This paper analyzes a problem processing mechanism in a new collaboration system between the main manufacturer and the supplier in the"main manufacturer-supplier"mode,which has been widely applied in the col...This paper analyzes a problem processing mechanism in a new collaboration system between the main manufacturer and the supplier in the"main manufacturer-supplier"mode,which has been widely applied in the collaborative development management of the complex product.This paper adopts the collaboration theory,the evolutionary game theory and numerical simulation to analyze the decision-making mechanism where one upstream supplier and one downstream manufacturer must process an unpredicted problem without any advance contract in common.Results show that both players'decision-makings are in some correlation with the initial state,income impact coefficients,and dealing cost.It is worth noting that only the initial state influences the final decision,while income impact coefficients and dealing cost just influence the decision process.This paper shows reasonable and practical suggestions for the manufacturer and supplier in a new collaboration system for the first time and is dedicated to the managerial implications on reducing risks of processing problems.展开更多
Objective To study how to improve and perfect the information platform and processing mechanism of drug shortages in China.Methods By searching the relevant policies from official websites of FDA,European Medicines Ag...Objective To study how to improve and perfect the information platform and processing mechanism of drug shortages in China.Methods By searching the relevant policies from official websites of FDA,European Medicines Agency(EMA),Health Canada(HC)and National Health Commission,the good experience of the United States,the European Union and Canada in the construction of information platform and processing mechanism of drug shortages was summarized for reference in China.Results and Conclusion China has initially established the processing mechanism of drug shortages,but the platform construction should be improved,and the information disclosure of drug shortages varies from province to province.We should improve the information platform of drug shortages,strengthen the disclosure and communication of information,enrich the processing tools and measures after the drug shortages occurs,and strengthen the cooperation with relevant associations and other non-governmental departments.展开更多
In response to the new mechanism of direct vortex melting reduction of vanadium–titanium magnetite,the reaction control mechanism and the migration regularity of valuable components in the process of direct melting r...In response to the new mechanism of direct vortex melting reduction of vanadium–titanium magnetite,the reaction control mechanism and the migration regularity of valuable components in the process of direct melting reduction were investigated using kinetic empirical equation by fitting and combining with X-ray diffraction,X-ray fluorescence,scanning electron microscopy,energy-dispersive spectrometry,and optical microscopy.The results show that iron reduction is controlled by the mass transfer process of(FeOx)in the slag,while vanadium reduction is controlled by both the mass transfer of(VOx)in the slag and the mass transfer of[V]in the molten iron,and the slag–metal interfacial reaction is the only pathway for vanadium reduction.The reduction of iron and vanadium is an obvious first-order reaction,with activation energy of 101.6051 and 197.416 kJ mol^(−1),respectively.Increasing the vortex rate and reaction temperature is beneficial to improving the reaction rate and reduction efficiency.The mineral phase variation of iron and vanadium in the slag during the reduction process is Fe_(2)O_(3)→Fe_(3)O_(4)/FeV_(2)O_(4)→FeTiO_(3) and FeV_(2)O_(4)→MgV_(2)O_(5);titanium in slag is mainly in the form of Mg_(x)Ti_(3−x)O_(5)(0≤x≤1)and CaTiO_(3).As the reaction time went on,the molar ratio(nTi/nMg)in Mg_(x)Ti_(3−x)O_(5)(0≤x≤1)and the Ti2O_(3) content in the slag gradually went up,while the area proportion of Mg_(x)Ti_(3−x)O_(5)(0≤x≤1)went up and then down,and the porosity of the slag and the grain size of Mg_(x)Ti_(3−x)O_(5)(0≤x≤1)got smaller.展开更多
Aiming at solving the problem of low resolu- tion and visual blur in infrared imaging, a super-resolution infrared image reconstruction method using human vision processing mechanism (HVPM) was proposed. This method...Aiming at solving the problem of low resolu- tion and visual blur in infrared imaging, a super-resolution infrared image reconstruction method using human vision processing mechanism (HVPM) was proposed. This method combined a mechanism of vision lateral inhibition with an algorithm projection onto convex sets (POCS) reconstruction, the improved vision lateral inhibition network was utilized to enhance the contrast between object and background of low-resolution image sequences, then POCS algorithm was adopted to reconstruct super- resolution image. Experimental results showed that the proposed method can significantly improve the visual effect of image, whose contrast and information entropy of reconstructed infrared images were improved by approxi- mately 5 times and 1.6 times compared with traditional POCS reconstruction algorithm, respectively.展开更多
