We propose a symplectic partitioned Runge-Kutta (SPRK) method with eighth-order spatial accuracy based on the extended Hamiltonian system of the acoustic waveequation. Known as the eighth-order NSPRK method, this te...We propose a symplectic partitioned Runge-Kutta (SPRK) method with eighth-order spatial accuracy based on the extended Hamiltonian system of the acoustic waveequation. Known as the eighth-order NSPRK method, this technique uses an eighth-orderaccurate nearly analytic discrete (NAD) operator to discretize high-order spatial differentialoperators and employs a second-order SPRK method to discretize temporal derivatives.The stability criteria and numerical dispersion relations of the eighth-order NSPRK methodare given by a semi-analytical method and are tested by numerical experiments. We alsoshow the differences of the numerical dispersions between the eighth-order NSPRK methodand conventional numerical methods such as the fourth-order NSPRK method, the eighth-order Lax-Wendroff correction (LWC) method and the eighth-order staggered-grid (SG)method. The result shows that the ability of the eighth-order NSPRK method to suppress thenumerical dispersion is obviously superior to that of the conventional numerical methods. Inthe same computational environment, to eliminate visible numerical dispersions, the eighth-order NSPRK is approximately 2.5 times faster than the fourth-order NSPRK and 3.4 timesfaster than the fourth-order SPRK, and the memory requirement is only approximately47.17% of the fourth-order NSPRK method and 49.41% of the fourth-order SPRK method,which indicates the highest computational efficiency. Modeling examples for the two-layermodels such as the heterogeneous and Marmousi models show that the wavefields generatedby the eighth-order NSPRK method are very clear with no visible numerical dispersion.These numerical experiments illustrate that the eighth-order NSPRK method can effectivelysuppress numerical dispersion when coarse grids are adopted. Therefore, this methodcan greatly decrease computer memory requirement and accelerate the forward modelingproductivity. In general, the eighth-order NSPRK method has tremendous potential value forseismic exploration and seismology research.展开更多
A novel nonlocal operator theory based on the variational principle is proposed for the solution of partial differential equations.Common differential operators as well as the variational forms are defined within the ...A novel nonlocal operator theory based on the variational principle is proposed for the solution of partial differential equations.Common differential operators as well as the variational forms are defined within the context of nonlocal operators.The present nonlocal formulation allows the assembling of the tangent stiffness matrix with ease and simplicity,which is necessary for the eigenvalue analysis such as the waveguide problem.The present formulation is applied to solve the differential electromagnetic vector wave equations based on electric fields.The governing equations are converted into nonlocal integral form.An hourglass energy functional is introduced for the elimination of zeroenergy modes.Finally,the proposed method is validated by testing three classical benchmark problems.展开更多
In this paper, a modified Newton type iterative method is considered for ap- proximately solving ill-posed nonlinear operator equations involving m-accretive mappings in Banach space. Convergence rate of the method is...In this paper, a modified Newton type iterative method is considered for ap- proximately solving ill-posed nonlinear operator equations involving m-accretive mappings in Banach space. Convergence rate of the method is obtained based on an a priori choice of the regularization parameter. Our analysis is not based on the sequential continuity of the normalized duality mapping.展开更多
The Stirling engine,as a closed-cycle power machine,exhibits excellent emission characteristics and broad energy adaptability.Second-order analysis methods are extensively used during the foundational design and therm...The Stirling engine,as a closed-cycle power machine,exhibits excellent emission characteristics and broad energy adaptability.Second-order analysis methods are extensively used during the foundational design and thermodynamic examination of Stirling engines,owing to their commendable model precision and remarkable efficiency.To scrutinize the effect of Stirling engine design parameters on the cyclical work output and efficiency,this study formulates a series of differential equations for the Stirling cycle by employing second-order analysis methods,subsequently augmenting the predictive accuracy by integrating considerations of loss mechanisms.In addition,an iterative method for the convergence of the average pressure was introduced.The predictive capability of the established model was validated using GPU-3 and RE-1000 experimental data.According to the model,parameters such as the operational fluid,porosity of the regenerator,and diameter of the wire mesh and their influence on the resulting work output and cyclic efficiency of the Stirling engine were analyzed,thereby facilitating a broader understanding of the engine's functional characteristics.These findings suggest that hydrogen,owing to its lower dynamic viscosity coefficient,can provide superior output power.The loss due to