The uniaxial compressive strength(UCS)of rocks is a vital geomechanical parameter widely used for rock mass classification,stability analysis,and engineering design in rock engineering.Various UCS testing methods and ...The uniaxial compressive strength(UCS)of rocks is a vital geomechanical parameter widely used for rock mass classification,stability analysis,and engineering design in rock engineering.Various UCS testing methods and apparatuses have been proposed over the past few decades.The objective of the present study is to summarize the status and development in theories,test apparatuses,data processing of the existing testing methods for UCS measurement.It starts with elaborating the theories of these test methods.Then the test apparatus and development trends for UCS measurement are summarized,followed by a discussion on rock specimens for test apparatus,and data processing methods.Next,the method selection for UCS measurement is recommended.It reveals that the rock failure mechanism in the UCS testing methods can be divided into compression-shear,compression-tension,composite failure mode,and no obvious failure mode.The trends of these apparatuses are towards automation,digitization,precision,and multi-modal test.Two size correction methods are commonly used.One is to develop empirical correlation between the measured indices and the specimen size.The other is to use a standard specimen to calculate the size correction factor.Three to five input parameters are commonly utilized in soft computation models to predict the UCS of rocks.The selection of the test methods for the UCS measurement can be carried out according to the testing scenario and the specimen size.The engineers can gain a comprehensive understanding of the UCS testing methods and its potential developments in various rock engineering endeavors.展开更多
Background The diverse types and processing methods of grains intricately influence the sites and digestibility of starch digestion,thereby impacting energy utilization.This study aimed to explore the impact of grain ...Background The diverse types and processing methods of grains intricately influence the sites and digestibility of starch digestion,thereby impacting energy utilization.This study aimed to explore the impact of grain variety and processing methods on the net energy(NE)in dairy goats,analyzing these effects at the level of nutrient digestion and metabolism.Methods Eighteen castrated Guanzhong dairy goats(44.25±3.59 kg BW)were randomly divided into 3 groups,each consisting of 6 replicates.The substitution method was employed to determine the NE values of the dry-rolled corn(DRC),dry-rolled wheat(DRW)or steam-flaked corn(SFC,360 g/L).Briefly,two phases were performed.Throughout the basal phase,all goats were fed the same basal diet.In the substitution phase,30%of the basal diet was replaced with DRC,DRW and SFC,respectively.Results In this study,the NE values of the DRC,DRW and SFC were 7.65,7.54 and 7.44 MJ/kg DM,respectively.Compared to the DRC group,the DRW group showed increased digestibility of starch and crude protein(CP).Similarly,the SFC group exhibited increased organic matter(OM)and starch digestibility and a trend towards higher dry matter(DM)digestibility,reduced fecal OM and starch content.Additionally,fecal volatile fatty acid(VFA)concentrations decreased in goats fed SFC.Correspondingly,digestible energy(DE)in the DRW and SFC groups tended to be higher than in the DRC group.DRW increased total VFA concentration compared to DRC,while SFC increased the proportion of propionate and decreased the acetate-to-propionate ratio in the rumen.Both the DRW and SFC diets elevated serum glucose levels.Furthermore,heat increment(HI)and gaseous energy(Gas E)related to fermentation were significantly higher in the DRW and SFC groups compared to the DRC group.Conclusion Our findings indicated that DRW and SFC increased rumen starch fermentation in goats,thereby improving total tract starch digestion and DE.However,DRW and SFC failed to improve NE value due to increased heat and gas energy production from fermentation.Therefore,excessively refined grains processing in the diet of dairy goats does not effectively improve energy efficiency.展开更多
In micro milling machining,tool wear directly affects workpiece quality and accuracy,making effective tool wear monitoring a key factor in ensuring product integrity.The use of machine vision-based methods can provide...In micro milling machining,tool wear directly affects workpiece quality and accuracy,making effective tool wear monitoring a key factor in ensuring product integrity.The use of machine vision-based methods can provide an intuitive and efficient representation of tool wear conditions.However,micro milling tools have non-flat flanks,thin coatings can peel off,and spindle orientation is uncertain during downtime.These factors result in low pixel values,uneven illumination,and arbitrary tool position.To address this,we propose an image-based tool wear monitoring method.It combines multiple algorithms to restore lost pixels due to uneven illumination during segmentation and accurately extract wear areas.Experimental results demonstrate that the proposed algorithm exhibits high robustness to such images,effectively addressing the effects of illumination and spindle orientation.Additionally,the algorithm has low complexity,fast execution time,and significantly reduces the detection time in situ.展开更多
A principle was proposed for designing a method to seal anodized aluminum used in semiconductor processing apparatuses.Thermodynamic calculations and Fick’s second law were used to reveal trends in the metal ion depo...A principle was proposed for designing a method to seal anodized aluminum used in semiconductor processing apparatuses.Thermodynamic calculations and Fick’s second law were used to reveal trends in the metal ion deposition,deposition product stability,vapor pressures of halides for selected metal ions,the holding temperature,and time.Interactions between ion concentrations and the sealing temperature were also revealed.According to the design principles,anodized aluminum dipped in 1 mM Cr^(3+)ion solution and steam-sealed for 18 h exhibited the highest corrosion resistance when exposed to 5 wt.%HCl solution and HCl gas,verifying the designed results.展开更多
