期刊文献+
共找到110篇文章
< 1 2 6 >
每页显示 20 50 100
Radial Clearance Control and Internal Leakage Analysis of a Tri-Proportion Controller 被引量:1
1
作者 LI Dai-jin ZHANG Yu-wen TANG Hao DANG Jian-jun LUO Kai 《International Journal of Plant Engineering and Management》 2009年第2期96-101,共6页
The tri-propellant thermal propulsion system is one of the hottest subjects in the field of underwater vehicles recently. To improve efficiency of underwater vehicles, a method of radial clearance control of the tri-p... The tri-propellant thermal propulsion system is one of the hottest subjects in the field of underwater vehicles recently. To improve efficiency of underwater vehicles, a method of radial clearance control of the tri-proportion has been proposed. Based on analyzing the factors which influence the pressure decrease and leakage of the tri-proportion controller, a method is used for precision analysis and proportion adjustment by using the median optimizing theory. Analysis results show that accuracy of the proportion controller is dependent on all the leakage, while the leakage is decided by radial clearance and pressure; the leakage can be controlled effectively and the accuracy of the proportion can be improved with the radial clearance control method. The method of accuracy analysis and clearance control has value on the design of various hydraulic motors. 展开更多
关键词 underwater thermal propulsion system proportion controller radial clearance internal leakage
在线阅读 下载PDF
Simulation-Based Novel Hybrid Proportional Derivative/H-Infinity Controller Design for Improved Trajectory Tracking of a Two-Link Robot Arm
2
作者 BANKOLE Adesola Temitope IGBONOBA Ezekiel Endurance Chukwuemeke 《Journal of Shanghai Jiaotong university(Science)》 2025年第6期1179-1187,共9页
A hybrid control strategy integrating proportional derivative(PD)and the H-infinity control methodology is proposed for a serial two-link robotic manipulator with the goal of improving the tracking performance of the ... A hybrid control strategy integrating proportional derivative(PD)and the H-infinity control methodology is proposed for a serial two-link robotic manipulator with the goal of improving the tracking performance of the robot arm.The H-infinity controller has the ability to achieve a high performance and robustness in the presence of disturbances and uncertainties,while the PD controller is effective in stabilizing the manipulator.Simulation results using Matlab and Simulink show that the proposed hybrid controller,which integrates the advantages of both PD and H-infinity controllers,has the lowest rise time for the second link,the lowest settling time for the two links,the lowest peak time for both links,and the fastest decay of the error response.In addition,the hybrid control scheme also has the lowest mean square error value,with a 53.3%improvement over the H-infinity controller and a 91.8%improvement over the PD controller,indicating an improved trajectory tracking performance when compared with pure PD and pure H-infinity controllers,respectively.It was also found that the hybrid controller has the lowest integral absolute error,integral square error,integral time absolute error,and integral time square error for the second link,while the error values for the first link are satisfactory,showing a superior performance of the hybrid controller above the PD and H-infinity controllers,respectively. 展开更多
关键词 robot arm trajectory tracking proportional derivative(PD)control H-infinity control hybrid PD/H-infinity control
原文传递
Robust Sensor—Less PR Controller Design for 15-PUC Multilevel Inverter Topology with Low Voltage Stress for Renewable Energy Applications
3
作者 K.Naga Venkata Siva Damodhar Reddy +3 位作者 P.Krishna Murthy Kiran Kumar Pulamolu M.Dharani T.Venkatakrishnamoorthy 《Energy Engineering》 2026年第1期221-242,共22页
Conventional multilevel inverters often suffer from high harmonic distortion and increased design complexity due to the need for numerous power semiconductor components,particularly at elevated voltage levels.Addressi... Conventional multilevel inverters often suffer from high harmonic distortion and increased design complexity due to the need for numerous power semiconductor components,particularly at elevated voltage levels.Addressing these shortcomings,thiswork presents a robust 15-level PackedUCell(PUC)inverter topology designed for renewable energy and grid-connected applications.The proposed systemintegrates a sensor less proportional-resonant(PR)controller with an advanced carrier-based pulse width modulation scheme.This approach efficiently balances capacitor voltage,minimizes steady-state error,and strongly suppresses both zero and third-order harmonics resulting in reduced total harmonic distortion and enhanced voltage regulation.Additionally,a novel switching algorithm simplifies the design and implementation,further lowering voltage stress across switches.Extensive simulation results validate the performance under various resistive and resistive-inductive load conditions,demonstrating compliance with IEEE-519 THD standards and robust operation under dynamic changes.The proposed sensorless PR-controlled 15-PUC inverter thus offers a compelling,cost-effective solution for efficient power conversion in next-generation renewable energy systems. 展开更多
