Non-Interactive Zero-Knowledge(NIZK for short) proofs are fascinating and extremely useful in many security protocols. In this paper,a new group signature scheme,decisional linear assumption group signature(DLAGS for ...Non-Interactive Zero-Knowledge(NIZK for short) proofs are fascinating and extremely useful in many security protocols. In this paper,a new group signature scheme,decisional linear assumption group signature(DLAGS for short) with NIZK proofs is proposed which can prove and sign the multiple values rather than individual bits based on DLIN assumption. DLAGS does not need to interact between the verifier and issuer,which can decrease the communication times and storage cost compared with the existing interactive group signature schemes. We prove and sign the blocks of messages instead of limiting the proved message to only one bit(0 or 1) in the conventional non-interactive zero-knowledge proof system,and we also prove that our scheme satisfy the property of anonymity,unlinkability and traceability. Finally,our scheme is compared with the other scheme(Benoitt's scheme) which is also based on the NIZK proofs system and the DLIN assumption,and the results show that our scheme requires fewer members of groups and computational times.展开更多
With the development of cloud storage,the problem of efficiently checking and proving data integrity needs more consideration.Therefore,much of growing interest has been pursed in the context of the integrity verifica...With the development of cloud storage,the problem of efficiently checking and proving data integrity needs more consideration.Therefore,much of growing interest has been pursed in the context of the integrity verification of cloud storage.Provable data possession(PDP)and Proofs of retrievablity(POR)are two kinds of important scheme which can guarantee the data integrity in the cloud storage environments.The main difference between them is that POR schemes store a redundant encoding of the client data on the server so as to she has the ability of retrievablity while PDP does not have.Unfortunately,most of POR schemes support only static data.Stefanov et al.proposed a dynamic POR,but their scheme need a large of amount of client storage and has a large audit cost.Cash et al.use Oblivious RAM(ORAM)to construct a fully dynamic POR scheme,but the cost of their scheme is also very heavy.Based on the idea which proposed by Cash,we propose dynamic proofs of retrievability via Partitioning-Based Square Root Oblivious RAM(DPoR-PSR-ORAM).Firstly,the notions used in our scheme are defined.The Partitioning-Based Square Root Oblivious RAM(PSR-ORAM)protocol is also proposed.The DPOR-PSR-ORAM Model which includes the formal definitions,security definitions and model construction methods are described in the paper.Finally,we give the security analysis and efficiency analysis.The analysis results show that our scheme not only has the property of correctness,authenticity,next-read pattern hiding and retrievabiltiy,but also has the high efficiency.展开更多
In this paper we point out that the proofs of Chain Rule in many intensively used textbooks are not strict an construct anexa mple of a composite function f(u) which is differentiable with respects t o the independe...In this paper we point out that the proofs of Chain Rule in many intensively used textbooks are not strict an construct anexa mple of a composite function f(u) which is differentiable with respects t o the independednt variable u, but is not differentiable with respect to the dependent variable u=g(x). A strict proof of Chain Rule is presented. Incon sistency of the form and content of Chain Rule is disclosed.展开更多
Provable security has become a popular approach for analyzing the security of cryptographic protocols.However,writing and verifying proofs by hand are prone to errors.This paper advocates the automatic security proof ...Provable security has become a popular approach for analyzing the security of cryptographic protocols.However,writing and verifying proofs by hand are prone to errors.This paper advocates the automatic security proof framework with sequences of games.We make slight modifications to Blanchet's calculus to make it easy for parsing the initial game.The main contribution of this work is that it introduces algebraic properties with observational equivalences to automatic security proofs,and thus can deal with some practical cryptographic schemes with hard problems.We illustrate the use of algebraic properties in the framework by proving the semantic security of the ElGamal encryption scheme.展开更多
In this article I conduct a short review of the proofs of the area inside a circle. These include intuitive as well as rigorous analytic proofs. This discussion is important not just from mathematical view point but a...In this article I conduct a short review of the proofs of the area inside a circle. These include intuitive as well as rigorous analytic proofs. This discussion is important not just from mathematical view point but also because pedagogically the calculus books still use circular reasoning today to prove the area inside a circle (also that of an ellipse) on this important historical topic, first illustrated by Archimedes. I offer an innovative approach through the introduction of a theorem, which will lead to proving the area inside a circle avoiding circular argumentation.展开更多