A clock bias data processing method based on interval correlation coefficient wavelet threshold denoising is suggested for minor mistakes in clock bias data in order to increase the efficacy of satellite clock bias pr...A clock bias data processing method based on interval correlation coefficient wavelet threshold denoising is suggested for minor mistakes in clock bias data in order to increase the efficacy of satellite clock bias prediction.Wavelet analysis was first used to break down the satellite clock frequency data into several levels,producing high and low frequency coefficients for each layer.The correlation coefficients of the high and low frequency coefficients in each of the three sub-intervals created by splitting these coefficients were then determined.The major noise region—the sub-interval with the lowest correlation coefficient—was chosen for thresholding treatment and noise threshold computation.The clock frequency data was then processed using wavelet reconstruction and reconverted to clock data.Lastly,three different kinds of satellite clock data—RTS,whu-o,and IGS-F—were used to confirm the produced data.Our method enhanced the stability of the Quadratic Polynomial(QP)model’s predictions for the C16 satellite by about 40%,according to the results.The accuracy and stability of the Auto Regression Integrated Moving Average(ARIMA)model improved up to 41.8%and 14.2%,respectively,whilst the Wavelet Neural Network(WNN)model improved by roughly 27.8%and 63.6%,respectively.Although our method has little effect on forecasting IGS-F series satellites,the experimental findings show that it can improve the accuracy and stability of QP,ARIMA,and WNN model forecasts for RTS and whu-o satellite clock bias.展开更多
In order to improve the quality of 3D printed raspberry preserves after post-processing,microwave ovens combining infrared and microwave methods were utilized.The effects of infrared heating temperature,infrared heati...In order to improve the quality of 3D printed raspberry preserves after post-processing,microwave ovens combining infrared and microwave methods were utilized.The effects of infrared heating temperature,infrared heating time,microwave power,microwave heating time on the center temperature,moisture content,the chroma(C*),the total color difference(ΔE*),shape fidelity,hardness,and the total anthocyanin content of 3D printed raspberry preserves were analyzed by response surface method(RSM).The results showed that under combining with the two methods,infrared heating improved the fidelity and quality degradation of printed products,while microwave heating enhanced the efficiency of infrared heating.Infrared-microwave combination cooking could maintain relatively stable color appearance and shape of 3D printed raspberry preserves.The AHP–CRITIC hybrid weighting method combined with the response surface test to determine the comprehensive weights of the evaluation indicators optimized the process parameters,and the optimal process parameters were obtained:infrared heating temperature of 190℃,infrared heating time of 10 min and 30 s,microwave power of 300 W,and microwave heating time of 2 min and 6 s.The 3D printed raspberry cooking methods obtained under the optimal conditions seldom had color variation,porous structure,uniform texture,and high shape fidelity,which retained the characteristics of personalized manufacturing by 3D printing.This study could provide a reference for the postprocessing and quality control of 3D cooking methods.展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
To improve braking performance and achieve lightweight in transport equipment,it is necessary to implement overall plastic forming manufacturing of the brake pad baseboard(BPB),which is the core safety component of th...To improve braking performance and achieve lightweight in transport equipment,it is necessary to implement overall plastic forming manufacturing of the brake pad baseboard(BPB),which is the core safety component of the brake system.This study presents an innovative multi-DOF envelope forming(MDFEF)process to realize the plastic forming of BPB with thin skin and high reinforcing ribs.The MDFEF principle for BPB,and the design methods for the envelope mold are first presented.Through FE simulations,the behavior of metal flow,uneven growth pattern of reinforcing ribs,evolution of equivalent strain and evolution of forming force in MDFEF of BPB are investigated.To realize MDFEF,an innovative MDFEF equipment driven by parallel linkages is exploited.The force states of linkages in MDFEF are calculated,and the reasonable mold position is determined to reduce the maximum force on the linkages and improve the service performance of MDFEF equipment.The MDFEF experiments of BPB are conducted and qualified BPB is obtained,which demonstrates that the presented MDFEF process and equipment are applicable to manufacture BPB with thin skin and high reinforcing ribs.展开更多
Calcium carboaluminate was successfully prepared by a simple and efficient one-step method,and the effects of temperature,time,raw material ratio,carbonate type and heavy CaCO_(3)particle size on the products were inv...Calcium carboaluminate was successfully prepared by a simple and efficient one-step method,and the effects of temperature,time,raw material ratio,carbonate type and heavy CaCO_(3)particle size on the products were investigated in detail.The results show that increasing the temperature and extending the reaction time can enhance the yield and crystallisation degree of calcium carboaluminate.The proportion of Ca(OH)_(2),Al(OH)_(3)and CaCO_(3)is a pivotal factor in the synthesis of calcium carboaluminate.When the ratio of Ca(OH)_(2),Al(OH)_(3)and CaCO_(3)is 3:2:1,the diffraction peaks of calcium carboaluminate in the products are relatively sharp and strong.Furthermore,the purity and crystallinity of the synthesized calcium carboaluminate are higher when heavy CaCO_(3)with the particle size of 120 mesh is used as the carbonate raw material,in comparison to CO_(2),Na_(2)CO_(3)and light CaCO_(3).As results,a simple and efficient method for the synthesis of calcium carboaluminate is proposed,which will provide a solid experimental foundation and technical support for the industrial application of calcium carboaluminate in marine concrete.