关键词 PUC packed U cell MLI multilevel inverter SLC sensorless controller PR proportional resonant controller PD phase disposition THD total harmonic distortion
在线阅读 下载PDF
RESEARCH ON THE PERFORMANCE OF NEW TYPE OF PROPORTIONAL PESSURE AND FLOW CONTROL VALVE 被引量:9
4
作者 Quan LongMa JianWang YongjinInstitute of Mechatronics,Taiyuan University of Technology,Taiyuan 030024, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第3期281-284,共4页
A new closed loop flow controlling principle through correcting the valve'sopening area while load pressure is changing is carried out. Further more a principle using only oneproportional valve to compound control... A new closed loop flow controlling principle through correcting the valve'sopening area while load pressure is changing is carried out. Further more a principle using only oneproportional valve to compound control pressure and flow is suggested. By using very simpleproportional throttle valve in structure, the functions that five kinds of proportional valves orany two of them combined possess can be complimented. After analyzing, comparing, and testing thedynamic and static characteristics of valve with different controlling principles and main valvestructure styles, the optimized structure styles and control methods are achieved. 展开更多
关键词 Electro-hydraulic proportional control proportional flow valve proportionalpressure valve Pressure and flow compound control
在线阅读 下载PDF
Water-Assisted Injection Molding System Based on Water Hydraulic Proportional Control Technique 被引量:5
5
作者 ZHOU Hua ZHANG Zengmeng +1 位作者 GAO Yuan'an YANG Huayong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第4期418-427,共10页
Water-assisted injection molding(WAIM), an innovative process to mold plastic parts with hollow sections, is characterized with intermittent, periodic process and large pressure and flow rate variation. Energy savin... Water-assisted injection molding(WAIM), an innovative process to mold plastic parts with hollow sections, is characterized with intermittent, periodic process and large pressure and flow rate variation. Energy savings and injection pressure control can not be .attained based on conventional valve control system. Moreover, the injection water can not be supplied directly by water hydraulic proportional control system. Poor efficiency and control performance are presented by current trial systems, which pressurize injection water by compressed air. In this paper, a novel water hydraulic system is developed applying an accumulator for energy saving. And a new differential pressure control method is proposed by using pressure cylinder and water hydraulic proportional pressure relief valve for back pressure control. Aiming at design of linear controller for injection water pressure regulation, a linear load model is approximately built through computational fluid dynamics(CFD) simulation on two-phase flow cavity filling process with variable temperature and viscosity, and a linear model of pressure control system is built with the load model and linearization of water hydraulic components. According to the simulation, model based feedback is brought forward to compensate the pressure decrease during accumulator discharge and eliminate the derivative element of the system. Meanwhile, the steady-state error can be reduced and the capacity of resisting disturbance can be enhanced, by closed-loop control of load pressure with integral compensation. Through the developed experimental system in the State Key Lab of Fluid Power Transmission and Control, Zhejiang University, China, the static characteristic of the water hydraulic proportional relief valve was tested and output pressure control of the system in Acrylonitrile Butadiene Styrene(ABS) parts molding experiments was also studied. The experiment results show that the dead band and hysteresis of the water hydraulic proportional pressure relief valve are large, but the control precision and linearity can be improved with feed-forward compensation. With the experimental results of injection water pressure control, the applicability of this WAIM system and the effect of its linear controller are verified. The novel proposed process of WAIM pressure control and study on characteristics of control system contribute to the application of water hydraulic proportional control and WAIM technology. 展开更多
关键词 water-assisted injection molding water hydraulics proportional pressure control linear control load characteristic
在线阅读 下载PDF
Simulation and Experiment Research on the Proportional Pressure Control of Water-assisted Injection Molding 被引量:3
6
作者 ZHOU Hua CHEN Yinglong +1 位作者 ZHANG Zengmeng YANG Huayong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第3期430-438,共9页