This study sought to test the processing of three types of sentences in Chinese, as correct sentences, semantic violation sentences, and sentences containing semantic and syntactic violations, based on the following s...This study sought to test the processing of three types of sentences in Chinese, as correct sentences, semantic violation sentences, and sentences containing semantic and syntactic violations, based on the following sentence pattern: "subject (noun) + yi/gang/zheng + predicate (verb)". Event-related potentials on the scalp were recorded using 32-channel electroencephalography. Compared with correct sentences, target words elicited an early left anterior negativity (N400) and a later positivity (P600) over frontal, central and temporal sites in sentences involving semantic violations. In addition, when sentences contained both semantic and syntactic violations, the target words elicited a greater N400 and P600 distributed in posterior brain areas. These results indicate that Chinese sentence comprehension involves covert grammar processes.展开更多
For Gu-Ag alloy, an important parameter called workability in the forming process of materials can be evaluated by processing maps yielded from the stress-strain data generated by hot compression tests at temperatures...For Gu-Ag alloy, an important parameter called workability in the forming process of materials can be evaluated by processing maps yielded from the stress-strain data generated by hot compression tests at temperatures of 700-850 °C and strain rates of 0.01-10 s-1. And at the true strain of 0.15, 0.35 and 0.55, respectively, the responses of strain-rate sensitivity, power dissipation efficiency and instability parameter to temperature and strain rate were studied. Instability maps and power dissipation maps were superimposed to form processing maps, which reveal the determinate regions where individual metallurgical processes occur and the limiting conditions of flow instability regions. Furthermore, the optimal processing parameters for bulk metal working are identified clearly by the processing maps.展开更多
The carbonization processing(Paozhi)in traditional Chinese medicine(TCM)represents a unique pharmaceutical technology where thermal modification of herbal materials enhances specific therapeutic properties,particularl...The carbonization processing(Paozhi)in traditional Chinese medicine(TCM)represents a unique pharmaceutical technology where thermal modification of herbal materials enhances specific therapeutic properties,particularly hemostatic and antioxidant effects.Despite centuries of empirical applications,the scientific basis underlying these enhanced bioactivities remains poorly characterized,particularly regarding the transformation and functionalization of active components during high-temperature carbonization.This study systematically investigates carbon dots(CDs),emerging carbon-based nanomaterials spontaneously formed during the carbonization process,as potential key bioactive constituents mediating the therapeutic actions of carbonized TCM.Through multidisciplinary analysis of pyrolysis-driven CD formation mechanisms,nanostructural evolution,and surface chemistry modulation,we demonstrate that CDs exhibit size-dependent fluorescence properties and redox-active surface functional groups that correlate with their observed biological effects.Crucially,the study establishes quantitative structure-activity relationships between CDs’quantum confinement characteristics(2–8 nm diameter),oxygencontaining surface moieties(carboxyl,hydroxyl groups),and their procoagulant/antioxidant capacities.By bridging traditional processing knowledge with nanotechnology insights,this work not only deciphers the“black box”of thermal processing in TCM but also proposes a nano-biointerface paradigm for understanding Paozhi mechanisms.The findings advance quality control strategies through CD-based spectral fingerprinting and open new avenues for developing nanoscale TCM derivatives with optimized therapeutic profiles.展开更多
Halogenated aromatic compounds have attracted increasing concerns due to their toxicity and persistency in the environment, and dehalogenation is one of the promising treatment and detoxification methods. Herein, we s...Halogenated aromatic compounds have attracted increasing concerns due to their toxicity and persistency in the environment, and dehalogenation is one of the promising treatment and detoxification methods. Herein, we systematically studied the debromination efficiency and mechanism of para-bromophenol(4-BP) by a recently developed UV/sulfite process. 4-BP underwent rapid degradation with the kinetics accelerated with the increasing sulfite concentration, pH(6.1–10) and temperature, whereas inhibited by dissolved oxygen and organic solvents. The apparent activation energy was estimated to be 27.8 kJ/mol. The degradation mechanism and pathways of 4-BP were explored by employing N2O and nitrate as the electron scavengers and liquid chromatography/mass spectrometry to identify the intermediates. 4-BP degradation proceeded via at least two pathways including direct photolysis and hydrated electron-induced debromination. The contributions of both pathways were distinguished by quantifying the quantum yields of 4-BP via direct photolysis and hydrated electron production in the system. 4-BP could be readily completely debrominated with all the substituted Br released as Br-, and the degradation pathways were also proposed. This study would shed new light on the efficient dehalogenation of brominated aromatics by using the UV/sulfite process.展开更多