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representati...Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representation,modeling,fusion,computation,and storage.Within this framework,knowledge extraction,as the core component,directly determines KG quality.In military domains,traditional manual curation models face efficiency constraints due to data fragmentation,complex knowledge architectures,and confidentiality protocols.Meanwhile,crowdsourced ontology construction approaches from general domains prove non-transferable,while human-crafted ontologies struggle with generalization deficiencies.To address these challenges,this study proposes an OntologyAware LLM Methodology for Military Domain Knowledge Extraction(LLM-KE).This approach leverages the deep semantic comprehension capabilities of Large Language Models(LLMs)to simulate human experts’cognitive processes in crowdsourced ontology construction,enabling automated extraction of military textual knowledge.It concurrently enhances knowledge processing efficiency and improves KG completeness.Empirical analysis demonstrates that this method effectively resolves scalability and dynamic adaptation challenges in military KG construction,establishing a novel technological pathway for advancing military intelligence development.展开更多
Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening pa...Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.展开更多
In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical m...In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical model,and its validity was verified using a simple impact test.A crushable discrete element method(DEM)framework is built based on the previously established theoretical model.The tensile strength,which considers the fractal theory,size effect,and Weibull variation,was assigned to each generated particle.The assigned strength is then used for crush detection by comparing it with its maximum tensile stress.Mass conservation is ensured by inserting a series of sub-particles whose total mass was equal to the quality loss.Based on the crushable DEM framework,a numerical simulation of the crushing behavior of a pebble bed with hollow cylindrical geometry under a uniaxial compression test was performed.The results of this investigation showed that the particle withstands the external load by contact and sliding at the beginning of the compression process,and the results confirmed that crushing can be considered an important method of resisting the increasing external load.A relatively regular particle arrangement aids in resisting the load and reduces the occurrence of particle crushing.However,a limit exists to the promotion of resistance.When the strain increases beyond this limit,the distribution of the crushing position tends to be isotropic over the entire pebble bed.The theoretical model and crushable DEM framework provide a new method for exploring the pebble bed in a fusion reactor,considering particle crushing.展开更多
Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision...Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision process is formulated as a Markov decision process(MDP)model to maximize the modularity.Corresponding key partitioning constraints on parallel restoration are considered.Second,based on the partitioning objective and constraints,the reward function of the partitioning MDP model is set by adopting a relative deviation normalization scheme to reduce mutual interference between the reward and penalty in the reward function.The soft bonus scaling mechanism is introduced to mitigate overestimation caused by abrupt jumps in the reward.Then,the deep Q network method is applied to solve the partitioning MDP model and generate partitioning schemes.Two experience replay buffers are employed to speed up the training process of the method.Finally,case studies on the IEEE 39-bus test system demonstrate that the proposed method can generate a high-modularity partitioning result that meets all key partitioning constraints,thereby improving the parallelism and reliability of the restoration process.Moreover,simulation results demonstrate that an appropriate discount factor is crucial for ensuring both the convergence speed and the stability of the partitioning training.展开更多
The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environmen...The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environment and con-tribute to global climate change.However,there remain considerable research gaps in the accurate measurement of NCGs emissions from agricultural fields,hindering the development of effective emission reduction strategies.We improved an open-top dynamic chambers(OTDCs)system and evaluated the performance by comparing the measured and given fluxes of the NCGs.The results showed that the measured fluxes of NO,N_(2)O and NH_(3)were 1%,2%and 7%lower than the given fluxes,respectively.For the determination of NH_(3) concentration,we employed a stripping coil-ion chromatograph(SC-IC)analytical technique,which demonstrated an absorption efficiency for atmospheric NH_(3) exceeding 96.1%across sampling durations of 6 to 60 min.In the summer maize season,we utilized the OTDCs system to measure the exchange fluxes of NO,NH_(3),and N_(2)O from the soil in the North China Plain.Substantial emissions of NO,NH_(3) and N_(2)O were recorded following fertilization,with peaks of 107,309,1239 ng N/(m^(2)·s),respectively.Notably,significant NCGs emissions were observed following sus-tained heavy rainfall one month after fertilization,particularly with NH_(3) peak being 4.5 times higher than that observed immediately after fertilization.Our results demonstrate that the OTDCs system accurately reflects the emission characteristics of soil NCGs and meets the requirements for long-term and continuous flux observation.展开更多