Water-assisted injection molding(WAIM),a newly developed fluid-assisted injection molding technology has drawn more and more attentions for the energy saving,short cooling circle time and high quality of products.Ex... Water-assisted injection molding(WAIM),a newly developed fluid-assisted injection molding technology has drawn more and more attentions for the energy saving,short cooling circle time and high quality of products.Existing research for the process of WAIM has shown that the pressure control of the injecting water is mostly important for the WAIM.However,the proportional pressure control for the WAIM system is quite complex due to the existence of nonlinearities in the water hydraulic system.In order to achieve better pressure control performance of the injecting water to meet the requirements of the WAIM,the proportional pressure control of the WAIM system is investigated both numerically and experimentally.A newly designed water hydraulic system for WAIM is first modeled in AMEsim environment,the load characteristics and the nonlinearities of water hydraulic system are both considered,then the main factors affecting the injecting pressure and load flow rate are extensively studied.Meanwhile,an open-loop model-based compensation control strategy is employed to regulate the water injection pressure and a feedback proportional integrator controller is further adopted to achieve better control performance.In order to verify the AMEsim simulation results WAIM experiment for particular Acrylonitrile Butadiene Styrene(ABS) parts is implemented and the measured experimental data including injecting pressure and flow rate results are compared with the simulation.The good coincidence between experiment and simulation shows that the AMEsim model is accurate,and the tracking performance of the load pressure indicates that the proposed control strategy is effective for the proportional pressure control of the nonlinear WAIM system.The proposed proportional pressure control strategy and the conclusions drawn from simulation and experiment contribute to the application of water hydraulic proportional control and WAIM technology. 展开更多
关键词 water-assisted injection molding nonlinear modeling proportional pressure control AMEsim simulation
在线阅读 下载PDF
Hybrid internal model control and proportional control of chaotic dynamical systems 被引量:1
7
作者 齐冬莲 姚良宾 《Journal of Zhejiang University Science》 EI CSCD 2004年第1期62-67,共6页
A new chaos control method is proposed to take advantage of chaos or avoid it. The hybrid Internal Model Control and Proportional Control learning scheme are introduced. In order to gain the desired robust performance... A new chaos control method is proposed to take advantage of chaos or avoid it. The hybrid Internal Model Control and Proportional Control learning scheme are introduced. In order to gain the desired robust performance and ensure the system's stability, Adaptive Momentum Algorithms are also developed. Through properly designing the neural network plant model and neural network controller, the chaotic dynamical systems are controlled while the parameters of the BP neural network are modified. Taking the Lorenz chaotic system as example, the results show that chaotic dynamical systems can be stabilized at the desired orbits by this control strategy. 展开更多
关键词 CHAOS Neural network Internal model control proportional control
在线阅读 下载PDF
Proportion integral-type active disturbance rejection generalized predictive control for distillation process based on grey wolf optimization parameter tuning 被引量:1
8
作者 Jia Ren Zengqiang Chen +2 位作者 Mingwei Sun Qinglin Sun Zenghui Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第9期234-244,共11页
The high-purity distillation column system is strongly nonlinear and coupled,which makes it difficult to control.Active disturbance rejection control(ADRC)has been widely used in distillation systems,but it has limita... The high-purity distillation column system is strongly nonlinear and coupled,which makes it difficult to control.Active disturbance rejection control(ADRC)has been widely used in distillation systems,but it has limitations in controlling distillation systems with large time delays since ADRC employs ESO and feedback control law to estimate the total disturbance of the system without considering the large time delays.This paper designs a proportion integral-type active disturbance rejection generalized predictive control(PI-ADRGPC)algorithm to control the distillation column system with large time delay.It replaces the PD controller in ADRC with a proportion integral-type generalized predictive control(PI-GPC),thereby improving the performance of control systems with large time delays.Since the proposed controller has many parameters and is difficult to tune,this paper proposes to use the grey wolf optimization(GWO)to tune these parameters,whose structure can also be used by other intelligent optimization algorithms.The performance of GWO tuned PI-ADRGPC is compared with the control performance of GWO tuned ADRC method,multi-verse optimizer(MVO)tuned PI-ADRGPC and MVO tuned ADRC.The simulation results show that the proposed strategy can track reference well and has a good disturbance rejection performance. 展开更多
关键词 proportion integral-type active disturbance rejection generalized predictive control Grey wolf optimization Parameter tuning DISTILLATION Process control PREDICTION
在线阅读 下载PDF
Fractional Order Proportional Integral Derivative Controller Design and Simulation for Bioengineering Systems
9
作者 Wei-Cheng Fu Chun-Yang Wang +1 位作者 Yao-Wu Shi Ying-Bin Sun 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第5期46-50,共5页