Surface defects introduced by conventional mechanical processing methods can induce irreversible damage and reduce the service life of optics applied in high-power lasers.Compared to mechanical processing,laser polish...Surface defects introduced by conventional mechanical processing methods can induce irreversible damage and reduce the service life of optics applied in high-power lasers.Compared to mechanical processing,laser polishing with moving beam spot is a noncontact processing method,which is able to form a defect-free surface.This work aims to explore the mechanism of forming a smooth,defect-free fused silica surface by high-power density laser polishing with coupled multiple beams.The underlying mechanisms of laser polishing was revealed by numerical simulations and the theoretical results were verified by experiments.The simulated polishing depth and machined surface morphology were in close agreement with the experimental results.To obtain the optimized polishing quality,the effects of laser polishing parameters(e.g.overlap rate,pulse width and polishing times)on the polishing quality were experimentally investigated.It was found that the processing efficiency of fused silica materials by carbon dioxide(CO2)laser polishing could reach 8.68 mm2 s−1,and the surface roughness(Ra)was better than 25 nm.Besides,the cracks on pristine fused silica surfaces introduced by initial grinding process were completely removed by laser polishing to achieve a defect-free surface.The maximum laser polishing rate can reach 3.88μm s−1,much higher than that of the traditional mechanical polishing methods.The rapid CO2 laser polishing can effectively achieve smooth,defect-free surface,which is of great significance to improve the surface quality of fused silica optics applied in high-power laser facilities.展开更多
1 Introduction Physical and numerical models are constructed to investigate the evolution and mechanism of salt migration driven by tectonic processes.In recent years,we have designed and ran series of models to simul...1 Introduction Physical and numerical models are constructed to investigate the evolution and mechanism of salt migration driven by tectonic processes.In recent years,we have designed and ran series of models to simulate salt展开更多
Amounts of lithium-containing salt lake brine resources are widely distributed in the four provinces named Qinghai,Tibet,Inner Mongolia and Xinjiang province,especially the salt lakes in Qinghai-Tibet Plateau are abun...Amounts of lithium-containing salt lake brine resources are widely distributed in the four provinces named Qinghai,Tibet,Inner Mongolia and Xinjiang province,especially the salt lakes in Qinghai-Tibet Plateau are abundant of展开更多
Since the launch of the economic reform and opening to the outside world, China has seen rapid growth in its export of mechanical and electrical products, with its export
Debris flow is one of the major secondary mountain hazards following the earthquake. This study explores the dynamic initiation mechanism of debris flows based on the strength reduction of soils through static and dyn...Debris flow is one of the major secondary mountain hazards following the earthquake. This study explores the dynamic initiation mechanism of debris flows based on the strength reduction of soils through static and dynamic triaxial tests. A series of static and dynamic triaxial tests were conducted on samples in the lab. The samples were prepared according to different grain size distribution, degree of saturation and earthquake magnitudes. The relations of dynamic shear strength, degree of saturation, and number of cycles are summarized through analyzing experimental results. The findings show that the gravelly soil with a wide and continuous gradation has a critical degree of saturation of approximately 87%, above which debris flows will be triggered by rainfall, while the debris flow will be triggered at a critical degree of saturation of about 73% under the effect of rainfall and earthquake(M>6.5). Debris flow initiation is developed in the humidification process, and the earthquake provides energy for triggering debris flows. Debris flows are more likely to be triggered at the relatively low saturation under dynamic loading than under static loading. The resistance of debris flow triggering relies more on internal frication angle than soil cohesion under the effect of rainfall and earthquake. The conclusions provide an experimental analysis method for dynamic initiation mechanism of debris flows.展开更多
A diagnostic study is performed in the paper on the process of typhoon Norris (1980) transforming into an ex-tratropical cyclone after its landing over Southeast China. The main findings are as follows:The changes of ...A diagnostic study is performed in the paper on the process of typhoon Norris (1980) transforming into an ex-tratropical cyclone after its landing over Southeast China. The main findings are as follows:The changes of kinetic energy are mainly attributed to the generation due to non-divergent wind. During the early stage of the typhoon landing, there exits only a small quantity of kinetic energy exchanging with the environment. And after it is transformed into an extratropical cyclone, a large amount of kinetic energy is exported from the system toward the environment.The horizontal and vertical flux-divergence terms of eddy available potenlial energy are the prominent sinks in the budgets of eddy kinetic energy. The generations of eddy kinetic energy due to both the barotropic and baroclinic processes are source terms. The former is remarkable during the initial stage. But after the depression is transformed into an extratropical cyclone, the roles of the generation by the barotropic and baroclinic processes are reversed, 1. e. , the latter has become more significant than the former.Diabatic heating is the most dominant heat source. The terms of vertical heat flux by cumulus and large-scale motion are the major sinks. And the latter is prominent after the system is transformed into an extratropical cycfone.展开更多
Under steady-state conditions, the general currents of EE reactions at disk,hemispherical and spherical microelectrodes are derived.From these equations, some electrode reaction parameters can be very simply obtained.