flow resistance tends to increase with the rotational speed.Additionally,under conditions of elevated rotational speed,the loss from flow resistance declines in cases of increased porosity,and the enhancement of the porosity to diminish flow resistance losses can boost both the output work and the cyclic efficiency of the engine.As the porosity increased further,the hydraulic diameter and dead volume in the regenerator continued to expand,causing the pressure drop within the engine to become the dominant factor in the gradual reduction of output power.Furthermore,extending the length of the regenerator results in a decrease in the output work,although the thermal cycle efficiency initially increases before eventually decreasing.Based on these insights,this study pursues the optimal designs for Stirling engines.展开更多
The convergence of several Galerkin-Petrov methods, including polynomial collocation and analytic element collocation methods of Toeplitz operators on Dirichlet space, is established. In particular, it is shown that s...The convergence of several Galerkin-Petrov methods, including polynomial collocation and analytic element collocation methods of Toeplitz operators on Dirichlet space, is established. In particular, it is shown that such methods converge if the basis and test function own certain circular symmetry.展开更多
In this paper we develop two multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for linear ill-posed problems. The two algorithms and their convergen...In this paper we develop two multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for linear ill-posed problems. The two algorithms and their convergence analyses are presented in an abstract framework.展开更多
Unbounded operators can transform arbitrarily small vectors into arbitrarily large vectors—a phenomenon known as instability. Stabilization methods strive to approximate a value of an unbounded operator by applying a...Unbounded operators can transform arbitrarily small vectors into arbitrarily large vectors—a phenomenon known as instability. Stabilization methods strive to approximate a value of an unbounded operator by applying a family of bounded operators to rough approximate data that do not necessarily lie within the domain of unbounded operator. In this paper we shall be concerned with the stable method of computing values of unbounded operators having perturbations and the stability is established for this method.展开更多
In this paper,we provide an alternative proof of the weak type(1,n/n-a)inequality for the fractional maximal operators.By using the discretization technique,we can get the main result,which shows that the weak type(1,...In this paper,we provide an alternative proof of the weak type(1,n/n-a)inequality for the fractional maximal operators.By using the discretization technique,we can get the main result,which shows that the weak type(1,n/n-a)bound of M_(α)is at worst 2^(n-a).The weak type(1,n/n-a)bound of M_(α)can be estimated more directly and easily in this method,which is different from the usual ways.展开更多
Objective:To explore the application effectiveness of the“Six-Step”Scenario-Based Teaching Method in operating room nursing education.Methods:Seventy nursing students undergoing clinical training in the operating ro...Objective:To explore the application effectiveness of the“Six-Step”Scenario-Based Teaching Method in operating room nursing education.Methods:Seventy nursing students undergoing clinical training in the operating room of a certain hospital from January 2024 to June 2025 were selected.They were randomly divided into an observation group(n=35)and a control group(n=35)using a random number table.The control group received traditional“mentor-apprentice”on-the-job training,while the observation group underwent the“six-step”scenario-based teaching method.The two groups were compared on final assessment scores,comprehensive competency,surgical nursing emergency response ability,and teaching satisfaction indicators.Results:The observation group achieved significantly higher final assessment scores(85.54±5.05)than the control group(78.63±4.75);After instruction,the observation group scored significantly higher than the control group in:mastery of basic duties and procedures(4.22±0.30 vs.3.98±0.30),understanding of surgical nursing essentials(4.39±0.19 vs.3.98±0.30),proficiency in surgical assistance(4.11±0.33 vs.3.98±0.30),aseptic awareness(4.32±0.24 vs.3.98±0.30),risk awareness(4.22±0.17 vs.3.98±0.30),and occupational safety awareness(4.01±0.23 vs.3.98±0.30).(4.01±0.23),which were significantly higher than the control group’s scores(3.36±0.28),(3.14±0.27),(3.29±0.24),(3.53±0.36),(3.17±0.25),and(3.51±0.18),respectively.Students in the observation group scored significantly higher than the control group in emergency hands-on skills(24.53±1.85 points),surgical coordination skills(27.65±1.87 points),emergency coordination skills(25.34±1.83 points),and patient condition observation skills(24.34±1.79 points)were significantly higher than those of the control group(20.78±1.74 points,26.31±1.95 points,22.92±1.69 points,and 21.58±1.77 points,respectively).The satisfaction rate with operating room nursing education among students in the observation group(97.00%)was significantly higher than that in the control group(77.00%).All differences were statistically significant(p<0.05).Conclusion:The“Six-Step”Scenario-Based Teaching Method effectively enhances operating room students’mastery of theoretical knowledge,practical skills,and core comprehensive abilities,while significantly improving their teaching satisfaction.It warrants promotion and application in operating room nursing education.展开更多