This paper deals with the study of fractional order system tuning method based on Factional Order Proportional Integral Derivative( FOPID) controller in allusion to the nonlinear characteristics and fractional order m... This paper deals with the study of fractional order system tuning method based on Factional Order Proportional Integral Derivative( FOPID) controller in allusion to the nonlinear characteristics and fractional order mathematical model of bioengineering systems. The main contents include the design of FOPID controller and the simulation for bioengineering systems. The simulation results show that the tuning method of fractional order system based on the FOPID controller outperforms the fractional order system based on Fractional Order Proportional Integral( FOPI) controller. As it can enhance control character and improve the robustness of the system. 展开更多
关键词 ROBUSTNESS bioengineering systems fractional order proportional integral derivative controller
在线阅读 下载PDF
ROBUST CONTROL OF AN ELECTROHYDRAULIC PROPORTIONAL SPEED CONTROL SYSTEM WITH A SINGLEROD HYDRAULIC ACTUATOR
10
作者 Yang Jian Xu Bing Yang Huayong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第4期597-602,共6页
A robust control algorithm is proposed to focus on the non-linearity and parameters' uncertainties of an electro-hydraulic proportional speed control system (EHPSCS) with a single-rod hydraulic actuator. The robust... A robust control algorithm is proposed to focus on the non-linearity and parameters' uncertainties of an electro-hydraulic proportional speed control system (EHPSCS) with a single-rod hydraulic actuator. The robust controller proposed does not need to design stable compensator in advance, is simple in design and has large scope of uncertainty applications. The feedback gains of the robust controller proposed are small, so it is easily implemented in engineering applications. Experimental research on the speed control under the different conditions is carried out for an EHPSCS. Experimental results show that the robust controller proposed has better robustness subject to parametric uncertainties, and adaptability of parameters' variation of control system itself and plant parameter variation. 展开更多
关键词 Electro-hydraulic proportional speed control system (EHPSCS) Robust control Robustness
在线阅读 下载PDF
Adaptive proportional integral differential control based on radial basis function neural network identification of a two-degree-of-freedom closed-chain robot
11
作者 陈正洪 王勇 李艳 《Journal of Shanghai University(English Edition)》 CAS 2008年第5期457-461,共5页
A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper pr... A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper presents an adaptive proportional integral differential (PID) control algorithm based on radial basis function (RBF) neural network for trajectory tracking of a two-degree-of-freedom (2-DOF) closed-chain robot. In this scheme, an RBF neural network is used to approximate the unknown nonlinear dynamics of the robot, at the same time, the PID parameters can be adjusted online and the high precision can be obtained. Simulation results show that the control algorithm accurately tracks a 2-DOF closed-chain robot trajectories. The results also indicate that the system robustness and tracking performance are superior to the classic PID method. 展开更多
关键词 closed-chain robot radial basis function (RBF) neural network adaptive proportional integral differential (PID) control identification neural network
在线阅读 下载PDF
Improving the Performance of an Electro-Hydraulic Load-Sensing Proportional Control Valve
12
作者 Raffaele Babbone Massimo Milani Luca Montorsi Fabrizio Paltrinieri 《Journal of Energy and Power Engineering》 2013年第12期2336-2346,共11页
The paper deals with the simulation and the experimental verification of the hydraulic behavior of an electro-hydraulic load-sensing proportional control valve. An innovative CAE (computer aided engineering) methodo... The paper deals with the simulation and the experimental verification of the hydraulic behavior of an electro-hydraulic load-sensing proportional control valve. An innovative CAE (computer aided engineering) methodology, developed combining CFD (computational fluid dynamics) simulations with lumped and distributed numerical modeling, is firstly introduced and tailored by comparing the numerical results with measurements coming from an experimental campaign performed for a wide range of pressure loads and metered flow rates. Then, both the reliability and the limits of the numerical approach are highlighted through a detailed numerical vs. experimental comparison, involving the pressure of the main hydraulic lines, the flow rate through the first section and the local compensator displacement. Finally, the CAE methodology has been applied for assessing the internal ducts hydraulic permeability and the local compensator spring pre-load influence on the control valve metering curves. At the end of this analysis, an optimized design configuration, featuring a maximum controlled volumetric flow rate increased of more than 25%, has been proposed. 展开更多
关键词 proportional control valve load-sensing CFD lumped and distributed parameters modeling.
