In this note,some characterizations of hereditary rings using injectivity classes and projectivity classes are given.These results unify many well known results.
In this paper, a new step-size skill for a projection and contraction method([10]) for linear programming is generalized to an iterative method([22]) for solving nonlinear projection equation. For linear programming, ...In this paper, a new step-size skill for a projection and contraction method([10]) for linear programming is generalized to an iterative method([22]) for solving nonlinear projection equation. For linear programming, our scheme is the same as that of([10]). For complementarity problem and related problems, we give an improved algorithm by considering the new step-size skill and ALGORITHM B discussed in [22]. Numerical results are provided.展开更多
Recently, we have proposed an iterative projection and contraction (PC) method for a class of linear complementarity problems (LCP)([4]). The method was showed to be globally convergent, but no statement could be made...Recently, we have proposed an iterative projection and contraction (PC) method for a class of linear complementarity problems (LCP)([4]). The method was showed to be globally convergent, but no statement could be made about the rate of convergence. In this paper, we develop a modified globally linearly convergent PC method for linear complementarity problems. Both the method and the convergence proofs are very simple. The method can also be used to solve some linear variational inequalities. Several computational experiments are presented to indicate that the method is surprising good for solving some known difficult problems.展开更多
文摘In this note,some characterizations of hereditary rings using injectivity classes and projectivity classes are given.These results unify many well known results.
文摘In this paper, a new step-size skill for a projection and contraction method([10]) for linear programming is generalized to an iterative method([22]) for solving nonlinear projection equation. For linear programming, our scheme is the same as that of([10]). For complementarity problem and related problems, we give an improved algorithm by considering the new step-size skill and ALGORITHM B discussed in [22]. Numerical results are provided.
文摘Recently, we have proposed an iterative projection and contraction (PC) method for a class of linear complementarity problems (LCP)([4]). The method was showed to be globally convergent, but no statement could be made about the rate of convergence. In this paper, we develop a modified globally linearly convergent PC method for linear complementarity problems. Both the method and the convergence proofs are very simple. The method can also be used to solve some linear variational inequalities. Several computational experiments are presented to indicate that the method is surprising good for solving some known difficult problems.