Tailoring thermal history during additive manufacturing(AM)offers a feasible approach to customise the microstructure and properties of materials without changing alloy compositions or post-heat treatment,which is gen...Tailoring thermal history during additive manufacturing(AM)offers a feasible approach to customise the microstructure and properties of materials without changing alloy compositions or post-heat treatment,which is generally overlooked as it is hard to achieve in commercial materials.Herein,a customised Fe-Ni-Ti-Al maraging steel with rapid precipitation kinetics offers the opportunity to leverage thermal history during AM for achieving large-range tunable strength-ductility combinations.The Fe-Ni-Ti-Al steel was processed by laser-directed energy deposition(LDED)with different deposition strategies to tailor the thermal history.As the phase transformation and in-situ formation of multi-scale secondary phases of the Fe-Ni-Ti-Al steel are sensitive to the thermal histories,the deposited steel achieved a large range of tuneable mechanical properties.Specifically,the interlayer paused deposited sample exhibits superior tensile strength(∼1.54 GPa)and moderate elongation(∼8.1%),which is attributed to the formation of unique hierarchical structures and the in-situ precipitation of high-densityη-Ni_(3)(Ti,Al)during LDED.In contrast,the substrate heating deposited sample has an excellent elongation of 19.3%together with a high tensile strength of 1.24 GPa.The achievable mechanical property range via tailoring thermal history in the LDED-built Fe-Ni-Ti-Al steel is significantly larger than most commercial materials.The findings highlight the material customisation along with AM’s unique thermal history to achieve versatile mechanical performances of deposited materials,which could inspire more property or function manipulations of materials by AM process control or innovation.展开更多
The popular single-factor complexity measure cannot comprehensively reflect program complexity and the existing hybrid complexity measure cannot express the interactive behaviors of programs. To treat these problems, ...The popular single-factor complexity measure cannot comprehensively reflect program complexity and the existing hybrid complexity measure cannot express the interactive behaviors of programs. To treat these problems, in this paper, we propose a complexity measure based on program slicing(CMBPS). CMPBS not only can evaluate factors which affect program complexity such as the length of the program, control flow, data flow and data types of output variables, but also can give expression of the interactive relation between programs. And we also prove that CMBPS satisfies all of Weyuker properties. Compared with the popular complexity measures, CMBPS is a well-structured complexity measure.展开更多
基金financially supported by the Career Development Fund(Grant No.C210112051)under the Agency for Science,Technology and Research(A*STAR)of Singapore2022 MTC Young Individual Research Grants(Grant No:M22K3c0097)under Singapore Research,Innovation and Enterprise(RIE)2025 Plan,led by C Tan。
文摘Tailoring thermal history during additive manufacturing(AM)offers a feasible approach to customise the microstructure and properties of materials without changing alloy compositions or post-heat treatment,which is generally overlooked as it is hard to achieve in commercial materials.Herein,a customised Fe-Ni-Ti-Al maraging steel with rapid precipitation kinetics offers the opportunity to leverage thermal history during AM for achieving large-range tunable strength-ductility combinations.The Fe-Ni-Ti-Al steel was processed by laser-directed energy deposition(LDED)with different deposition strategies to tailor the thermal history.As the phase transformation and in-situ formation of multi-scale secondary phases of the Fe-Ni-Ti-Al steel are sensitive to the thermal histories,the deposited steel achieved a large range of tuneable mechanical properties.Specifically,the interlayer paused deposited sample exhibits superior tensile strength(∼1.54 GPa)and moderate elongation(∼8.1%),which is attributed to the formation of unique hierarchical structures and the in-situ precipitation of high-densityη-Ni_(3)(Ti,Al)during LDED.In contrast,the substrate heating deposited sample has an excellent elongation of 19.3%together with a high tensile strength of 1.24 GPa.The achievable mechanical property range via tailoring thermal history in the LDED-built Fe-Ni-Ti-Al steel is significantly larger than most commercial materials.The findings highlight the material customisation along with AM’s unique thermal history to achieve versatile mechanical performances of deposited materials,which could inspire more property or function manipulations of materials by AM process control or innovation.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2009AA01220)the National Natural Science Foundation of China(91118007)
文摘The popular single-factor complexity measure cannot comprehensively reflect program complexity and the existing hybrid complexity measure cannot express the interactive behaviors of programs. To treat these problems, in this paper, we propose a complexity measure based on program slicing(CMBPS). CMPBS not only can evaluate factors which affect program complexity such as the length of the program, control flow, data flow and data types of output variables, but also can give expression of the interactive relation between programs. And we also prove that CMBPS satisfies all of Weyuker properties. Compared with the popular complexity measures, CMBPS is a well-structured complexity measure.