在线阅读 下载PDF
Parameter identification and high order active disturbance rejection control of electro-hydraulic servo motor system
13
作者 WANG Xiaojing GAO Wentao +1 位作者 ZHANG Yuxuan SUN Yuwei 《High Technology Letters》 2025年第3期280-287,共8页
An enhanced least mean square(LMS)error identification algorithm integrated with Kalman filtering is proposed to resolve accuracy degradation induced by nonlinear dynamics and parameter uncertainties in continuous rot... An enhanced least mean square(LMS)error identification algorithm integrated with Kalman filtering is proposed to resolve accuracy degradation induced by nonlinear dynamics and parameter uncertainties in continuous rotary electro-hydraulic servo systems.This enhancement accelerates convergence and improves accuracy compared with traditional LMS.A fifth-order identification mod-el is developed based on valve-controlled hydraulic motors,with parameters identified using Kalman filter state estimation and gradient smoothing.The results indicate that the improved LMS effectively enhances parameter identification.An advanced disturbance rejection controller(ADRC)is de-signed,and its performance is compared with an optimal proportional integral derivative(PID)con-troller through Simulink simulations.The results show that the ADRC fulfills the control specifications and expands the system’s operational bandwidth. 展开更多
关键词 electro-hydraulic servo system tracking differentiator filter minimum mean square error identification advanced disturbance rejection controller nonlinear feedback control law extended state observer parameter optimal proportional integral derivative control
在线阅读 下载PDF
A Novel Cascaded TID-FOI Controller Tuned with Walrus Optimization Algorithm for Frequency Regulation of Deregulated Power System
14
作者 Geetanjali Dei Deepak Kumar Gupta +3 位作者 Binod Kumar Sahu Amitkumar V.Jha Bhargav Appasani Nicu Bizon 《Energy Engineering》 2025年第8期3399-3431,共33页
This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation techno... This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation technologies:Area 1 combines thermal,hydro,and distributed generation;Area 2 utilizes a blend of thermal units,distributed solar technologies(DST),and hydro power;andThird control area hosts geothermal power station alongside thermal power generation unit and hydropower units.The suggested control system employs a multi-layered approach,featuring a blended methodology utilizing the Tilted Integral Derivative controller(TID)and the Fractional-Order Integral method to enhance performance and stability.The parameters of this hybrid TID-FOI controller are finely tuned using an advanced optimization method known as the Walrus Optimization Algorithm(WaOA).Performance analysis reveals that the combined TID-FOI controller significantly outperforms the TID and PID controllers when comparing their dynamic response across various system configurations.The study also incorporates investigation of redox flow batteries within the broader scope of energy storage applications to assess their impact on system performance.In addition,the research explores the controller’s effectiveness under different power exchange scenarios in a deregulated market,accounting for restrictions on generation ramp rates and governor hysteresis effects in dynamic control.To ensure the reliability and resilience of the presented methodology,the system transitions and develops across a broad range of varying parameters and stochastic load fluctuation.To wrap up,the study offers a pioneering control approach-a hybrid TID-FOI controller optimized via the Walrus Optimization Algorithm(WaOA)-designed for enhanced stability and performance in a complex,three-region hybrid energy system functioning within a deregulated framework. 展开更多
关键词 Integral time multiplied by absolute error(ITAE) load frequency control(LFC) particle swarm optimization(PSO) tilted integral derivative controller(TID) independent system operator(ISO) walrus optimization algorithm(WaOA) proportional integral derivative controller(PID)
在线阅读 下载PDF
CONTROL OF ROBOT DRIVEN BY MULTIPLE ULTRASONIC MOTORS BASED ON ROBUST PARAMETER DESIGN 被引量:3
15
作者 孙志峻 帅双辉 黄卫清 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第4期243-250,共8页