Background:To promote the quality evaluation,clarify the processing mechanism and distinguish origins of Corni Fructus(cornus)from different regions.Methods:This study developed a high performance liquid chromatograph...Background:To promote the quality evaluation,clarify the processing mechanism and distinguish origins of Corni Fructus(cornus)from different regions.Methods:This study developed a high performance liquid chromatography method for simultaneous determination of 5-hydroxymethylfurfural,2 phenolic acids and 4 iridoid glycosides and the reference fingerprint of cornus from different regions.In addition,the feedforward neural network model provided a pattern classification of sample regions.Results:The content of morroniside and loganin were the highest in all raw cornus samples ranging from 9.45μg/mg to 16.3μg/mg and 6.64μg/mg to 13.7μg/mg,respectively.The level of sweroside in raw cornus from Henan(0.83μg/mg^(-1).39μg/mg)and Zhejiang(0.64μg/mg^(-1).17μg/mg)were greater than other origins.After wine-processing,the glucose or fructose were dehydrated to increase the levels of 5-hydroxymethylfurfural.The C-4 position of-COOCH3 of hot-sensitive iridoid glycosides was hydrolyzed to generate-COOH as stable components.Polyphenol derivatives may be degraded to increase the content of phenolic acid.Subsequently,an excellent feedforward neural network model for identification of raw cornus and wine-prepared cornus was established which could distinguish the sample origins.Conclusion:This work provided a trustworthy method to evaluate the quality and distinguish the sources of cornus.Meanwhile,the clear processing mechanism provided a scientific foundation for controlling the cornus quality during wine-processing.展开更多
Three dimensional thermal-mechanical coupled elasto-plastic FEM has been used for simulation of round to oval single pass rolling. The analysis was conducted using MARC/AUTOFORCE1. 2 code. The material is assumed to b...Three dimensional thermal-mechanical coupled elasto-plastic FEM has been used for simulation of round to oval single pass rolling. The analysis was conducted using MARC/AUTOFORCE1. 2 code. The material is assumed to be elasto-plastic and it obey the Von Mises yield criterion and Prandtl- Reuss rule. Deformation of the workpiece is simulated in a step-by-step manner,updating the coordinates of material points and the property after each step, so that both nonsteady-state and stendy-state deformation can be simulated. The heat transfter between the workpiece, the rolls, and enviroment and the heat generation due to plastic work and friction force, are considered in the analys- is.Predicted the deformation shape of the workpiece, distributions of strains, stresses, strain rates and temperatures, roll-separating force and roll torque are presented.展开更多
A successful mechanical property data-driven prediction model is the core of the optimal design of hot rolling process for hot-rolled strips. However, the original industrial data, usually unbalanced, are inevitably m...A successful mechanical property data-driven prediction model is the core of the optimal design of hot rolling process for hot-rolled strips. However, the original industrial data, usually unbalanced, are inevitably mixed with fluctuant and abnormal values. Models established on the basis of the data without data processing can cause misleading results, which cannot be used for the optimal design of hot rolling process. Thus, a method of industrial data processing of C-Mn steel was proposed based on the data analysis. The Bayesian neural network was employed to establish the reliable mechanical property prediction models for the optimal design of hot rolling process. By using the multi-objective optimization algorithm and considering the individual requirements of costumers and the constraints of the equipment, the optimal design of hot rolling process was successfully applied to the rolling process design for Q345B steel with 0.017% Nb and 0.046% Ti content removed. The optimal process design results were in good agreement with the industrial trials results, which verify the effectiveness of the optimal design of hot rolling process.展开更多
Due to the easily controllable interlayer anions,metal cation composition proportion and thickness,which is beneficial to modify surface chemical state and tune bandgap,layered double hydroxides(LDHs)have great promis...Due to the easily controllable interlayer anions,metal cation composition proportion and thickness,which is beneficial to modify surface chemical state and tune bandgap,layered double hydroxides(LDHs)have great promising potential for photocatalytic applications.In this study,we have successfully synthesized the ZnAl–LDH intercalated the single anion between ZnAl cationic interlayer without anionic impurities by using a facile calcining and reconstructing routes.The electron structure and surface chemical state of the prepared products have been investigated by combining the DFT calculation and experimental characterization methods.UV–vis DRS was used to certify the light absorption of the prepared products,and we performed the DFT calculation to demonstrate the density of state and activation of reactant.These results suggested that the ZnAl–LDH–CO3 possessed the more proper band structure and superior ability to activate NO and O2 for accelerating the photocatalytic NO oxidation activity.Moreover,the in situ DRIFTS with dynamically monitoring intermediates and products over the ZnAl–LDH–CO3 was adopted to declare the photocatalytic NO oxidized process during the photocatalytic reaction process.This work illustrated the influence of different interlayer anions to the electron structure and surface chemical state of ZnAl–LDH structure through the experimental verification combined DFT calculation and the photocatalytic NO oxidized process via in situ DRIFTS analyzing,which would provide a novel way to design and fabricate the efficient photocatalysis,and understand the reaction process.展开更多
The effects of different aging processes on the microstructure and mechanical properties of a novel Al-Cu-Li alloy have been investigated by X-ray diffraction, scanning electron microscopy and transmission electron mi...The effects of different aging processes on the microstructure and mechanical properties of a novel Al-Cu-Li alloy have been investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. It is found that the tensile properties of a novel Al-Cu-Li alloy are sensitive to aging processes, which correspond to different microstructures. σ(Al_5Cu_6Mg_2) and T_1(Al_2CuLi) phases are the major precipitates for the alloy in T6 aging condition(165 ℃/60 h). After duplex aging condition(150 ℃/24 h + 180 ℃/12 h), σ, θ'(Al_2Cu) and T_1 phases are detected. Only the T_1 phases can be found in the T8 state alloy(6% pre-strain+135 ℃/60 h). The failure modes of alloy in T6 and duplex aging conditions are dimple-intergranular fracture, while typical quasi-cleavage fracture in T8 condition.展开更多
基金supported by the National Natural Science Foundation of China(7117111271502073)。
文摘This paper analyzes a problem processing mechanism in a new collaboration system between the main manufacturer and the supplier in the"main manufacturer-supplier"mode,which has been widely applied in the collaborative development management of the complex product.This paper adopts the collaboration theory,the evolutionary game theory and numerical simulation to analyze the decision-making mechanism where one upstream supplier and one downstream manufacturer must process an unpredicted problem without any advance contract in common.Results show that both players'decision-makings are in some correlation with the initial state,income impact coefficients,and dealing cost.It is worth noting that only the initial state influences the final decision,while income impact coefficients and dealing cost just influence the decision process.This paper shows reasonable and practical suggestions for the manufacturer and supplier in a new collaboration system for the first time and is dedicated to the managerial implications on reducing risks of processing problems.