In this study,an automated multimodal system for detecting,classifying,and dating fruit was developed using a two-stage YOLOv11 pipeline.In the first stage,the YOLOv11 detection model locates individual date fruits in...In this study,an automated multimodal system for detecting,classifying,and dating fruit was developed using a two-stage YOLOv11 pipeline.In the first stage,the YOLOv11 detection model locates individual date fruits in real time by drawing bounding boxes around them.These bounding boxes are subsequently passed to a YOLOv11 classification model,which analyzes cropped images and assigns class labels.An additional counting module automatically tallies the detected fruits,offering a near-instantaneous estimation of quantity.The experimental results suggest high precision and recall for detection,high classification accuracy(across 15 classes),and near-perfect counting in real time.This paper presents a multi-stage pipeline for date fruit detection,classification,and automated counting,employing YOLOv11-based models to achieve high accuracy while maintaining real-time throughput.The results demonstrated that the detection precision exceeded 90%,the classification accuracy approached 92%,and the counting module correlated closely with the manual tallies.These findings confirm the potential of reducing manual labour and enhancing operational efficiency in post-harvesting processes.Future studies will include dataset expansion,user-centric interfaces,and integration with harvesting robotics.展开更多
Covert timing channels(CTC)exploit network resources to establish hidden communication pathways,posing signi cant risks to data security and policy compliance.erefore,detecting such hidden and dangerous threats remain...Covert timing channels(CTC)exploit network resources to establish hidden communication pathways,posing signi cant risks to data security and policy compliance.erefore,detecting such hidden and dangerous threats remains one of the security challenges. is paper proposes LinguTimeX,a new framework that combines natural language processing with arti cial intelligence,along with explainable Arti cial Intelligence(AI)not only to detect CTC but also to provide insights into the decision process.LinguTimeX performs multidimensional feature extraction by fusing linguistic attributes with temporal network patterns to identify covert channels precisely.LinguTimeX demonstrates strong e ectiveness in detecting CTC across multiple languages;namely English,Arabic,and Chinese.Speci cally,the LSTM and RNN models achieved F1 scores of 90%on the English dataset,89%on the Arabic dataset,and 88%on the Chinese dataset,showcasing their superior performance and ability to generalize across multiple languages. is highlights their robustness in detecting CTCs within security systems,regardless of the language or cultural context of the data.In contrast,the DeepForest model produced F1-scores ranging from 86%to 87%across the same datasets,further con rming its e ectiveness in CTC detection.Although other algorithms also showed reasonable accuracy,the LSTM and RNN models consistently outperformed them in multilingual settings,suggesting that deep learning models might be better suited for this particular problem.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
At present,there is currently a lack of unified standard methods for the determination of antimony content in groundwater in China.The precision and trueness of related detection technologies have not yet been systema...At present,there is currently a lack of unified standard methods for the determination of antimony content in groundwater in China.The precision and trueness of related detection technologies have not yet been systematically and quantitatively evaluated,which limits the effective implementation of environmental monitoring.In response to this key technical gap,this study aimed to establish a standardized method for determining antimony in groundwater using Hydride Generation–Atomic Fluorescence Spectrometry(HG-AFS).Ten laboratories participated in inter-laboratory collaborative tests,and the statistical analysis of the test data was carried out in strict accordance with the technical specifications of GB/T 6379.2—2004 and GB/T 6379.4—2006.The consistency and outliers of the data were tested by Mandel's h and k statistics,the Grubbs test and the Cochran test,and the outliers were removed to optimize the data,thereby significantly improving the reliability and accuracy.Based on the optimized data,parameters such as the repeatability limit(r),reproducibility limit(R),and method bias value(δ)were determined,and the trueness of the method was statistically evaluated.At the same time,precision-function relationships were established,and all results met the requirements.The results show that the lower the antimony content,the lower the repeatability limit(r)and reproducibility limit(R),indicating that the measurement error mainly originates from the detection limit of the method and instrument sensitivity.Therefore,improving the instrument sensitivity and reducing the detection limit are the keys to controlling the analytical error and improving precision.This study provides reliable data support and a solid technical foundation for the establishment and evaluation of standardized methods for the determination of antimony content in groundwater.展开更多
Processing method is one of the maln factors affecting the quality of hon-eysuckIe herbs, which is directIy reIated to economic benefits of farmers. This paper compares various processing methods of honeysuckIe to pro...Processing method is one of the maln factors affecting the quality of hon-eysuckIe herbs, which is directIy reIated to economic benefits of farmers. This paper compares various processing methods of honeysuckIe to provide some references for deveIoping a suitabIe processing procedure that can be used in Iarge-scale pro-duction and improve herb quality.展开更多
基金the National Natural Science Foundation of China(Grant Nos.52308403 and 52079068)the Yunlong Lake Laboratory of Deep Underground Science and Engineering(No.104023005)the China Postdoctoral Science Foundation(Grant No.2023M731998)for funding provided to this work.