The rapid evolution of quantum computing poses significant threats to traditional cryptographic schemes,particularly in Decentralized Finance(DeFi)systems that rely on legacy mechanisms like RSA and ECDSA for digital ...The rapid evolution of quantum computing poses significant threats to traditional cryptographic schemes,particularly in Decentralized Finance(DeFi)systems that rely on legacy mechanisms like RSA and ECDSA for digital identity verification.This paper proposes a quantum-resilient,blockchain-based identity verification framework designed to address critical challenges in privacy preservation,scalability,and post-quantum security.The proposed model integrates Post-quantum Cryptography(PQC),specifically lattice-based cryptographic primitives,with Decentralized Identifiers(DIDs)and Zero-knowledge Proofs(ZKPs)to ensure verifiability,anonymity,and resistance to quantum attacks.A dual-layer architecture is introduced,comprising an identity layer for credential generation and validation,and an application layer for DeFi protocol integration.To evaluate its performance,the framework is tested on multiple real-world DeFi platforms using metrics such as verification latency,throughput,attack resistance,energy efficiency,and quantum attack simulation.The results demonstrate that the proposed framework achieves 90%latency reduction and over 35%throughput improvement compared to traditional blockchain identity solutions.It also exhibits a high quantum resistance score(95/100),with successful secure verification under simulated quantum adversaries.The revocation mechanism—implemented using Merkle-tree-based proofs—achieves average response times under 40 ms,and the system maintains secure operations with energy consumption below 9 J per authentication cycle.Additionally,the paper presents a security and cost tradeoff analysis using ZKP schemes such as Bulletproofs and STARKs,revealing superior bits-per-byte efficiency and reduced proof sizes.Real-world adoption scenarios,including integration with six major DeFi protocols,indicate a 25%increase in verified users and a 15%improvement in Total Value Locked(TVL).The proposed solution is projected to remain secure until 2041(basic version)and 2043(advanced version),ensuring long-term sustainability and future-proofing against evolving quantum threats.This work establishes a scalable,privacy-preserving identity model that aligns with emerging post-quantum security standards for decentralized ecosystems.展开更多
Over the last two decades,the dogma that cell fate is immutable has been increasingly challenged,with important implications for regenerative medicine.The brea kth rough discovery that induced pluripotent stem cells c...Over the last two decades,the dogma that cell fate is immutable has been increasingly challenged,with important implications for regenerative medicine.The brea kth rough discovery that induced pluripotent stem cells could be generated from adult mouse fibroblasts is powerful proof that cell fate can be changed.An exciting extension of the discovery of cell fate impermanence is the direct cellular reprogram ming hypothesis-that terminally differentiated cells can be reprogrammed into other adult cell fates without first passing through a stem cell state.展开更多
There is an error in the name of the cell line in the abstract of the published paper“MicroRNA-502-3p regulates GABAergic synapse function in hippocampal neurons”published on pages 2698-2707,Issue 12,Volume 19 of Ne...There is an error in the name of the cell line in the abstract of the published paper“MicroRNA-502-3p regulates GABAergic synapse function in hippocampal neurons”published on pages 2698-2707,Issue 12,Volume 19 of Neural Regeneration Research(Sharma et al.,2024),because of oversight during final proof checking.The correct description should be“human-GABA receptor A-α1/β2/γ2L human embryonic kidney(HEK)recombinant cell line.”The authors apologize for any inconvenience this correction may cause for readers and editors of Neural Regeneration Research.展开更多
This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA f...This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA framework integrates security by design principles, micro-segmentation, and Island Mode Operation (IMO) to enhance cyber resilience and ensure continuous, secure operations. The methodology deploys a Forward-Thinking Architecture Strategy (FTAS) algorithm, which utilises an industrial Intrusion Detection System (IDS) implemented with Python’s Network Intrusion Detection System (NIDS) library. The FTAS algorithm successfully identified and responded to cyber-attacks, ensuring minimal system disruption. ISERA has been validated through comprehensive testing scenarios simulating Denial of Service (DoS) attacks and malware intrusions, at both the IT and OT layers where it successfully mitigates the impact of malicious activity. Results demonstrate ISERA’s efficacy in real-time threat detection, containment, and incident response, thus ensuring the integrity and reliability of critical infrastructure systems. ISERA’s decentralised approach contributes to global net zero goals by optimising resource use and minimising environmental impact. By adopting a decentralised control architecture and leveraging virtualisation, ISERA significantly enhances the cyber resilience and sustainability of critical infrastructure systems. This approach not only strengthens defences against evolving cyber threats but also optimises resource allocation, reducing the system’s carbon footprint. As a result, ISERA ensures the uninterrupted operation of essential services while contributing to broader net zero goals.展开更多