文摘Objective To study how to improve and perfect the information platform and processing mechanism of drug shortages in China.Methods By searching the relevant policies from official websites of FDA,European Medicines Agency(EMA),Health Canada(HC)and National Health Commission,the good experience of the United States,the European Union and Canada in the construction of information platform and processing mechanism of drug shortages was summarized for reference in China.Results and Conclusion China has initially established the processing mechanism of drug shortages,but the platform construction should be improved,and the information disclosure of drug shortages varies from province to province.We should improve the information platform of drug shortages,strengthen the disclosure and communication of information,enrich the processing tools and measures after the drug shortages occurs,and strengthen the cooperation with relevant associations and other non-governmental departments.
基金supported by the National Natural Science Foundation of China(U1908225)the Fundamental Research Funds for Central Universities(N2225012 and N232405-06).
文摘In response to the new mechanism of direct vortex melting reduction of vanadium–titanium magnetite,the reaction control mechanism and the migration regularity of valuable components in the process of direct melting reduction were investigated using kinetic empirical equation by fitting and combining with X-ray diffraction,X-ray fluorescence,scanning electron microscopy,energy-dispersive spectrometry,and optical microscopy.The results show that iron reduction is controlled by the mass transfer process of(FeOx)in the slag,while vanadium reduction is controlled by both the mass transfer of(VOx)in the slag and the mass transfer of[V]in the molten iron,and the slag–metal interfacial reaction is the only pathway for vanadium reduction.The reduction of iron and vanadium is an obvious first-order reaction,with activation energy of 101.6051 and 197.416 kJ mol^(−1),respectively.Increasing the vortex rate and reaction temperature is beneficial to improving the reaction rate and reduction efficiency.The mineral phase variation of iron and vanadium in the slag during the reduction process is Fe_(2)O_(3)→Fe_(3)O_(4)/FeV_(2)O_(4)→FeTiO_(3) and FeV_(2)O_(4)→MgV_(2)O_(5);titanium in slag is mainly in the form of Mg_(x)Ti_(3−x)O_(5)(0≤x≤1)and CaTiO_(3).As the reaction time went on,the molar ratio(nTi/nMg)in Mg_(x)Ti_(3−x)O_(5)(0≤x≤1)and the Ti2O_(3) content in the slag gradually went up,while the area proportion of Mg_(x)Ti_(3−x)O_(5)(0≤x≤1)went up and then down,and the porosity of the slag and the grain size of Mg_(x)Ti_(3−x)O_(5)(0≤x≤1)got smaller.
文摘Aiming at solving the problem of low resolu- tion and visual blur in infrared imaging, a super-resolution infrared image reconstruction method using human vision processing mechanism (HVPM) was proposed. This method combined a mechanism of vision lateral inhibition with an algorithm projection onto convex sets (POCS) reconstruction, the improved vision lateral inhibition network was utilized to enhance the contrast between object and background of low-resolution image sequences, then POCS algorithm was adopted to reconstruct super- resolution image. Experimental results showed that the proposed method can significantly improve the visual effect of image, whose contrast and information entropy of reconstructed infrared images were improved by approxi- mately 5 times and 1.6 times compared with traditional POCS reconstruction algorithm, respectively.
基金the Foundation of National Social Sciences hosted by Professor Huanhai Fang, No. 03BYY013
文摘This study sought to test the processing of three types of sentences in Chinese, as correct sentences, semantic violation sentences, and sentences containing semantic and syntactic violations, based on the following sentence pattern: "subject (noun) + yi/gang/zheng + predicate (verb)". Event-related potentials on the scalp were recorded using 32-channel electroencephalography. Compared with correct sentences, target words elicited an early left anterior negativity (N400) and a later positivity (P600) over frontal, central and temporal sites in sentences involving semantic violations. In addition, when sentences contained both semantic and syntactic violations, the target words elicited a greater N400 and P600 distributed in posterior brain areas. These results indicate that Chinese sentence comprehension involves covert grammar processes.