文摘The uniaxial compressive strength(UCS)of rocks is a vital geomechanical parameter widely used for rock mass classification,stability analysis,and engineering design in rock engineering.Various UCS testing methods and apparatuses have been proposed over the past few decades.The objective of the present study is to summarize the status and development in theories,test apparatuses,data processing of the existing testing methods for UCS measurement.It starts with elaborating the theories of these test methods.Then the test apparatus and development trends for UCS measurement are summarized,followed by a discussion on rock specimens for test apparatus,and data processing methods.Next,the method selection for UCS measurement is recommended.It reveals that the rock failure mechanism in the UCS testing methods can be divided into compression-shear,compression-tension,composite failure mode,and no obvious failure mode.The trends of these apparatuses are towards automation,digitization,precision,and multi-modal test.Two size correction methods are commonly used.One is to develop empirical correlation between the measured indices and the specimen size.The other is to use a standard specimen to calculate the size correction factor.Three to five input parameters are commonly utilized in soft computation models to predict the UCS of rocks.The selection of the test methods for the UCS measurement can be carried out according to the testing scenario and the specimen size.The engineers can gain a comprehensive understanding of the UCS testing methods and its potential developments in various rock engineering endeavors.
基金supported by the National Key Research and Development Program of China(2023YFE0111800)Shaanxi Livestock and Poultry Breeding Double-chain Fusion Key Project(grant number 2022GD-TSLD-46-0501)。
文摘Background The diverse types and processing methods of grains intricately influence the sites and digestibility of starch digestion,thereby impacting energy utilization.This study aimed to explore the impact of grain variety and processing methods on the net energy(NE)in dairy goats,analyzing these effects at the level of nutrient digestion and metabolism.Methods Eighteen castrated Guanzhong dairy goats(44.25±3.59 kg BW)were randomly divided into 3 groups,each consisting of 6 replicates.The substitution method was employed to determine the NE values of the dry-rolled corn(DRC),dry-rolled wheat(DRW)or steam-flaked corn(SFC,360 g/L).Briefly,two phases were performed.Throughout the basal phase,all goats were fed the same basal diet.In the substitution phase,30%of the basal diet was replaced with DRC,DRW and SFC,respectively.Results In this study,the NE values of the DRC,DRW and SFC were 7.65,7.54 and 7.44 MJ/kg DM,respectively.Compared to the DRC group,the DRW group showed increased digestibility of starch and crude protein(CP).Similarly,the SFC group exhibited increased organic matter(OM)and starch digestibility and a trend towards higher dry matter(DM)digestibility,reduced fecal OM and starch content.Additionally,fecal volatile fatty acid(VFA)concentrations decreased in goats fed SFC.Correspondingly,digestible energy(DE)in the DRW and SFC groups tended to be higher than in the DRC group.DRW increased total VFA concentration compared to DRC,while SFC increased the proportion of propionate and decreased the acetate-to-propionate ratio in the rumen.Both the DRW and SFC diets elevated serum glucose levels.Furthermore,heat increment(HI)and gaseous energy(Gas E)related to fermentation were significantly higher in the DRW and SFC groups compared to the DRC group.Conclusion Our findings indicated that DRW and SFC increased rumen starch fermentation in goats,thereby improving total tract starch digestion and DE.However,DRW and SFC failed to improve NE value due to increased heat and gas energy production from fermentation.Therefore,excessively refined grains processing in the diet of dairy goats does not effectively improve energy efficiency.
基金Supported by National Natural Science Foundation of China(Grant No.52175528)。
文摘In micro milling machining,tool wear directly affects workpiece quality and accuracy,making effective tool wear monitoring a key factor in ensuring product integrity.The use of machine vision-based methods can provide an intuitive and efficient representation of tool wear conditions.However,micro milling tools have non-flat flanks,thin coatings can peel off,and spindle orientation is uncertain during downtime.These factors result in low pixel values,uneven illumination,and arbitrary tool position.To address this,we propose an image-based tool wear monitoring method.It combines multiple algorithms to restore lost pixels due to uneven illumination during segmentation and accurately extract wear areas.Experimental results demonstrate that the proposed algorithm exhibits high robustness to such images,effectively addressing the effects of illumination and spindle orientation.Additionally,the algorithm has low complexity,fast execution time,and significantly reduces the detection time in situ.
基金supported by the Program of the National Natural Science Foundation of China(Grant No.52371055)the Young Elite Scientist Sponsorship Program Cast(Grant No.YESS20200139)+1 种基金the Basic Scientific Research Project of Liaoning Provincial Department of Education(Grant No.JYTMS20230618)Special thanks are due to the instrumental analysis from the Analytical and Testing Centre,Northeastern University.
文摘A principle was proposed for designing a method to seal anodized aluminum used in semiconductor processing apparatuses.Thermodynamic calculations and Fick’s second law were used to reveal trends in the metal ion deposition,deposition product stability,vapor pressures of halides for selected metal ions,the holding temperature,and time.Interactions between ion concentrations and the sealing temperature were also revealed.According to the design principles,anodized aluminum dipped in 1 mM Cr^(3+)ion solution and steam-sealed for 18 h exhibited the highest corrosion resistance when exposed to 5 wt.%HCl solution and HCl gas,verifying the designed results.
基金2023 Liaoning Institute of Science and Technology Doctoral Program Launch fund(No.2307B29).