An ultrasonic motor (USM) is difficlt to be mathematically described because of its complex energy conversion and nonlinear parameters from increasing temperature and changing operating conditions. To achieve good p... An ultrasonic motor (USM) is difficlt to be mathematically described because of its complex energy conversion and nonlinear parameters from increasing temperature and changing operating conditions. To achieve good performance of a three-joint robot directly driven by USM, according to the operating characteristics of USM, a new position-velocity feedback control strategy is proposed. In the control strategy, there are a total of 18 controller gains to he tuned. Through a series of "Design of Experiments" by the robust parameter design, an optimal and robust set of proportional integral derivative (PID) controller gains is obtained. Results show that the control strategy can achieve the best performance of the robot and the robust parameter design is effective and convenient to USMs. 展开更多
关键词 ultrasonic transducers robust control proportional integral derivative (PID) control position-veloci-ty feedback
在线阅读 下载PDF
Kinematic Control of Free Rigid Bodies Using Dual Quaternions 被引量:9
16
作者 Da-Peng Han Qing Wei Ze-Xiang Li 《International Journal of Automation and computing》 EI 2008年第3期319-324,共6页
This paper proposes a new type of control laws for free rigid bodies. The start point is the dual quaternion and its characteristics. The logarithm of a dual quaternion is defined, based on which kinematic control law... This paper proposes a new type of control laws for free rigid bodies. The start point is the dual quaternion and its characteristics. The logarithm of a dual quaternion is defined, based on which kinematic control laws can be developed. Global exponential convergence is achieved using logarithmic feedback via a generalized proportional control law, and an appropriate Lyapunov function is constructed to prove the stability. Both the regulation and tracking problems are tackled. Omnidirectional control is discussed as a case study. As the control laws can handle the interconnection between the rotation and translation of a rigid body, they are shown to be more applicable than the conventional method. 展开更多
关键词 Kinematic control dual quaternion omnidirectional control proportional control
在线阅读 下载PDF
Identification and PID Control for a Class of Delay Fractional-order Systems 被引量:6
17
作者 Zhuoyun Nie Qingguo Wang +1 位作者 Ruijuan Liu Yonghong Lan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第4期463-476,共14页
In this paper, a new model identification method is developed for a class of delay fractional-order system based on the process step response. Four characteristic functions are defined to characterize the features of ... In this paper, a new model identification method is developed for a class of delay fractional-order system based on the process step response. Four characteristic functions are defined to characterize the features of the normalized fractional-order model. Based on the time scaling technology, two identification schemes are proposed for parameters U+02BC estimation. The scheme one utilizes three exact points on the step response of the process to calculate model parameters directly. The other scheme employs optimal searching method to adjust the fractional order for the best model identification. The proposed two identification schemes are both applicable to any stable complex process, such as higher-order, under-damped U+002F over-damped, and minimum-phase U+002F nonminimum-phase processes. Furthermore, an optimal PID tuning method is proposed for the delay fractional-order systems. The requirements on the stability margins and the negative feedback are cast as real part constraints U+0028 RPC U+0029 and imaginary part constraints U+0028 IPC U+0029. The constraints are implemented by trigonometric inequalities on the phase variable, and the optimal PID controller is obtained by the minimization of the integral of time absolute error U+0028 ITAE U+0029 index. Identification and control of a Titanium billet heating process is given for the illustration. © 2014 Chinese Association of Automation. 展开更多
关键词 ALGEBRA Billets (metal bars) Delay control systems Identification (control systems) proportional control systems Step response Three term control systems Time delay Titanium
在线阅读 下载PDF
A new approach to detecting weak signal in strong noise based on chaos system control 被引量:4
18
作者 徐艳春 杨春玲 瞿晓东 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第3期202-206,共5页
In this paper, a chaos system and proportional differential control are both used to detect the frequency of an unknown signal. In traditional methods the useful signal is obtained through the Duffing equation or othe... In this paper, a chaos system and proportional differential control are both used to detect the frequency of an unknown signal. In traditional methods the useful signal is obtained through the Duffing equation or other chaotic oscillators. But these methods are too complex because of using a lot of chaos oscillators. In this paper a new method is presented that uses the Rossler equation and proportional differential control to detect a weak signal frequency. Substituting the detected signal frequency into the RSssler equation leads the Rossler phase state to be considerably changed. The chaos state can be controlled through the proportional differential method. Through its phase diagram and spectrum analysis, the unknown frequency is obtained. The simulation results verify that the presented method is feasible and that the detection accuracy is higher than those of other methods. 展开更多