基金Project(CSTC2009BA4065) supported by the Chongqing Natural Science Foundation,China
文摘For Gu-Ag alloy, an important parameter called workability in the forming process of materials can be evaluated by processing maps yielded from the stress-strain data generated by hot compression tests at temperatures of 700-850 °C and strain rates of 0.01-10 s-1. And at the true strain of 0.15, 0.35 and 0.55, respectively, the responses of strain-rate sensitivity, power dissipation efficiency and instability parameter to temperature and strain rate were studied. Instability maps and power dissipation maps were superimposed to form processing maps, which reveal the determinate regions where individual metallurgical processes occur and the limiting conditions of flow instability regions. Furthermore, the optimal processing parameters for bulk metal working are identified clearly by the processing maps.
基金supported by the Natural Science Foundation of Shandong Province(No.ZR2023ZD25)the Shandong Province Chinese Medicine Science and Technology Development Project(No.Q-2023107)the Taishan Scholars Project in Shandong Province(Nos.tstp202306 and tsqn202408246).
文摘The carbonization processing(Paozhi)in traditional Chinese medicine(TCM)represents a unique pharmaceutical technology where thermal modification of herbal materials enhances specific therapeutic properties,particularly hemostatic and antioxidant effects.Despite centuries of empirical applications,the scientific basis underlying these enhanced bioactivities remains poorly characterized,particularly regarding the transformation and functionalization of active components during high-temperature carbonization.This study systematically investigates carbon dots(CDs),emerging carbon-based nanomaterials spontaneously formed during the carbonization process,as potential key bioactive constituents mediating the therapeutic actions of carbonized TCM.Through multidisciplinary analysis of pyrolysis-driven CD formation mechanisms,nanostructural evolution,and surface chemistry modulation,we demonstrate that CDs exhibit size-dependent fluorescence properties and redox-active surface functional groups that correlate with their observed biological effects.Crucially,the study establishes quantitative structure-activity relationships between CDs’quantum confinement characteristics(2–8 nm diameter),oxygencontaining surface moieties(carboxyl,hydroxyl groups),and their procoagulant/antioxidant capacities.By bridging traditional processing knowledge with nanotechnology insights,this work not only deciphers the“black box”of thermal processing in TCM but also proposes a nano-biointerface paradigm for understanding Paozhi mechanisms.The findings advance quality control strategies through CD-based spectral fingerprinting and open new avenues for developing nanoscale TCM derivatives with optimized therapeutic profiles.
基金supported by the National Natural Science Foundation of China(No.21307057)the Natural Science Foundation of Jiangsu Province(No.BK20130577)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(SRFDP,No.20130091120014)the Fundamental Research Funds for the Central Universities(No.20620140128)
文摘Halogenated aromatic compounds have attracted increasing concerns due to their toxicity and persistency in the environment, and dehalogenation is one of the promising treatment and detoxification methods. Herein, we systematically studied the debromination efficiency and mechanism of para-bromophenol(4-BP) by a recently developed UV/sulfite process. 4-BP underwent rapid degradation with the kinetics accelerated with the increasing sulfite concentration, pH(6.1–10) and temperature, whereas inhibited by dissolved oxygen and organic solvents. The apparent activation energy was estimated to be 27.8 kJ/mol. The degradation mechanism and pathways of 4-BP were explored by employing N2O and nitrate as the electron scavengers and liquid chromatography/mass spectrometry to identify the intermediates. 4-BP degradation proceeded via at least two pathways including direct photolysis and hydrated electron-induced debromination. The contributions of both pathways were distinguished by quantifying the quantum yields of 4-BP via direct photolysis and hydrated electron production in the system. 4-BP could be readily completely debrominated with all the substituted Br released as Br-, and the degradation pathways were also proposed. This study would shed new light on the efficient dehalogenation of brominated aromatics by using the UV/sulfite process.
基金supported by the National Natural Science Foundation of China(Grant Nos.51775147,51705105)Science Challenge Project(Grant No.TZ2016006-0503-01)+3 种基金Young Elite Scientists Sponsorship Program by CAST(Grant No.2018QNRC001)China Postdoctoral Science Foundation funded project(Grant Nos.2018T110288,2017M621260)Self-Planned Task(Grant Nos.SKLRS201718A,SKLRS201803B)of State Key Laboratory of Robotics and System(HIT)Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.2019053).
文摘Surface defects introduced by conventional mechanical processing methods can induce irreversible damage and reduce the service life of optics applied in high-power lasers.Compared to mechanical processing,laser polishing with moving beam spot is a noncontact processing method,which is able to form a defect-free surface.This work aims to explore the mechanism of forming a smooth,defect-free fused silica surface by high-power density laser polishing with coupled multiple beams.The underlying mechanisms of laser polishing was revealed by numerical simulations and the theoretical results were verified by experiments.The simulated polishing depth and machined surface morphology were in close agreement with the experimental results.To obtain the optimized polishing quality,the effects of laser polishing parameters(e.g.overlap rate,pulse width and polishing times)on the polishing quality were experimentally investigated.It was found that the processing efficiency of fused silica materials by carbon dioxide(CO2)laser polishing could reach 8.68 mm2 s−1,and the surface roughness(Ra)was better than 25 nm.Besides,the cracks on pristine fused silica surfaces introduced by initial grinding process were completely removed by laser polishing to achieve a defect-free surface.The maximum laser polishing rate can reach 3.88μm s−1,much higher than that of the traditional mechanical polishing methods.The rapid CO2 laser polishing can effectively achieve smooth,defect-free surface,which is of great significance to improve the surface quality of fused silica optics applied in high-power laser facilities.