文摘A clock bias data processing method based on interval correlation coefficient wavelet threshold denoising is suggested for minor mistakes in clock bias data in order to increase the efficacy of satellite clock bias prediction.Wavelet analysis was first used to break down the satellite clock frequency data into several levels,producing high and low frequency coefficients for each layer.The correlation coefficients of the high and low frequency coefficients in each of the three sub-intervals created by splitting these coefficients were then determined.The major noise region—the sub-interval with the lowest correlation coefficient—was chosen for thresholding treatment and noise threshold computation.The clock frequency data was then processed using wavelet reconstruction and reconverted to clock data.Lastly,three different kinds of satellite clock data—RTS,whu-o,and IGS-F—were used to confirm the produced data.Our method enhanced the stability of the Quadratic Polynomial(QP)model’s predictions for the C16 satellite by about 40%,according to the results.The accuracy and stability of the Auto Regression Integrated Moving Average(ARIMA)model improved up to 41.8%and 14.2%,respectively,whilst the Wavelet Neural Network(WNN)model improved by roughly 27.8%and 63.6%,respectively.Although our method has little effect on forecasting IGS-F series satellites,the experimental findings show that it can improve the accuracy and stability of QP,ARIMA,and WNN model forecasts for RTS and whu-o satellite clock bias.
基金Supported by the National Natural Science Foundation of China(32072352)。
文摘In order to improve the quality of 3D printed raspberry preserves after post-processing,microwave ovens combining infrared and microwave methods were utilized.The effects of infrared heating temperature,infrared heating time,microwave power,microwave heating time on the center temperature,moisture content,the chroma(C*),the total color difference(ΔE*),shape fidelity,hardness,and the total anthocyanin content of 3D printed raspberry preserves were analyzed by response surface method(RSM).The results showed that under combining with the two methods,infrared heating improved the fidelity and quality degradation of printed products,while microwave heating enhanced the efficiency of infrared heating.Infrared-microwave combination cooking could maintain relatively stable color appearance and shape of 3D printed raspberry preserves.The AHP–CRITIC hybrid weighting method combined with the response surface test to determine the comprehensive weights of the evaluation indicators optimized the process parameters,and the optimal process parameters were obtained:infrared heating temperature of 190℃,infrared heating time of 10 min and 30 s,microwave power of 300 W,and microwave heating time of 2 min and 6 s.The 3D printed raspberry cooking methods obtained under the optimal conditions seldom had color variation,porous structure,uniform texture,and high shape fidelity,which retained the characteristics of personalized manufacturing by 3D printing.This study could provide a reference for the postprocessing and quality control of 3D cooking methods.
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
基金Supported by National Natural Science Foundation of China(Grant No.U21A20131)Innovative Research Team Development Program of Ministry of Education of China(Grant No.IRT17R83)111 Project(Grant No.B17034)。
文摘To improve braking performance and achieve lightweight in transport equipment,it is necessary to implement overall plastic forming manufacturing of the brake pad baseboard(BPB),which is the core safety component of the brake system.This study presents an innovative multi-DOF envelope forming(MDFEF)process to realize the plastic forming of BPB with thin skin and high reinforcing ribs.The MDFEF principle for BPB,and the design methods for the envelope mold are first presented.Through FE simulations,the behavior of metal flow,uneven growth pattern of reinforcing ribs,evolution of equivalent strain and evolution of forming force in MDFEF of BPB are investigated.To realize MDFEF,an innovative MDFEF equipment driven by parallel linkages is exploited.The force states of linkages in MDFEF are calculated,and the reasonable mold position is determined to reduce the maximum force on the linkages and improve the service performance of MDFEF equipment.The MDFEF experiments of BPB are conducted and qualified BPB is obtained,which demonstrates that the presented MDFEF process and equipment are applicable to manufacture BPB with thin skin and high reinforcing ribs.
基金Funded by the National Nature Science Foundation of China(No.52078321)。
文摘Calcium carboaluminate was successfully prepared by a simple and efficient one-step method,and the effects of temperature,time,raw material ratio,carbonate type and heavy CaCO_(3)particle size on the products were investigated in detail.The results show that increasing the temperature and extending the reaction time can enhance the yield and crystallisation degree of calcium carboaluminate.The proportion of Ca(OH)_(2),Al(OH)_(3)and CaCO_(3)is a pivotal factor in the synthesis of calcium carboaluminate.When the ratio of Ca(OH)_(2),Al(OH)_(3)and CaCO_(3)is 3:2:1,the diffraction peaks of calcium carboaluminate in the products are relatively sharp and strong.Furthermore,the purity and crystallinity of the synthesized calcium carboaluminate are higher when heavy CaCO_(3)with the particle size of 120 mesh is used as the carbonate raw material,in comparison to CO_(2),Na_(2)CO_(3)and light CaCO_(3).As results,a simple and efficient method for the synthesis of calcium carboaluminate is proposed,which will provide a solid experimental foundation and technical support for the industrial application of calcium carboaluminate in marine concrete.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
文摘Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representation,modeling,fusion,computation,and storage.Within this framework,knowledge extraction,as the core component,directly determines KG quality.In military domains,traditional manual curation models face efficiency constraints due to data fragmentation,complex knowledge architectures,and confidentiality protocols.Meanwhile,crowdsourced ontology construction approaches from general domains prove non-transferable,while human-crafted ontologies struggle with generalization deficiencies.To address these challenges,this study proposes an OntologyAware LLM Methodology for Military Domain Knowledge Extraction(LLM-KE).This approach leverages the deep semantic comprehension capabilities of Large Language Models(LLMs)to simulate human experts’cognitive processes in crowdsourced ontology construction,enabling automated extraction of military textual knowledge.It concurrently enhances knowledge processing efficiency and improves KG completeness.Empirical analysis demonstrates that this method effectively resolves scalability and dynamic adaptation challenges in military KG construction,establishing a novel technological pathway for advancing military intelligence development.