The security of information transmission and processing due to unknown vulnerabilities and backdoors in cyberspace is becoming increasingly problematic.However,there is a lack of effective theory to mathematically dem...The security of information transmission and processing due to unknown vulnerabilities and backdoors in cyberspace is becoming increasingly problematic.However,there is a lack of effective theory to mathematically demonstrate the security of information transmission and processing under nonrandom noise(or vulnerability backdoor attack)conditions in cyberspace.This paper first proposes a security model for cyberspace information transmission and processing channels based on error correction coding theory.First,we analyze the fault tolerance and non-randomness problem of Dynamic Heterogeneous Redundancy(DHR)structured information transmission and processing channel under the condition of non-random noise or attacks.Secondly,we use a mathematical statistical method to demonstrate that for non-random noise(or attacks)on discrete memory channels,there exists a DHR-structured channel and coding scheme that enables the average system error probability to be arbitrarily small.Finally,to construct suitable coding and heterogeneous channels,we take Turbo code as an example and simulate the effects of different heterogeneity,redundancy,output vector length,verdict algorithm and dynamism on the system,which is an important guidance for theory and engineering practice.展开更多
Traceability and trustiness are two critical issues in the logistics sector.Blockchain provides a potential way for logistics tracking systems due to its traits of tamper resistance.However,it is non-trivial to apply ...Traceability and trustiness are two critical issues in the logistics sector.Blockchain provides a potential way for logistics tracking systems due to its traits of tamper resistance.However,it is non-trivial to apply blockchain on logistics because of firstly,the binding relationship between virtue data and physical location cannot be guaranteed so that frauds may exist.Secondly,it is neither practical to upload complete data on the blockchain due to the limited storage resources nor convincing to trust the digest of the data.This paper proposes a traceable and trustable consortium blockchain for logistics T^(2)L to provide an efficient solution to the mentioned problems.Specifically,the authenticated geocoding data from telecom operators’base stations are adopted to ensure the location credibility of the data before being uploaded to the blockchain for the purpose of reliable traceability of the logistics.Moreover,we propose a scheme based on Zero Knowledge Proof of Retrievability(ZK BLS-PoR)to ensure the trustiness of the data digest and the proofs to the blockchain.Any user in the system can check the data completeness by verifying the proofs instead of downloading and examining the whole data based on the proposed ZK BLS-PoR scheme,which can provide solid theoretical verification.In all,the proposed T^(2)L framework is a traceable and trustable logistics system with a high level of security.展开更多
In the age of big data,ensuring data privacy while enabling efficient encrypted data retrieval has become a critical challenge.Traditional searchable encryption schemes face difficulties in handling complex semantic q...In the age of big data,ensuring data privacy while enabling efficient encrypted data retrieval has become a critical challenge.Traditional searchable encryption schemes face difficulties in handling complex semantic queries.Additionally,they typically rely on honest but curious cloud servers,which introduces the risk of repudiation.Furthermore,the combined operations of search and verification increase system load,thereby reducing performance.Traditional verification mechanisms,which rely on complex hash constructions,suffer from low verification efficiency.To address these challenges,this paper proposes a blockchain-based contextual semantic-aware ciphertext retrieval scheme with efficient verification.Building on existing single and multi-keyword search methods,the scheme uses vector models to semantically train the dataset,enabling it to retain semantic information and achieve context-aware encrypted retrieval,significantly improving search accuracy.Additionally,a blockchain-based updatable master-slave chain storage model is designed,where the master chain stores encrypted keyword indexes and the slave chain stores verification information generated by zero-knowledge proofs,thus balancing system load while improving search and verification efficiency.Finally,an improved non-interactive zero-knowledge proof mechanism is introduced,reducing the computational complexity of verification and ensuring efficient validation of search results.Experimental results demonstrate that the proposed scheme offers stronger security,balanced overhead,and higher search verification efficiency.展开更多
Published proof test coverage(PTC)estimates for emergency shutdown valves(ESDVs)show only moderate agreement and are predominantly opinion-based.A Failure Modes,Effects,and Diagnostics Analysis(FMEDA)was undertaken us...Published proof test coverage(PTC)estimates for emergency shutdown valves(ESDVs)show only moderate agreement and are predominantly opinion-based.A Failure Modes,Effects,and Diagnostics Analysis(FMEDA)was undertaken using component failure rate data to predict PTC for a full stroke test and a partial stroke test.Given the subjective and uncertain aspects of the FMEDA approach,specifically the selection of component failure rates and the determination of the probability of detecting failure modes,a Fuzzy Inference System(FIS)was proposed to manage the data,addressing the inherent uncertainties.Fuzzy inference systems have been used previously for various FMEA type assessments,but this is the first time an FIS has been employed for use with FMEDA.ESDV PTC values were generated from both the standard FMEDA and the fuzzy-FMEDA approaches using data provided by FMEDA experts.This work demonstrates that fuzzy inference systems can address the subjectivity inherent in FMEDA data,enabling reliable estimates of ESDV proof test coverage for both full and partial stroke tests.This facilitates optimized maintenance planning while ensuring safety is not compromised.展开更多