基金supported by China Geological Survey Bureau potash resources investigation and evaluation project (1212011085524)NSFC projects (40872134, 41272227 )
文摘1 Introduction Physical and numerical models are constructed to investigate the evolution and mechanism of salt migration driven by tectonic processes.In recent years,we have designed and ran series of models to simulate salt
基金Financial support from the State Surface Project of National Natural Science of China (21276194)the Specialized Research Fund for the Doctoral Program of Chinese Higher Education (20101208110003)the Key Pillar Program of Tianjin Municipal Science and Technology (11ZCKGX02800)
文摘Amounts of lithium-containing salt lake brine resources are widely distributed in the four provinces named Qinghai,Tibet,Inner Mongolia and Xinjiang province,especially the salt lakes in Qinghai-Tibet Plateau are abundant of
文摘Since the launch of the economic reform and opening to the outside world, China has seen rapid growth in its export of mechanical and electrical products, with its export
基金sponsored by Natural Science Foundation of China (Grant No. 51269012)Major Projects of Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No. ZD0602)+2 种基金part of National Project 973 "Wenchuan Earthquake Mountain Hazards Formation Mechanism and Risk Control" (Grant No. 2008CB425800)funded by "New Century Excellent Talents" of University of Ministry of Education of China (Grant No. NCET-11-1016)China Scholarship Council
文摘Debris flow is one of the major secondary mountain hazards following the earthquake. This study explores the dynamic initiation mechanism of debris flows based on the strength reduction of soils through static and dynamic triaxial tests. A series of static and dynamic triaxial tests were conducted on samples in the lab. The samples were prepared according to different grain size distribution, degree of saturation and earthquake magnitudes. The relations of dynamic shear strength, degree of saturation, and number of cycles are summarized through analyzing experimental results. The findings show that the gravelly soil with a wide and continuous gradation has a critical degree of saturation of approximately 87%, above which debris flows will be triggered by rainfall, while the debris flow will be triggered at a critical degree of saturation of about 73% under the effect of rainfall and earthquake(M>6.5). Debris flow initiation is developed in the humidification process, and the earthquake provides energy for triggering debris flows. Debris flows are more likely to be triggered at the relatively low saturation under dynamic loading than under static loading. The resistance of debris flow triggering relies more on internal frication angle than soil cohesion under the effect of rainfall and earthquake. The conclusions provide an experimental analysis method for dynamic initiation mechanism of debris flows.
文摘A diagnostic study is performed in the paper on the process of typhoon Norris (1980) transforming into an ex-tratropical cyclone after its landing over Southeast China. The main findings are as follows:The changes of kinetic energy are mainly attributed to the generation due to non-divergent wind. During the early stage of the typhoon landing, there exits only a small quantity of kinetic energy exchanging with the environment. And after it is transformed into an extratropical cyclone, a large amount of kinetic energy is exported from the system toward the environment.The horizontal and vertical flux-divergence terms of eddy available potenlial energy are the prominent sinks in the budgets of eddy kinetic energy. The generations of eddy kinetic energy due to both the barotropic and baroclinic processes are source terms. The former is remarkable during the initial stage. But after the depression is transformed into an extratropical cyclone, the roles of the generation by the barotropic and baroclinic processes are reversed, 1. e. , the latter has become more significant than the former.Diabatic heating is the most dominant heat source. The terms of vertical heat flux by cumulus and large-scale motion are the major sinks. And the latter is prominent after the system is transformed into an extratropical cycfone.
文摘Under steady-state conditions, the general currents of EE reactions at disk,hemispherical and spherical microelectrodes are derived.From these equations, some electrode reaction parameters can be very simply obtained.
基金supported by the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine.(No.ZYYCXTD-D-202005)the Key Project at Central Government Level(No.2060302)+1 种基金the National Natural Science Foundation of China Grants(No.81872956)Tianjin Science and Technology Planning Project(No.19YFZCSY00170).