We discuss the incomplete semi-iterative method (ISIM) for an approximate solution of a linear fixed point equations x=Tx+c with a bounded linear operator T acting on a complex Banach space X such that its resolvent h...We discuss the incomplete semi-iterative method (ISIM) for an approximate solution of a linear fixed point equations x=Tx+c with a bounded linear operator T acting on a complex Banach space X such that its resolvent has a pole of order k at the point 1. Sufficient conditions for the convergence of ISIM to a solution of x=Tx+c, where c belongs to the range space of R(I-T) k, are established. We show that the ISIM has an attractive feature that it is usually convergent even when the spectral radius of the operator T is greater than 1 and Ind 1T≥1. Applications in finite Markov chain is considered and illustrative examples are reported, showing the convergence rate of the ISIM is very high.展开更多
The discrete scheme called discrete operator difference for differential equations was given. Several difference elements for plate bending problems and plane problems were given. By investigating these elements, the ...The discrete scheme called discrete operator difference for differential equations was given. Several difference elements for plate bending problems and plane problems were given. By investigating these elements, the ability of the discrete forms expressing to the element functions was talked about. In discrete operator difference method, the displacements of the elements can be reproduced exactly in the discrete forms whether the displacements are conforming or not. According to this point, discrete operator difference method is a method with good performance.展开更多
We introduce multilevel augmentation methods for solving operator equations based on direct sum decompositions of the range space of the operator and the solution space of the operator equation and a matrix splitting ...We introduce multilevel augmentation methods for solving operator equations based on direct sum decompositions of the range space of the operator and the solution space of the operator equation and a matrix splitting scheme. We establish a general setting for the analysis of these methods, showing that the methods yield approximate solutions of the same convergence order as the best approximation from the subspace. These augmentation methods allow us to develop fast, accurate and stable nonconventional numerical algorithms for solving operator equations. In particular, for second kind equations, special splitting techniques are proposed to develop such algorithms. These algorithms are then applied to solve the linear systems resulting from matrix compression schemes using wavelet-like functions for solving Fredholm integral equations of the second kind. For this special case, a complete analysis for computational complexity and convergence order is presented. Numerical examples are included to demonstrate the efficiency and accuracy of the methods. In these examples we use the proposed augmentation method to solve large scale linear systems resulting from the recently developed wavelet Galerkin methods and fast collocation methods applied to integral equations of the secondkind. Our numerical results confirm that this augmentation method is particularly efficient for solving large scale linear systems induced from wavelet compression schemes.展开更多
This paper presents an elasto-viscoplastic consistent tangent operator (CTO) based boundary element formulation, and application for calculation of path-domain independentJ integrals (extension of the classicalJ integ...This paper presents an elasto-viscoplastic consistent tangent operator (CTO) based boundary element formulation, and application for calculation of path-domain independentJ integrals (extension of the classicalJ integrals) in nonlinear crack analysis. When viscoplastic deformation happens, the effective stresses around the crack tip in the nonlinear region is allowed to exceed the loading surface, and the pure plastic theory is not suitable for this situation. The concept of consistency employed in the solution of increment viscoplastic problem, plays a crucial role in preserving the quadratic rate asymptotic convergence of iteractive schemes based on Newton's method. Therefore, this paper investigates the viscoplastic crack problem, and presents an implicit viscoplastic algorithm using the CTO concept in a boundary element framework for path-domain independentJ integrals. Applications are presented with two numerical examples for viscoplastic crack problems andJ integrals.展开更多
Based on the operator Hermite polynomials method(OHPM), we study Stirling numbers in the context of quantum mechanics, i.e., we present operator realization of generating function formulas of Stirling numbers with s...Based on the operator Hermite polynomials method(OHPM), we study Stirling numbers in the context of quantum mechanics, i.e., we present operator realization of generating function formulas of Stirling numbers with some applications.As a by-product, we derive a summation formula involving both Stirling number and Hermite polynomials.展开更多