关键词 chaos system proportional differential control spectrum analysis signal detection
原文传递
Tri-state Modulation Power Driving of Electro-hydraulic Proportional Amplifier 被引量:3
19
作者 NIE Yong WANG Qingfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期639-644,共6页
Switch electro-hydraulic proportional amplifier(PA)widely employs single switch modulation power driving(SSMPD)or reverse discharging power driving(RDPD)at present.SSMPD has slow dynamic response,and can't adjust ... Switch electro-hydraulic proportional amplifier(PA)widely employs single switch modulation power driving(SSMPD)or reverse discharging power driving(RDPD)at present.SSMPD has slow dynamic response,and can't adjust independently the dither signal's amplitude and frequency;RDPD accelerates the current decay;consequently,it increases current ripple and power loss.For the purpose of solving the above mentioned problem,the tri-state modulation power driving(TSMPD)scheme was proposed for improving the performance of power driving.Detailedly,the hardware circuit for the tri-state modulation power driving is designed;the tri-state modulation algorithm is realized by digital signal processor(DSP).The tri-state modulation power driving is investigated by experiments,comparetive experiments among the single switch modulation power driving(SSMPD),reverse discharging power driving(RDPD),and the TSMPD are implemented,and the experimental results demonstrate that the linearity error of TSMDP meets the requirement of PA;the current response of TSMSP is the best;the amplitude of ripple current of the TSMPD can be reduced without increasing frequency of PWM,in addition,dither signal amplitude and frequency can be adjusted independently for each other.It is very meaningful to guide the development of high performance proportional amplifier for high frequency response proportional solenoid. 展开更多
关键词 electro-hydraulic proportional control proportional amplifier tri-state modulation power driving
在线阅读 下载PDF
PSO Based Multi-Objective Approach for Controlling PID Controller 被引量:4
20
作者 Harsh Goud Prakash Chandra Sharma +6 位作者 Kashif Nisar Ag.Asri Ag.Ibrahim Muhammad Reazul Haque Narendra Singh Yadav Pankaj Swarnkar Manoj Gupta Laxmi Chand 《Computers, Materials & Continua》 SCIE EI 2022年第6期4409-4423,共15页
CSTR(Continuous stirred tank reactor)is employed in process control and chemical industries to improve response characteristics and system efficiency.It has a highly nonlinear characteristic that includes complexities... CSTR(Continuous stirred tank reactor)is employed in process control and chemical industries to improve response characteristics and system efficiency.It has a highly nonlinear characteristic that includes complexities in its control and design.Dynamic performance is compassionate to change in system parameterswhich need more effort for planning a significant controller for CSTR.The reactor temperature changes in either direction from the defined reference value.It is important to note that the intensity of chemical actions inside the CSTR is dependent on the various levels of temperature,and deviation from reference values may cause degradation of biomass quality.Design and implementation of an appropriate adaptive controller for such a nonlinear system are essential.In this paper,a conventional Proportional Integral Derivative(PID)controller is designed.The conventional techniques to deal with constraints suffer severe limitations like it has fixed controller parameters.Hence,A novel method is applied for computing the PID controller parameters using a swarm algorithm that overcomes the conventional controller’s limitation.In the proposed technique,PID parameters are tuned by Particle Swarm Optimization(PSO).It is not easy to choose the suitable objective function to design a PID controller using PSO to get an optimal response.In this article,a multi-objective function is proposed for PSO based controller design of CSTR. 展开更多
关键词 Particle swarm optimization multi-objective PSO continuous stirred tank reactor proportional integral derivative controller
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部