The advancement of 6G wireless communication technology has facilitated the integration of Vehicular Ad-hoc Networks(VANETs).However,the messages transmitted over the public channel in the open and dynamic VANETs are ...The advancement of 6G wireless communication technology has facilitated the integration of Vehicular Ad-hoc Networks(VANETs).However,the messages transmitted over the public channel in the open and dynamic VANETs are vulnerable to malicious attacks.Although numerous researchers have proposed authentication schemes to enhance the security of Vehicle-to-Vehicle(V2V)communication,most existing methodologies face two significant challenges:(1)the majority of the schemes are not lightweight enough to support realtime message interaction among vehicles;(2)the sensitive information like identity and position is at risk of being compromised.To tackle these issues,we propose a lightweight dual authentication protocol for V2V communication based on Physical Unclonable Function(PUF).The proposed scheme accomplishes dual authentication between vehicles by the combination of Zero-Knowledge Proof(ZKP)and MASK function.The security analysis proves that our scheme provides both anonymous authentication and information unlinkability.Additionally,the performance analysis demonstrates that the computation overhead of our scheme is approximately reduced 23.4% compared to the state-of-the-art schemes.The practical simulation conducted in a 6G network environment demonstrates the feasibility of 6G-based VANETs and their potential for future advancements.展开更多
2025年6月30日,华盛顿大学研究团队在《Nature Medicine》期刊上发表了一篇题为《Health effects associated with consumption of processed meat,sugar-sweetened beverages and trans fatty acids:a Burden of Proof study》的研究...2025年6月30日,华盛顿大学研究团队在《Nature Medicine》期刊上发表了一篇题为《Health effects associated with consumption of processed meat,sugar-sweetened beverages and trans fatty acids:a Burden of Proof study》的研究论文。研究结果发现,与不摄入加工肉类相比,每天摄入0.6~57克加工肉类,患2型糖尿病的风险平均至少高11%。展开更多
The next-generation RAN,known as Open Radio Access Network(ORAN),allows for several advantages,including cost-effectiveness,network flexibility,and interoperability.Now ORAN applications,utilising machine learning(ML)...The next-generation RAN,known as Open Radio Access Network(ORAN),allows for several advantages,including cost-effectiveness,network flexibility,and interoperability.Now ORAN applications,utilising machine learning(ML)and artificial intelligence(AI)techniques,have become standard practice.The need for Federated Learning(FL)for ML model training in ORAN environments is heightened by the modularised structure of the ORAN architecture and the shortcomings of conventional ML techniques.However,the traditional plaintext model update sharing of FL in multi-BS contexts is susceptible to privacy violations such as deep-leakage gradient assaults and inference.Therefore,this research presents a novel blockchain-assisted improved cryptographic privacy-preserving federated learning(BICPPFL)model,with the help of ORAN,to safely carry out federated learning and protect privacy.This model improves on the conventional masking technique for sharing model parameters by adding new characteristics.These features include the choice of distributed aggregators,validation for final model aggregation,and individual validation for BSs.To manage the security and privacy of FL processes,a combined homomorphic proxy-reencryption(HPReE)and lattice-cryptographic method(HPReEL)has been used.The upgraded delegated proof of stake(Up-DPoS)consensus protocol,which will provide quick validation of model exchanges and protect against malicious attacks,is employed for effective consensus across blockchain nodes.Without sacrificing performance metrics,the BICPPFL model strengthens privacy and adds security layers while facilitating the transfer of sensitive data across several BSs.The framework is deployed on top of a Hyperledger Fabric blockchain to evaluate its effectiveness.The experimental findings prove the reliability and privacy-preserving capability of the BICPPFL model.展开更多
This paper examines the application of the Verkle tree—an efficient data structure that leverages commitments and a novel proof technique in cryptographic solutions.Unlike traditional Merkle trees,the Verkle tree sig...This paper examines the application of the Verkle tree—an efficient data structure that leverages commitments and a novel proof technique in cryptographic solutions.Unlike traditional Merkle trees,the Verkle tree significantly reduces signature size by utilizing polynomial and vector commitments.Compact proofs also accelerate the verification process,reducing computational overhead,which makes Verkle trees particularly useful.The study proposes a new approach based on a non-positional polynomial notation(NPN)employing the Chinese Remainder Theorem(CRT).CRT enables efficient data representation and verification by decomposing data into smaller,indepen-dent components,simplifying computations,reducing overhead,and enhancing scalability.This technique facilitates parallel data processing,which is especially advantageous in cryptographic applications such as commitment and proof construction in Verkle trees,as well as in systems with constrained computational resources.Theoretical foundations of the approach,its advantages,and practical implementation aspects are explored,including resistance to potential attacks,application domains,and a comparative analysis with existing methods based on well-known parameters and characteristics.An analysis of potential attacks and vulnerabilities,including greatest common divisor(GCD)attacks,approximate multiple attacks(LLL lattice-based),brute-force search for irreducible polynomials,and the estimation of their total number,indicates that no vulnerabilities have been identified in the proposed method thus far.Furthermore,the study demonstrates that integrating CRT with Verkle trees ensures high scalability,making this approach promising for blockchain systems and other distributed systems requiring compact and efficient proofs.展开更多