Based on the entangled Fresnel operator (EFO) proposed in [Commun. Theor. Phys. 46 (2006) 559], the optical operator method studied by the IWOP technique (Ma et al., Commun. Theor. Phys. 49 (2008) 1295) is ext...Based on the entangled Fresnel operator (EFO) proposed in [Commun. Theor. Phys. 46 (2006) 559], the optical operator method studied by the IWOP technique (Ma et al., Commun. Theor. Phys. 49 (2008) 1295) is extended to the two-mode case, which gives the decomposition of the entangled Fresnel operator, corresponding to the decomposition of ray transfer matrix [A, B, C, D]. The EFO can unify those optical operators in two-mode case. Various decompositions of EFO into the exponential canonical operators are obtained. The entangled state representation is useful in the research.展开更多
We find that the mapping from classical optical transformations to the optical operator method can be realized by using the coherent state representation and the technique of integration within an ordered product of o...We find that the mapping from classical optical transformations to the optical operator method can be realized by using the coherent state representation and the technique of integration within an ordered product of operators. The optical Fresnel operator derived in (Commun. Theor. Phys. (Beijing, China) 38 (2002) 147) can unify those frequently used optical operators. Various decompositions of Fresnel operator into the exponential canonical operators are obtained.展开更多
For classical Hamiltonian with general form H = 1/2∑ijMijpipj+1/2∑ijLijqiqj we find a new convenient way to obtain its normal coordinates, namely, let H be quantised and then employ the invariant eigen-operator (...For classical Hamiltonian with general form H = 1/2∑ijMijpipj+1/2∑ijLijqiqj we find a new convenient way to obtain its normal coordinates, namely, let H be quantised and then employ the invariant eigen-operator (IEO) method (Fan et al. 2004 Phys. Lett. A 321 75) to derive them. The general matrix equation, which relies on M and L, for obtaining the normal coordinates of H is derived.展开更多
The utilization of gradient operators is prevalent in image processing,as they effectively detect edges and provide directional information.However,these operators only differentiate the horizontal and vertical direct...The utilization of gradient operators is prevalent in image processing,as they effectively detect edges and provide directional information.However,these operators only differentiate the horizontal and vertical directions,ignoring details and causing loss of informa-tion in other directions.This paper introduces the shear gradient operator to overcome this limitation by capturing details accurately in mul-tiple directions.It investigates the properties of the shear gradient operator and proposes the shear total variation(STV)norm for image de-blurring.By combining non-convex regularization to avoid excessive penalty and retain image details,a novel deblurring model integrat-ing the STV norm and the L1/L2 minimization is proposed.The alternating direction method of multipliers(ADMM)algorithm is employed to solve this computationally challenging model,demonstrating exceptional performance in non-blind image deblurring through experi-ments.展开更多
Normal form theory is a very effective method when we study degenerate bifurcations of nonlinear dynamical systems. In this paper by using adjoint operator method, normal forms of order 3 and 4 for nonlinear dynamical...Normal form theory is a very effective method when we study degenerate bifurcations of nonlinear dynamical systems. In this paper by using adjoint operator method, normal forms of order 3 and 4 for nonlinear dynamical system with nilpotent linear part and Z(2)-asymmetry are computed. According to normal forms obtained, universal unfoldings for some degenerate bifurcation cases of codimension 3 and simple global characterizations, are studied.展开更多
In this paper, we study some semi-closed 1-set-contractive operators A and investigate the boundary conditions under which the topological degrees of 1-set contractive fields, deg (I-A, Ω, p) are equal to 1. Correspo...In this paper, we study some semi-closed 1-set-contractive operators A and investigate the boundary conditions under which the topological degrees of 1-set contractive fields, deg (I-A, Ω, p) are equal to 1. Correspondingly, we can obtain some new fixed point theorems for 1-set-contractive operators which extend and improve many famous theorems such as the Leray-Schauder theorem, and operator equation, etc. Lemma 2.1 generalizes the famous theorem. The calculation of topological degrees and index are important things, which combine the existence of solution of for integration and differential equation and or approximation by iteration technique. So, we apply the effective modification of He’s variation iteration method to solve some nonlinear and linear equations are proceed to examine some a class of integral-differential equations, to illustrate the effectiveness and convenience of this method.展开更多
基金This research was supported by the National Natural Science Foundation of China (Nos. 41230210 and 41204074), the Science Foundation of the Education Department of Yunnan Province (No. 2013Z152), and Statoil Company (Contract No. 4502502663).