基金financial support of the National Natural Science Foundation of China(No.52371103)the Fundamental Research Funds for the Central Universities,China(No.2242023K40028)+1 种基金the Open Research Fund of Jiangsu Key Laboratory for Advanced Metallic Materials,China(No.AMM2023B01).financial support of the Research Fund of Shihezi Key Laboratory of AluminumBased Advanced Materials,China(No.2023PT02)financial support of Guangdong Province Science and Technology Major Project,China(No.2021B0301030005)。
文摘Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.
基金supported by Anhui Provincial Natural Science Foundation(2408085QA030)Natural Science Research Project of Anhui Educational Committee,China(2022AH050825)+3 种基金Medical Special Cultivation Project of Anhui University of Science and Technology(YZ2023H2C008)the Excellent Research and Innovation Team of Anhui Province,China(2022AH010052)the Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology,China(2021yjrc51)Collaborative Innovation Program of Hefei Science Center,CAS,China(2019HSC-CIP006).
文摘In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical model,and its validity was verified using a simple impact test.A crushable discrete element method(DEM)framework is built based on the previously established theoretical model.The tensile strength,which considers the fractal theory,size effect,and Weibull variation,was assigned to each generated particle.The assigned strength is then used for crush detection by comparing it with its maximum tensile stress.Mass conservation is ensured by inserting a series of sub-particles whose total mass was equal to the quality loss.Based on the crushable DEM framework,a numerical simulation of the crushing behavior of a pebble bed with hollow cylindrical geometry under a uniaxial compression test was performed.The results of this investigation showed that the particle withstands the external load by contact and sliding at the beginning of the compression process,and the results confirmed that crushing can be considered an important method of resisting the increasing external load.A relatively regular particle arrangement aids in resisting the load and reduces the occurrence of particle crushing.However,a limit exists to the promotion of resistance.When the strain increases beyond this limit,the distribution of the crushing position tends to be isotropic over the entire pebble bed.The theoretical model and crushable DEM framework provide a new method for exploring the pebble bed in a fusion reactor,considering particle crushing.
基金funded by the Beijing Engineering Research Center of Electric Rail Transportation.
文摘Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision process is formulated as a Markov decision process(MDP)model to maximize the modularity.Corresponding key partitioning constraints on parallel restoration are considered.Second,based on the partitioning objective and constraints,the reward function of the partitioning MDP model is set by adopting a relative deviation normalization scheme to reduce mutual interference between the reward and penalty in the reward function.The soft bonus scaling mechanism is introduced to mitigate overestimation caused by abrupt jumps in the reward.Then,the deep Q network method is applied to solve the partitioning MDP model and generate partitioning schemes.Two experience replay buffers are employed to speed up the training process of the method.Finally,case studies on the IEEE 39-bus test system demonstrate that the proposed method can generate a high-modularity partitioning result that meets all key partitioning constraints,thereby improving the parallelism and reliability of the restoration process.Moreover,simulation results demonstrate that an appropriate discount factor is crucial for ensuring both the convergence speed and the stability of the partitioning training.
基金supported by the National Key Research and Develop-ment Program(No.2022YFC3701103)the National Natural Science Foundation of China(Nos.42130714 and 41931287).
文摘The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environment and con-tribute to global climate change.However,there remain considerable research gaps in the accurate measurement of NCGs emissions from agricultural fields,hindering the development of effective emission reduction strategies.We improved an open-top dynamic chambers(OTDCs)system and evaluated the performance by comparing the measured and given fluxes of the NCGs.The results showed that the measured fluxes of NO,N_(2)O and NH_(3)were 1%,2%and 7%lower than the given fluxes,respectively.For the determination of NH_(3) concentration,we employed a stripping coil-ion chromatograph(SC-IC)analytical technique,which demonstrated an absorption efficiency for atmospheric NH_(3) exceeding 96.1%across sampling durations of 6 to 60 min.In the summer maize season,we utilized the OTDCs system to measure the exchange fluxes of NO,NH_(3),and N_(2)O from the soil in the North China Plain.Substantial emissions of NO,NH_(3) and N_(2)O were recorded following fertilization,with peaks of 107,309,1239 ng N/(m^(2)·s),respectively.Notably,significant NCGs emissions were observed following sus-tained heavy rainfall one month after fertilization,particularly with NH_(3) peak being 4.5 times higher than that observed immediately after fertilization.Our results demonstrate that the OTDCs system accurately reflects the emission characteristics of soil NCGs and meets the requirements for long-term and continuous flux observation.