基金supported by the National High-Tech Research and Development Plan of China under Grant Nos.863-317-01- 04-99, 2009AA01Z122 (863)the Natural Science Foundation of Shenyang City of China under Grant No. F10-205-1-12
文摘Non-Interactive Zero-Knowledge(NIZK for short) proofs are fascinating and extremely useful in many security protocols. In this paper,a new group signature scheme,decisional linear assumption group signature(DLAGS for short) with NIZK proofs is proposed which can prove and sign the multiple values rather than individual bits based on DLIN assumption. DLAGS does not need to interact between the verifier and issuer,which can decrease the communication times and storage cost compared with the existing interactive group signature schemes. We prove and sign the blocks of messages instead of limiting the proved message to only one bit(0 or 1) in the conventional non-interactive zero-knowledge proof system,and we also prove that our scheme satisfy the property of anonymity,unlinkability and traceability. Finally,our scheme is compared with the other scheme(Benoitt's scheme) which is also based on the NIZK proofs system and the DLIN assumption,and the results show that our scheme requires fewer members of groups and computational times.
基金This work is supported,in part,by the National Natural Science Foundation of China under grant No.61872069in part,by the Fundamental Research Funds for the Central Universities(N171704005)in part,by the Shenyang Science and Technology Plan Projects(18-013-0-01).
文摘With the development of cloud storage,the problem of efficiently checking and proving data integrity needs more consideration.Therefore,much of growing interest has been pursed in the context of the integrity verification of cloud storage.Provable data possession(PDP)and Proofs of retrievablity(POR)are two kinds of important scheme which can guarantee the data integrity in the cloud storage environments.The main difference between them is that POR schemes store a redundant encoding of the client data on the server so as to she has the ability of retrievablity while PDP does not have.Unfortunately,most of POR schemes support only static data.Stefanov et al.proposed a dynamic POR,but their scheme need a large of amount of client storage and has a large audit cost.Cash et al.use Oblivious RAM(ORAM)to construct a fully dynamic POR scheme,but the cost of their scheme is also very heavy.Based on the idea which proposed by Cash,we propose dynamic proofs of retrievability via Partitioning-Based Square Root Oblivious RAM(DPoR-PSR-ORAM).Firstly,the notions used in our scheme are defined.The Partitioning-Based Square Root Oblivious RAM(PSR-ORAM)protocol is also proposed.The DPOR-PSR-ORAM Model which includes the formal definitions,security definitions and model construction methods are described in the paper.Finally,we give the security analysis and efficiency analysis.The analysis results show that our scheme not only has the property of correctness,authenticity,next-read pattern hiding and retrievabiltiy,but also has the high efficiency.
文摘In this paper we point out that the proofs of Chain Rule in many intensively used textbooks are not strict an construct anexa mple of a composite function f(u) which is differentiable with respects t o the independednt variable u, but is not differentiable with respect to the dependent variable u=g(x). A strict proof of Chain Rule is presented. Incon sistency of the form and content of Chain Rule is disclosed.
基金National High Technical Research and Development Program of China(863 program)under Grant No. 2007AA01Z471
文摘Provable security has become a popular approach for analyzing the security of cryptographic protocols.However,writing and verifying proofs by hand are prone to errors.This paper advocates the automatic security proof framework with sequences of games.We make slight modifications to Blanchet's calculus to make it easy for parsing the initial game.The main contribution of this work is that it introduces algebraic properties with observational equivalences to automatic security proofs,and thus can deal with some practical cryptographic schemes with hard problems.We illustrate the use of algebraic properties in the framework by proving the semantic security of the ElGamal encryption scheme.
文摘In this article I conduct a short review of the proofs of the area inside a circle. These include intuitive as well as rigorous analytic proofs. This discussion is important not just from mathematical view point but also because pedagogically the calculus books still use circular reasoning today to prove the area inside a circle (also that of an ellipse) on this important historical topic, first illustrated by Archimedes. I offer an innovative approach through the introduction of a theorem, which will lead to proving the area inside a circle avoiding circular argumentation.