文摘We propose a symplectic partitioned Runge-Kutta (SPRK) method with eighth-order spatial accuracy based on the extended Hamiltonian system of the acoustic waveequation. Known as the eighth-order NSPRK method, this technique uses an eighth-orderaccurate nearly analytic discrete (NAD) operator to discretize high-order spatial differentialoperators and employs a second-order SPRK method to discretize temporal derivatives.The stability criteria and numerical dispersion relations of the eighth-order NSPRK methodare given by a semi-analytical method and are tested by numerical experiments. We alsoshow the differences of the numerical dispersions between the eighth-order NSPRK methodand conventional numerical methods such as the fourth-order NSPRK method, the eighth-order Lax-Wendroff correction (LWC) method and the eighth-order staggered-grid (SG)method. The result shows that the ability of the eighth-order NSPRK method to suppress thenumerical dispersion is obviously superior to that of the conventional numerical methods. Inthe same computational environment, to eliminate visible numerical dispersions, the eighth-order NSPRK is approximately 2.5 times faster than the fourth-order NSPRK and 3.4 timesfaster than the fourth-order SPRK, and the memory requirement is only approximately47.17% of the fourth-order NSPRK method and 49.41% of the fourth-order SPRK method,which indicates the highest computational efficiency. Modeling examples for the two-layermodels such as the heterogeneous and Marmousi models show that the wavefields generatedby the eighth-order NSPRK method are very clear with no visible numerical dispersion.These numerical experiments illustrate that the eighth-order NSPRK method can effectivelysuppress numerical dispersion when coarse grids are adopted. Therefore, this methodcan greatly decrease computer memory requirement and accelerate the forward modelingproductivity. In general, the eighth-order NSPRK method has tremendous potential value forseismic exploration and seismology research.
文摘A novel nonlocal operator theory based on the variational principle is proposed for the solution of partial differential equations.Common differential operators as well as the variational forms are defined within the context of nonlocal operators.The present nonlocal formulation allows the assembling of the tangent stiffness matrix with ease and simplicity,which is necessary for the eigenvalue analysis such as the waveguide problem.The present formulation is applied to solve the differential electromagnetic vector wave equations based on electric fields.The governing equations are converted into nonlocal integral form.An hourglass energy functional is introduced for the elimination of zeroenergy modes.Finally,the proposed method is validated by testing three classical benchmark problems.
文摘In this paper, a modified Newton type iterative method is considered for ap- proximately solving ill-posed nonlinear operator equations involving m-accretive mappings in Banach space. Convergence rate of the method is obtained based on an a priori choice of the regularization parameter. Our analysis is not based on the sequential continuity of the normalized duality mapping.
基金supported by Sichuan Science and Technology Program(No.24NSFSC4579)National Natural Science Foundation of China(No.12305193)+2 种基金Sichuan Science and Technology Program(No.23NSFSC6149)National Natural Science Foundation of China(No.12305194)Technology on Reactor System Design Technology Laboratory Stable support Funding(No.2023_JCJQ_LB_003).
