipping algorithm is designed to enhance the accuracy in identifying erroneous code bits. The simulation results show that the proposed algorithm significantly improves the errorcorrection performance of BPL decoding for medium and long codes. It is more than 0.25 d B better than the state-of-the-art BPL decoding at a block error rate(BLER) of 10^(-5), and outperforms CA-SCL decoding in the low signal-to-noise(SNR) region for(1024, 0.5)polar codes.
基金supported in part by the National Key Research and Development Program of China under Grant No.2024YFE0200600the Zhejiang Provincial Natural Science Foundation of China under Grant No.LR23F010005the Huawei Cooperation Project under Grant No.TC20240829036。
文摘Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.
文摘In the article“Deep Learning-Enhanced Brain Tumor Prediction via Entropy-Coded BPSO in CIELAB Color Space”by Mudassir Khalil,Muhammad Imran Sharif,Ahmed Naeem,Muhammad Umar Chaudhry,Hafiz Tayyab Rauf,Adham E.Ragab Computers,Materials&Continua,2023,Vol.77,No.2,pp.2031–2047.DOI:10.32604/cmc.2023.043687,URL:https://www.techscience.com/cmc/v77n2/54831,there was an error regarding the affiliation for the author Hafiz Tayyab Rauf.Instead of“Centre for Smart Systems,AI and Cybersecurity,Staffordshire University,Stoke-on-Trent,ST42DE,UK”,the affiliation should be“Independent Researcher,Bradford,BD80HS,UK”.
文摘Multiple functional metasurfaces with high information capacity have attracted considerable attention from researchers.This study proposes a 2-bit tunable spin-decoupled coded metasurface designed for the terahertz band,which utilizes the tunable properties of Dirac semimetals(DSM)to create a novel multilayer structure.By incorporating both geometric and propagating phases into the metasurface design,we can effectively control the electromagnetic wave.When the Fermi level(EF)of the DSM is set at 6 meV,the electromagnetic wave is manipulated by the gold patch embedded in the DSM film,operating at a frequency of 1.3 THz.When the EF of the DSM is set at 80 meV,the electromagnetic wave is manipulated by the DSM patch,operating at a frequency of 1.4 THz.Both modes enable independent control of beam splitting under left-rotating circularly polarized(LCP)and rightrotating circularly polarized(RCP)wave excitation,resulting in the generation of vortex beams with distinct orbital angular momentum(OAM)modes.The findings of this study hold significant potential for enhancing information capacity and polarization multiplexing techniques in wireless communications.
文摘A two-stage algorithm based on deep learning for the detection and recognition of can bottom spray codes and numbers is proposed to address the problems of small character areas and fast production line speeds in can bottom spray code number recognition.In the coding number detection stage,Differentiable Binarization Network is used as the backbone network,combined with the Attention and Dilation Convolutions Path Aggregation Network feature fusion structure to enhance the model detection effect.In terms of text recognition,using the Scene Visual Text Recognition coding number recognition network for end-to-end training can alleviate the problem of coding recognition errors caused by image color distortion due to variations in lighting and background noise.In addition,model pruning and quantization are used to reduce the number ofmodel parameters to meet deployment requirements in resource-constrained environments.A comparative experiment was conducted using the dataset of tank bottom spray code numbers collected on-site,and a transfer experiment was conducted using the dataset of packaging box production date.The experimental results show that the algorithm proposed in this study can effectively locate the coding of cans at different positions on the roller conveyor,and can accurately identify the coding numbers at high production line speeds.The Hmean value of the coding number detection is 97.32%,and the accuracy of the coding number recognition is 98.21%.This verifies that the algorithm proposed in this paper has high accuracy in coding number detection and recognition.
文摘The care of a patient involved in major trauma with exsanguinating haemorrhage is time-critical to achieve definitive haemorrhage control,and it requires coordinated multidisciplinary care.During initial resuscitation of a patient in the emergency department(ED),Code Crimson activation facilitates rapid decisionmaking by multi-disciplinary specialists for definitive haemorrhage control in operating theatre(OT)and/or interventional radiology(IR)suite.Once this decision has been made,there may still be various factors that lead to delay in transporting the patient from ED to OT/IR.Red Blanket protocol identifies and addresses these factors and processes which cause delay,and aims to facilitate rapid and safe transport of the haemodynamically unstable patient from ED to OT,while minimizing delay in resuscitation during the transfer.The two processes,Code Crimson and Red Blanket,complement each other.It would be ideal to merge the two processes into a single protocol rather than having two separate workflows.Introducing these quality improvement strategies and coor-dinated processes within the trauma framework of the hospitals/healthcare systems will help in further improving the multi-disciplinary care for the complex trauma patients requiring rapid and definitive haemorrhage control.