文摘The rapid evolution of quantum computing poses significant threats to traditional cryptographic schemes,particularly in Decentralized Finance(DeFi)systems that rely on legacy mechanisms like RSA and ECDSA for digital identity verification.This paper proposes a quantum-resilient,blockchain-based identity verification framework designed to address critical challenges in privacy preservation,scalability,and post-quantum security.The proposed model integrates Post-quantum Cryptography(PQC),specifically lattice-based cryptographic primitives,with Decentralized Identifiers(DIDs)and Zero-knowledge Proofs(ZKPs)to ensure verifiability,anonymity,and resistance to quantum attacks.A dual-layer architecture is introduced,comprising an identity layer for credential generation and validation,and an application layer for DeFi protocol integration.To evaluate its performance,the framework is tested on multiple real-world DeFi platforms using metrics such as verification latency,throughput,attack resistance,energy efficiency,and quantum attack simulation.The results demonstrate that the proposed framework achieves 90%latency reduction and over 35%throughput improvement compared to traditional blockchain identity solutions.It also exhibits a high quantum resistance score(95/100),with successful secure verification under simulated quantum adversaries.The revocation mechanism—implemented using Merkle-tree-based proofs—achieves average response times under 40 ms,and the system maintains secure operations with energy consumption below 9 J per authentication cycle.Additionally,the paper presents a security and cost tradeoff analysis using ZKP schemes such as Bulletproofs and STARKs,revealing superior bits-per-byte efficiency and reduced proof sizes.Real-world adoption scenarios,including integration with six major DeFi protocols,indicate a 25%increase in verified users and a 15%improvement in Total Value Locked(TVL).The proposed solution is projected to remain secure until 2041(basic version)and 2043(advanced version),ensuring long-term sustainability and future-proofing against evolving quantum threats.This work establishes a scalable,privacy-preserving identity model that aligns with emerging post-quantum security standards for decentralized ecosystems.
基金supported by Canada First Research Excellence Fund,Medicine by Design(to CMM)。
文摘Over the last two decades,the dogma that cell fate is immutable has been increasingly challenged,with important implications for regenerative medicine.The brea kth rough discovery that induced pluripotent stem cells could be generated from adult mouse fibroblasts is powerful proof that cell fate can be changed.An exciting extension of the discovery of cell fate impermanence is the direct cellular reprogram ming hypothesis-that terminally differentiated cells can be reprogrammed into other adult cell fates without first passing through a stem cell state.
文摘There is an error in the name of the cell line in the abstract of the published paper“MicroRNA-502-3p regulates GABAergic synapse function in hippocampal neurons”published on pages 2698-2707,Issue 12,Volume 19 of Neural Regeneration Research(Sharma et al.,2024),because of oversight during final proof checking.The correct description should be“human-GABA receptor A-α1/β2/γ2L human embryonic kidney(HEK)recombinant cell line.”The authors apologize for any inconvenience this correction may cause for readers and editors of Neural Regeneration Research.
基金funded by the Office of Gas and Electricity Markets(Ofgem)and supported by De Montfort University(DMU)and Nottingham Trent University(NTU),UK.
文摘This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA framework integrates security by design principles, micro-segmentation, and Island Mode Operation (IMO) to enhance cyber resilience and ensure continuous, secure operations. The methodology deploys a Forward-Thinking Architecture Strategy (FTAS) algorithm, which utilises an industrial Intrusion Detection System (IDS) implemented with Python’s Network Intrusion Detection System (NIDS) library. The FTAS algorithm successfully identified and responded to cyber-attacks, ensuring minimal system disruption. ISERA has been validated through comprehensive testing scenarios simulating Denial of Service (DoS) attacks and malware intrusions, at both the IT and OT layers where it successfully mitigates the impact of malicious activity. Results demonstrate ISERA’s efficacy in real-time threat detection, containment, and incident response, thus ensuring the integrity and reliability of critical infrastructure systems. ISERA’s decentralised approach contributes to global net zero goals by optimising resource use and minimising environmental impact. By adopting a decentralised control architecture and leveraging virtualisation, ISERA significantly enhances the cyber resilience and sustainability of critical infrastructure systems. This approach not only strengthens defences against evolving cyber threats but also optimises resource allocation, reducing the system’s carbon footprint. As a result, ISERA ensures the uninterrupted operation of essential services while contributing to broader net zero goals.
基金supported by National Key R&D Program of China for Young Scientists:Cyberspace Endogenous Security Mechanisms and Evaluation Methods(No.2022YFB3102800).