文摘The Stirling engine,as a closed-cycle power machine,exhibits excellent emission characteristics and broad energy adaptability.Second-order analysis methods are extensively used during the foundational design and thermodynamic examination of Stirling engines,owing to their commendable model precision and remarkable efficiency.To scrutinize the effect of Stirling engine design parameters on the cyclical work output and efficiency,this study formulates a series of differential equations for the Stirling cycle by employing second-order analysis methods,subsequently augmenting the predictive accuracy by integrating considerations of loss mechanisms.In addition,an iterative method for the convergence of the average pressure was introduced.The predictive capability of the established model was validated using GPU-3 and RE-1000 experimental data.According to the model,parameters such as the operational fluid,porosity of the regenerator,and diameter of the wire mesh and their influence on the resulting work output and cyclic efficiency of the Stirling engine were analyzed,thereby facilitating a broader understanding of the engine's functional characteristics.These findings suggest that hydrogen,owing to its lower dynamic viscosity coefficient,can provide superior output power.The loss due to flow resistance tends to increase with the rotational speed.Additionally,under conditions of elevated rotational speed,the loss from flow resistance declines in cases of increased porosity,and the enhancement of the porosity to diminish flow resistance losses can boost both the output work and the cyclic efficiency of the engine.As the porosity increased further,the hydraulic diameter and dead volume in the regenerator continued to expand,causing the pressure drop within the engine to become the dominant factor in the gradual reduction of output power.Furthermore,extending the length of the regenerator results in a decrease in the output work,although the thermal cycle efficiency initially increases before eventually decreasing.Based on these insights,this study pursues the optimal designs for Stirling engines.
基金Supported by the National Natural Science Foundation of China (10371082)Chinese National Natural Science Foundation Committee Tianyuan Foundation (10526040)Guangzhou University Doctor Foundation (WXF-1001)
文摘The convergence of several Galerkin-Petrov methods, including polynomial collocation and analytic element collocation methods of Toeplitz operators on Dirichlet space, is established. In particular, it is shown that such methods converge if the basis and test function own certain circular symmetry.
基金The NSF(0611005)of Jiangxi Province and the SF(2007293)of Jiangxi Provincial Education Department.
文摘In this paper we develop two multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for linear ill-posed problems. The two algorithms and their convergence analyses are presented in an abstract framework.
文摘Unbounded operators can transform arbitrarily small vectors into arbitrarily large vectors—a phenomenon known as instability. Stabilization methods strive to approximate a value of an unbounded operator by applying a family of bounded operators to rough approximate data that do not necessarily lie within the domain of unbounded operator. In this paper we shall be concerned with the stable method of computing values of unbounded operators having perturbations and the stability is established for this method.
基金Supported by by Natural Science Foundation of Henan(202300410184 and242300421387)。
文摘In this paper,we provide an alternative proof of the weak type(1,n/n-a)inequality for the fractional maximal operators.By using the discretization technique,we can get the main result,which shows that the weak type(1,n/n-a)bound of M_(α)is at worst 2^(n-a).The weak type(1,n/n-a)bound of M_(α)can be estimated more directly and easily in this method,which is different from the usual ways.
文摘Objective:To explore the application effectiveness of the“Six-Step”Scenario-Based Teaching Method in operating room nursing education.Methods:Seventy nursing students undergoing clinical training in the operating room of a certain hospital from January 2024 to June 2025 were selected.They were randomly divided into an observation group(n=35)and a control group(n=35)using a random number table.The control group received traditional“mentor-apprentice”on-the-job training,while the observation group underwent the“six-step”scenario-based teaching method.The two groups were compared on final assessment scores,comprehensive competency,surgical nursing emergency response ability,and teaching satisfaction indicators.Results:The observation group achieved significantly higher final assessment scores(85.54±5.05)than the control group(78.63±4.75);After instruction,the observation group scored significantly higher than the control group in:mastery of basic duties and procedures(4.22±0.30 vs.3.98±0.30),understanding of surgical nursing essentials(4.39±0.19 vs.3.98±0.30),proficiency in surgical assistance(4.11±0.33 vs.3.98±0.30),aseptic awareness(4.32±0.24 vs.3.98±0.30),risk awareness(4.22±0.17 vs.3.98±0.30),and occupational safety awareness(4.01±0.23 vs.3.98±0.30).(4.01±0.23),which were significantly higher than the control group’s scores(3.36±0.28),(3.14±0.27),(3.29±0.24),(3.53±0.36),(3.17±0.25),and(3.51±0.18),respectively.Students in the observation group scored significantly higher than the control group in emergency hands-on skills(24.53±1.85 points),surgical coordination skills(27.65±1.87 points),emergency coordination skills(25.34±1.83 points),and patient condition observation skills(24.34±1.79 points)were significantly higher than those of the control group(20.78±1.74 points,26.31±1.95 points,22.92±1.69 points,and 21.58±1.77 points,respectively).The satisfaction rate with operating room nursing education among students in the observation group(97.00%)was significantly higher than that in the control group(77.00%).All differences were statistically significant(p<0.05).Conclusion:The“Six-Step”Scenario-Based Teaching Method effectively enhances operating room students’mastery of theoretical knowledge,practical skills,and core comprehensive abilities,while significantly improving their teaching satisfaction.It warrants promotion and application in operating room nursing education.