文摘Background:To promote the quality evaluation,clarify the processing mechanism and distinguish origins of Corni Fructus(cornus)from different regions.Methods:This study developed a high performance liquid chromatography method for simultaneous determination of 5-hydroxymethylfurfural,2 phenolic acids and 4 iridoid glycosides and the reference fingerprint of cornus from different regions.In addition,the feedforward neural network model provided a pattern classification of sample regions.Results:The content of morroniside and loganin were the highest in all raw cornus samples ranging from 9.45μg/mg to 16.3μg/mg and 6.64μg/mg to 13.7μg/mg,respectively.The level of sweroside in raw cornus from Henan(0.83μg/mg^(-1).39μg/mg)and Zhejiang(0.64μg/mg^(-1).17μg/mg)were greater than other origins.After wine-processing,the glucose or fructose were dehydrated to increase the levels of 5-hydroxymethylfurfural.The C-4 position of-COOCH3 of hot-sensitive iridoid glycosides was hydrolyzed to generate-COOH as stable components.Polyphenol derivatives may be degraded to increase the content of phenolic acid.Subsequently,an excellent feedforward neural network model for identification of raw cornus and wine-prepared cornus was established which could distinguish the sample origins.Conclusion:This work provided a trustworthy method to evaluate the quality and distinguish the sources of cornus.Meanwhile,the clear processing mechanism provided a scientific foundation for controlling the cornus quality during wine-processing.
文摘Three dimensional thermal-mechanical coupled elasto-plastic FEM has been used for simulation of round to oval single pass rolling. The analysis was conducted using MARC/AUTOFORCE1. 2 code. The material is assumed to be elasto-plastic and it obey the Von Mises yield criterion and Prandtl- Reuss rule. Deformation of the workpiece is simulated in a step-by-step manner,updating the coordinates of material points and the property after each step, so that both nonsteady-state and stendy-state deformation can be simulated. The heat transfter between the workpiece, the rolls, and enviroment and the heat generation due to plastic work and friction force, are considered in the analys- is.Predicted the deformation shape of the workpiece, distributions of strains, stresses, strain rates and temperatures, roll-separating force and roll torque are presented.
文摘A successful mechanical property data-driven prediction model is the core of the optimal design of hot rolling process for hot-rolled strips. However, the original industrial data, usually unbalanced, are inevitably mixed with fluctuant and abnormal values. Models established on the basis of the data without data processing can cause misleading results, which cannot be used for the optimal design of hot rolling process. Thus, a method of industrial data processing of C-Mn steel was proposed based on the data analysis. The Bayesian neural network was employed to establish the reliable mechanical property prediction models for the optimal design of hot rolling process. By using the multi-objective optimization algorithm and considering the individual requirements of costumers and the constraints of the equipment, the optimal design of hot rolling process was successfully applied to the rolling process design for Q345B steel with 0.017% Nb and 0.046% Ti content removed. The optimal process design results were in good agreement with the industrial trials results, which verify the effectiveness of the optimal design of hot rolling process.
基金financial support of the Fundamental Research Funds for the Central Universities(2018CDYJSY0055,106112017CDJXSYY0001,106112017C DJQJ138802,106112017CDJXSYY0001,106112017CDJS K04XK11,and 2018CDQYCL0027)the National Natural Science Foundation of China(Grant no.21576034)+2 种基金the Innovative Research Team of Chongqing(CXTDG201602014)Project funded by Chongqing Special Postdoctoral Science Foundation(XmT2018043)Technological projects of Chongqing Municipal Education Commission(KJZDK201800801)
文摘Due to the easily controllable interlayer anions,metal cation composition proportion and thickness,which is beneficial to modify surface chemical state and tune bandgap,layered double hydroxides(LDHs)have great promising potential for photocatalytic applications.In this study,we have successfully synthesized the ZnAl–LDH intercalated the single anion between ZnAl cationic interlayer without anionic impurities by using a facile calcining and reconstructing routes.The electron structure and surface chemical state of the prepared products have been investigated by combining the DFT calculation and experimental characterization methods.UV–vis DRS was used to certify the light absorption of the prepared products,and we performed the DFT calculation to demonstrate the density of state and activation of reactant.These results suggested that the ZnAl–LDH–CO3 possessed the more proper band structure and superior ability to activate NO and O2 for accelerating the photocatalytic NO oxidation activity.Moreover,the in situ DRIFTS with dynamically monitoring intermediates and products over the ZnAl–LDH–CO3 was adopted to declare the photocatalytic NO oxidized process during the photocatalytic reaction process.This work illustrated the influence of different interlayer anions to the electron structure and surface chemical state of ZnAl–LDH structure through the experimental verification combined DFT calculation and the photocatalytic NO oxidized process via in situ DRIFTS analyzing,which would provide a novel way to design and fabricate the efficient photocatalysis,and understand the reaction process.
基金the National High Technology Research and Development Program of China (Grant No.2013AA032401)
文摘The effects of different aging processes on the microstructure and mechanical properties of a novel Al-Cu-Li alloy have been investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. It is found that the tensile properties of a novel Al-Cu-Li alloy are sensitive to aging processes, which correspond to different microstructures. σ(Al_5Cu_6Mg_2) and T_1(Al_2CuLi) phases are the major precipitates for the alloy in T6 aging condition(165 ℃/60 h). After duplex aging condition(150 ℃/24 h + 180 ℃/12 h), σ, θ'(Al_2Cu) and T_1 phases are detected. Only the T_1 phases can be found in the T8 state alloy(6% pre-strain+135 ℃/60 h). The failure modes of alloy in T6 and duplex aging conditions are dimple-intergranular fracture, while typical quasi-cleavage fracture in T8 condition.