基金Supported in part by the National Key R&D Program of China(No.2020YFA0712300)NSFC(No.61872353)。
文摘Fraction repetition(FR)codes are integral in distributed storage systems(DSS)with exact repair-by-transfer,while pliable fraction repetition codes are vital for DSSs in which both the per-node storage and repetition degree can easily be adjusted simultaneously.This paper introduces a new type of pliable FR codes,called absolute balanced pliable FR(ABPFR)codes,in which the access balancing in DSS is considered.Additionally,the equivalence between pliable FR codes and resolvable transversal packings in combinatorial design theory is presented.Then constructions of pliable FR codes and ABPFR codes based on resolvable transversal packings are presented.
基金supported by the External Cooperation Program of Science and Technology of Fujian Province,China(2024I0016)the Fundamental Research Funds for the Central Universities(ZQN-1005).
文摘Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitations,a novel two-level serially concatenated MLC scheme,in which the bitlevels with similar reliability are bundled and transmitted together,is proposed.The proposed scheme hierarchically protects the two bit-level sets:the bitlevel sets at the higher level are sufficiently reliable and do not require excessive resources for protection,whereas only the bit-level sets at the lower level are encoded by polar codes.The proposed scheme has the advantages of low power consumption,low delay and high reliability.Moreover,an optimized constellation signal labeling rule that can enhance the performance is proposed.Finally,the superiority of the proposed scheme is validated through the theoretical analysis and simulation results.Compared with the bit interleaving coding modulation(BICM)scheme,under 256-quadrature amplitude modulation(QAM),the proposed scheme attains a performance gain of 1.0 dB while reducing the decoding complexity by 54.55%.
文摘In the process of quantum key distribution(QKD), the communicating parties need to randomly determine quantum states and measurement bases. To ensure the security of key distribution, we aim to use true random sequences generated by true random number generators as the source of randomness. In practical systems, due to the difficulty of obtaining true random numbers, pseudo-random number generators are used instead. Although the random numbers generated by pseudorandom number generators are statistically random, meeting the requirements of uniform distribution and independence,they rely on an initial seed to generate corresponding pseudo-random sequences. Attackers may predict future elements from the initial elements of the random sequence, posing a security risk to quantum key distribution. This paper analyzes the problems existing in current pseudo-random number generators and proposes corresponding attack methods and applicable scenarios based on the vulnerabilities in the pseudo-random sequence generation process. Under certain conditions, it is possible to obtain the keys of the communicating parties with very low error rates, thus effectively attacking the quantum key system. This paper presents new requirements for the use of random numbers in quantum key systems, which can effectively guide the security evaluation of quantum key distribution protocols.
基金Supported by Research Funds of Hubei Province(D20144401,Q20174503)。
文摘In this paper,we first generalize the constant dimension and orbit codes over finite fields to the constant rank and orbit codes over finite chain rings.Then we provide a relationship between constant rank codes over finite chain rings and constant dimension codes over the residue fields.In particular,we prove that an orbit submodule code over a finite chain ring is a constant rank code.Finally,for special finite chain ring F_(q)+γF_(q),we define a Gray mapφfrom(F_(q)+γF_(q))^(n)to F^(2n)_(q),and by using cyclic codes over F_(q)+γF_(q),we obtain a method of constructing an optimum distance constant dimension code over F_(q).
文摘Neuroscience (also known as neurobiology) is a science that studies the structure, function, development, pharmacology and pathology of the nervous system. In recent years, C. Cotardo has introduced coding theory into neuroscience, proposing the concept of combinatorial neural codes. And it was further studied in depth using algebraic methods by C. Curto. In this paper, we construct a class of combinatorial neural codes with special properties based on classical combinatorial structures such as orthogonal Latin rectangle, disjoint Steiner systems, groupable designs and transversal designs. These neural codes have significant weight distribution properties and large minimum distances, and are thus valuable for potential applications in information representation and neuroscience. This study provides new ideas for the construction method and property analysis of combinatorial neural codes, and enriches the study of algebraic coding theory.