基金Project1 990 1 0 0 6 supported by National Natural Science Foundation of China,Doctoral Foundation of China,Chi-na Scholarship council and Laboratory of Computational Physics in Beijing of Chinathe second author is also supportedby the State Major Key
文摘We discuss the incomplete semi-iterative method (ISIM) for an approximate solution of a linear fixed point equations x=Tx+c with a bounded linear operator T acting on a complex Banach space X such that its resolvent has a pole of order k at the point 1. Sufficient conditions for the convergence of ISIM to a solution of x=Tx+c, where c belongs to the range space of R(I-T) k, are established. We show that the ISIM has an attractive feature that it is usually convergent even when the spectral radius of the operator T is greater than 1 and Ind 1T≥1. Applications in finite Markov chain is considered and illustrative examples are reported, showing the convergence rate of the ISIM is very high.
文摘The discrete scheme called discrete operator difference for differential equations was given. Several difference elements for plate bending problems and plane problems were given. By investigating these elements, the ability of the discrete forms expressing to the element functions was talked about. In discrete operator difference method, the displacements of the elements can be reproduced exactly in the discrete forms whether the displacements are conforming or not. According to this point, discrete operator difference method is a method with good performance.
基金Supported in part by the Natural Science Foundation of China under grants 10371137and 10201034Foundation of Doctoral Program of National Higher Education of China under under grant 20030558008Guangdong Provincial Natural Science Foundation of China u
文摘We introduce multilevel augmentation methods for solving operator equations based on direct sum decompositions of the range space of the operator and the solution space of the operator equation and a matrix splitting scheme. We establish a general setting for the analysis of these methods, showing that the methods yield approximate solutions of the same convergence order as the best approximation from the subspace. These augmentation methods allow us to develop fast, accurate and stable nonconventional numerical algorithms for solving operator equations. In particular, for second kind equations, special splitting techniques are proposed to develop such algorithms. These algorithms are then applied to solve the linear systems resulting from matrix compression schemes using wavelet-like functions for solving Fredholm integral equations of the second kind. For this special case, a complete analysis for computational complexity and convergence order is presented. Numerical examples are included to demonstrate the efficiency and accuracy of the methods. In these examples we use the proposed augmentation method to solve large scale linear systems resulting from the recently developed wavelet Galerkin methods and fast collocation methods applied to integral equations of the secondkind. Our numerical results confirm that this augmentation method is particularly efficient for solving large scale linear systems induced from wavelet compression schemes.
基金The project supported by National Natural Science Foundation of China(9713008)Zhejiang Natural Science Foundation Special Funds No. RC.9601
文摘This paper presents an elasto-viscoplastic consistent tangent operator (CTO) based boundary element formulation, and application for calculation of path-domain independentJ integrals (extension of the classicalJ integrals) in nonlinear crack analysis. When viscoplastic deformation happens, the effective stresses around the crack tip in the nonlinear region is allowed to exceed the loading surface, and the pure plastic theory is not suitable for this situation. The concept of consistency employed in the solution of increment viscoplastic problem, plays a crucial role in preserving the quadratic rate asymptotic convergence of iteractive schemes based on Newton's method. Therefore, this paper investigates the viscoplastic crack problem, and presents an implicit viscoplastic algorithm using the CTO concept in a boundary element framework for path-domain independentJ integrals. Applications are presented with two numerical examples for viscoplastic crack problems andJ integrals.