基金supported by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia,Grant No.KFU250098.
文摘In this study,an automated multimodal system for detecting,classifying,and dating fruit was developed using a two-stage YOLOv11 pipeline.In the first stage,the YOLOv11 detection model locates individual date fruits in real time by drawing bounding boxes around them.These bounding boxes are subsequently passed to a YOLOv11 classification model,which analyzes cropped images and assigns class labels.An additional counting module automatically tallies the detected fruits,offering a near-instantaneous estimation of quantity.The experimental results suggest high precision and recall for detection,high classification accuracy(across 15 classes),and near-perfect counting in real time.This paper presents a multi-stage pipeline for date fruit detection,classification,and automated counting,employing YOLOv11-based models to achieve high accuracy while maintaining real-time throughput.The results demonstrated that the detection precision exceeded 90%,the classification accuracy approached 92%,and the counting module correlated closely with the manual tallies.These findings confirm the potential of reducing manual labour and enhancing operational efficiency in post-harvesting processes.Future studies will include dataset expansion,user-centric interfaces,and integration with harvesting robotics.
基金This study is financed by the European Union-NextGenerationEU,through the National Recovery and Resilience Plan of the Republic of Bulgaria,Project No.BG-RRP-2.013-0001.
文摘Covert timing channels(CTC)exploit network resources to establish hidden communication pathways,posing signi cant risks to data security and policy compliance.erefore,detecting such hidden and dangerous threats remains one of the security challenges. is paper proposes LinguTimeX,a new framework that combines natural language processing with arti cial intelligence,along with explainable Arti cial Intelligence(AI)not only to detect CTC but also to provide insights into the decision process.LinguTimeX performs multidimensional feature extraction by fusing linguistic attributes with temporal network patterns to identify covert channels precisely.LinguTimeX demonstrates strong e ectiveness in detecting CTC across multiple languages;namely English,Arabic,and Chinese.Speci cally,the LSTM and RNN models achieved F1 scores of 90%on the English dataset,89%on the Arabic dataset,and 88%on the Chinese dataset,showcasing their superior performance and ability to generalize across multiple languages. is highlights their robustness in detecting CTCs within security systems,regardless of the language or cultural context of the data.In contrast,the DeepForest model produced F1-scores ranging from 86%to 87%across the same datasets,further con rming its e ectiveness in CTC detection.Although other algorithms also showed reasonable accuracy,the LSTM and RNN models consistently outperformed them in multilingual settings,suggesting that deep learning models might be better suited for this particular problem.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
基金supported by the National Natural Science Foundation of China(Project No.42307555).
文摘At present,there is currently a lack of unified standard methods for the determination of antimony content in groundwater in China.The precision and trueness of related detection technologies have not yet been systematically and quantitatively evaluated,which limits the effective implementation of environmental monitoring.In response to this key technical gap,this study aimed to establish a standardized method for determining antimony in groundwater using Hydride Generation–Atomic Fluorescence Spectrometry(HG-AFS).Ten laboratories participated in inter-laboratory collaborative tests,and the statistical analysis of the test data was carried out in strict accordance with the technical specifications of GB/T 6379.2—2004 and GB/T 6379.4—2006.The consistency and outliers of the data were tested by Mandel's h and k statistics,the Grubbs test and the Cochran test,and the outliers were removed to optimize the data,thereby significantly improving the reliability and accuracy.Based on the optimized data,parameters such as the repeatability limit(r),reproducibility limit(R),and method bias value(δ)were determined,and the trueness of the method was statistically evaluated.At the same time,precision-function relationships were established,and all results met the requirements.The results show that the lower the antimony content,the lower the repeatability limit(r)and reproducibility limit(R),indicating that the measurement error mainly originates from the detection limit of the method and instrument sensitivity.Therefore,improving the instrument sensitivity and reducing the detection limit are the keys to controlling the analytical error and improving precision.This study provides reliable data support and a solid technical foundation for the establishment and evaluation of standardized methods for the determination of antimony content in groundwater.
基金Supported by National Key Technology Research and Development Program during the12thFive-Year Plan Period(2011BAI06B01,2011BAC02B04)Special Fund for Traditional Chinese Medicine Scientific Research(201407002)+1 种基金Science and Technology Development Program of Shandong Province(2014GSF119018)Traditional Chinese Medicine Science and Technology Development Program of Shandong Province(2011Z-003-2)~~
文摘Processing method is one of the maln factors affecting the quality of hon-eysuckIe herbs, which is directIy reIated to economic benefits of farmers. This paper compares various processing methods of honeysuckIe to provide some references for deveIoping a suitabIe processing procedure that can be used in Iarge-scale pro-duction and improve herb quality.