文摘The security of information transmission and processing due to unknown vulnerabilities and backdoors in cyberspace is becoming increasingly problematic.However,there is a lack of effective theory to mathematically demonstrate the security of information transmission and processing under nonrandom noise(or vulnerability backdoor attack)conditions in cyberspace.This paper first proposes a security model for cyberspace information transmission and processing channels based on error correction coding theory.First,we analyze the fault tolerance and non-randomness problem of Dynamic Heterogeneous Redundancy(DHR)structured information transmission and processing channel under the condition of non-random noise or attacks.Secondly,we use a mathematical statistical method to demonstrate that for non-random noise(or attacks)on discrete memory channels,there exists a DHR-structured channel and coding scheme that enables the average system error probability to be arbitrarily small.Finally,to construct suitable coding and heterogeneous channels,we take Turbo code as an example and simulate the effects of different heterogeneity,redundancy,output vector length,verdict algorithm and dynamism on the system,which is an important guidance for theory and engineering practice.
基金sponsored by National Natural Science Foundation of China(No.61571049).
文摘Traceability and trustiness are two critical issues in the logistics sector.Blockchain provides a potential way for logistics tracking systems due to its traits of tamper resistance.However,it is non-trivial to apply blockchain on logistics because of firstly,the binding relationship between virtue data and physical location cannot be guaranteed so that frauds may exist.Secondly,it is neither practical to upload complete data on the blockchain due to the limited storage resources nor convincing to trust the digest of the data.This paper proposes a traceable and trustable consortium blockchain for logistics T^(2)L to provide an efficient solution to the mentioned problems.Specifically,the authenticated geocoding data from telecom operators’base stations are adopted to ensure the location credibility of the data before being uploaded to the blockchain for the purpose of reliable traceability of the logistics.Moreover,we propose a scheme based on Zero Knowledge Proof of Retrievability(ZK BLS-PoR)to ensure the trustiness of the data digest and the proofs to the blockchain.Any user in the system can check the data completeness by verifying the proofs instead of downloading and examining the whole data based on the proposed ZK BLS-PoR scheme,which can provide solid theoretical verification.In all,the proposed T^(2)L framework is a traceable and trustable logistics system with a high level of security.
基金supported in part by the National Natural Science Foundation of China under Grant 62262073in part by the Yunnan Provincial Ten Thousand People Program for Young Top Talents under Grant YNWR-QNBJ-2019-237in part by the Yunnan Provincial Major Science and Technology Special Program under Grant 202402AD080002.
文摘In the age of big data,ensuring data privacy while enabling efficient encrypted data retrieval has become a critical challenge.Traditional searchable encryption schemes face difficulties in handling complex semantic queries.Additionally,they typically rely on honest but curious cloud servers,which introduces the risk of repudiation.Furthermore,the combined operations of search and verification increase system load,thereby reducing performance.Traditional verification mechanisms,which rely on complex hash constructions,suffer from low verification efficiency.To address these challenges,this paper proposes a blockchain-based contextual semantic-aware ciphertext retrieval scheme with efficient verification.Building on existing single and multi-keyword search methods,the scheme uses vector models to semantically train the dataset,enabling it to retain semantic information and achieve context-aware encrypted retrieval,significantly improving search accuracy.Additionally,a blockchain-based updatable master-slave chain storage model is designed,where the master chain stores encrypted keyword indexes and the slave chain stores verification information generated by zero-knowledge proofs,thus balancing system load while improving search and verification efficiency.Finally,an improved non-interactive zero-knowledge proof mechanism is introduced,reducing the computational complexity of verification and ensuring efficient validation of search results.Experimental results demonstrate that the proposed scheme offers stronger security,balanced overhead,and higher search verification efficiency.
文摘Published proof test coverage(PTC)estimates for emergency shutdown valves(ESDVs)show only moderate agreement and are predominantly opinion-based.A Failure Modes,Effects,and Diagnostics Analysis(FMEDA)was undertaken using component failure rate data to predict PTC for a full stroke test and a partial stroke test.Given the subjective and uncertain aspects of the FMEDA approach,specifically the selection of component failure rates and the determination of the probability of detecting failure modes,a Fuzzy Inference System(FIS)was proposed to manage the data,addressing the inherent uncertainties.Fuzzy inference systems have been used previously for various FMEA type assessments,but this is the first time an FIS has been employed for use with FMEDA.ESDV PTC values were generated from both the standard FMEDA and the fuzzy-FMEDA approaches using data provided by FMEDA experts.This work demonstrates that fuzzy inference systems can address the subjectivity inherent in FMEDA data,enabling reliable estimates of ESDV proof test coverage for both full and partial stroke tests.This facilitates optimized maintenance planning while ensuring safety is not compromised.