基金Project supported by the National Natural Science Foundation of China(Grant No.11175113)
文摘Based on the operator Hermite polynomials method(OHPM), we study Stirling numbers in the context of quantum mechanics, i.e., we present operator realization of generating function formulas of Stirling numbers with some applications.As a by-product, we derive a summation formula involving both Stirling number and Hermite polynomials.
基金Supported by the National Natural Science Foundation of China under Grant No. 10775097the Research Foundation of the Education Department of Jiangxi Province of China under Grant No. GJJ10097
文摘Based on the entangled Fresnel operator (EFO) proposed in [Commun. Theor. Phys. 46 (2006) 559], the optical operator method studied by the IWOP technique (Ma et al., Commun. Theor. Phys. 49 (2008) 1295) is extended to the two-mode case, which gives the decomposition of the entangled Fresnel operator, corresponding to the decomposition of ray transfer matrix [A, B, C, D]. The EFO can unify those optical operators in two-mode case. Various decompositions of EFO into the exponential canonical operators are obtained. The entangled state representation is useful in the research.
基金The project supported by National Natural Science Foundation of China under Grant No.10475056
文摘We find that the mapping from classical optical transformations to the optical operator method can be realized by using the coherent state representation and the technique of integration within an ordered product of operators. The optical Fresnel operator derived in (Commun. Theor. Phys. (Beijing, China) 38 (2002) 147) can unify those frequently used optical operators. Various decompositions of Fresnel operator into the exponential canonical operators are obtained.
基金supported by the National Natural Science Foundation of China (Grant No.10874174)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.20070358009)
文摘For classical Hamiltonian with general form H = 1/2∑ijMijpipj+1/2∑ijLijqiqj we find a new convenient way to obtain its normal coordinates, namely, let H be quantised and then employ the invariant eigen-operator (IEO) method (Fan et al. 2004 Phys. Lett. A 321 75) to derive them. The general matrix equation, which relies on M and L, for obtaining the normal coordinates of H is derived.
基金Supported by the National Natural Science Foundation of China(61701004)。
文摘The utilization of gradient operators is prevalent in image processing,as they effectively detect edges and provide directional information.However,these operators only differentiate the horizontal and vertical directions,ignoring details and causing loss of informa-tion in other directions.This paper introduces the shear gradient operator to overcome this limitation by capturing details accurately in mul-tiple directions.It investigates the properties of the shear gradient operator and proposes the shear total variation(STV)norm for image de-blurring.By combining non-convex regularization to avoid excessive penalty and retain image details,a novel deblurring model integrat-ing the STV norm and the L1/L2 minimization is proposed.The alternating direction method of multipliers(ADMM)algorithm is employed to solve this computationally challenging model,demonstrating exceptional performance in non-blind image deblurring through experi-ments.
文摘Normal form theory is a very effective method when we study degenerate bifurcations of nonlinear dynamical systems. In this paper by using adjoint operator method, normal forms of order 3 and 4 for nonlinear dynamical system with nilpotent linear part and Z(2)-asymmetry are computed. According to normal forms obtained, universal unfoldings for some degenerate bifurcation cases of codimension 3 and simple global characterizations, are studied.
文摘In this paper, we study some semi-closed 1-set-contractive operators A and investigate the boundary conditions under which the topological degrees of 1-set contractive fields, deg (I-A, Ω, p) are equal to 1. Correspondingly, we can obtain some new fixed point theorems for 1-set-contractive operators which extend and improve many famous theorems such as the Leray-Schauder theorem, and operator equation, etc. Lemma 2.1 generalizes the famous theorem. The calculation of topological degrees and index are important things, which combine the existence of solution of for integration and differential equation and or approximation by iteration technique. So, we apply the effective modification of He’s variation iteration method to solve some nonlinear and linear equations are proceed to examine some a class of integral-differential equations, to illustrate the effectiveness and convenience of this method.