In this paper we introduce a concept,called Σ-associated primes,that is a generalization of both associated primes and nilpotent associated primes.We first observe the basic properties of Σ-associated primes and con...In this paper we introduce a concept,called Σ-associated primes,that is a generalization of both associated primes and nilpotent associated primes.We first observe the basic properties of Σ-associated primes and construct typical examples.We next describe all Σ-associated primes of the Ore extension R[x; α,δ],the skew Laurent polynomial ring R[x,x-1; α] and the skew power series ring R[[x; α]],in terms of the Σ-associated primes of R in a very straightforward way.Consequently several known results relating to associated primes and nilpotent associated primes are extended to a more general setting.展开更多
基金Supported by the National Natural Science Foundation of China(Grant No.11071062)the Scientific Research Fundation of Hunan Provincial Education Department(Grant No.12B101)
文摘In this paper we introduce a concept,called Σ-associated primes,that is a generalization of both associated primes and nilpotent associated primes.We first observe the basic properties of Σ-associated primes and construct typical examples.We next describe all Σ-associated primes of the Ore extension R[x; α,δ],the skew Laurent polynomial ring R[x,x-1; α] and the skew power series ring R[[x; α]],in terms of the Σ-associated primes of R in a very straightforward way.Consequently several known results relating to associated primes and nilpotent associated primes are extended to a more general setting.