文摘The advancement of 6G wireless communication technology has facilitated the integration of Vehicular Ad-hoc Networks(VANETs).However,the messages transmitted over the public channel in the open and dynamic VANETs are vulnerable to malicious attacks.Although numerous researchers have proposed authentication schemes to enhance the security of Vehicle-to-Vehicle(V2V)communication,most existing methodologies face two significant challenges:(1)the majority of the schemes are not lightweight enough to support realtime message interaction among vehicles;(2)the sensitive information like identity and position is at risk of being compromised.To tackle these issues,we propose a lightweight dual authentication protocol for V2V communication based on Physical Unclonable Function(PUF).The proposed scheme accomplishes dual authentication between vehicles by the combination of Zero-Knowledge Proof(ZKP)and MASK function.The security analysis proves that our scheme provides both anonymous authentication and information unlinkability.Additionally,the performance analysis demonstrates that the computation overhead of our scheme is approximately reduced 23.4% compared to the state-of-the-art schemes.The practical simulation conducted in a 6G network environment demonstrates the feasibility of 6G-based VANETs and their potential for future advancements.
文摘2025年6月30日,华盛顿大学研究团队在《Nature Medicine》期刊上发表了一篇题为《Health effects associated with consumption of processed meat,sugar-sweetened beverages and trans fatty acids:a Burden of Proof study》的研究论文。研究结果发现,与不摄入加工肉类相比,每天摄入0.6~57克加工肉类,患2型糖尿病的风险平均至少高11%。
文摘The next-generation RAN,known as Open Radio Access Network(ORAN),allows for several advantages,including cost-effectiveness,network flexibility,and interoperability.Now ORAN applications,utilising machine learning(ML)and artificial intelligence(AI)techniques,have become standard practice.The need for Federated Learning(FL)for ML model training in ORAN environments is heightened by the modularised structure of the ORAN architecture and the shortcomings of conventional ML techniques.However,the traditional plaintext model update sharing of FL in multi-BS contexts is susceptible to privacy violations such as deep-leakage gradient assaults and inference.Therefore,this research presents a novel blockchain-assisted improved cryptographic privacy-preserving federated learning(BICPPFL)model,with the help of ORAN,to safely carry out federated learning and protect privacy.This model improves on the conventional masking technique for sharing model parameters by adding new characteristics.These features include the choice of distributed aggregators,validation for final model aggregation,and individual validation for BSs.To manage the security and privacy of FL processes,a combined homomorphic proxy-reencryption(HPReE)and lattice-cryptographic method(HPReEL)has been used.The upgraded delegated proof of stake(Up-DPoS)consensus protocol,which will provide quick validation of model exchanges and protect against malicious attacks,is employed for effective consensus across blockchain nodes.Without sacrificing performance metrics,the BICPPFL model strengthens privacy and adds security layers while facilitating the transfer of sensitive data across several BSs.The framework is deployed on top of a Hyperledger Fabric blockchain to evaluate its effectiveness.The experimental findings prove the reliability and privacy-preserving capability of the BICPPFL model.
基金funded by the Ministry of Science and Higher Education of Kazakhstan and carried out within the framework of the project AP23488112“Development and study of a quantum-resistant digital signature scheme based on a Verkle tree”at the Institute of Information and Computational Technologies.
文摘This paper examines the application of the Verkle tree—an efficient data structure that leverages commitments and a novel proof technique in cryptographic solutions.Unlike traditional Merkle trees,the Verkle tree significantly reduces signature size by utilizing polynomial and vector commitments.Compact proofs also accelerate the verification process,reducing computational overhead,which makes Verkle trees particularly useful.The study proposes a new approach based on a non-positional polynomial notation(NPN)employing the Chinese Remainder Theorem(CRT).CRT enables efficient data representation and verification by decomposing data into smaller,indepen-dent components,simplifying computations,reducing overhead,and enhancing scalability.This technique facilitates parallel data processing,which is especially advantageous in cryptographic applications such as commitment and proof construction in Verkle trees,as well as in systems with constrained computational resources.Theoretical foundations of the approach,its advantages,and practical implementation aspects are explored,including resistance to potential attacks,application domains,and a comparative analysis with existing methods based on well-known parameters and characteristics.An analysis of potential attacks and vulnerabilities,including greatest common divisor(GCD)attacks,approximate multiple attacks(LLL lattice-based),brute-force search for irreducible polynomials,and the estimation of their total number,indicates that no vulnerabilities have been identified in the proposed method thus far.Furthermore,the study demonstrates that integrating CRT with Verkle trees ensures high scalability,making this approach promising for blockchain systems and other distributed systems requiring compact and efficient proofs.