期刊文献+
共找到183篇文章
< 1 2 10 >
每页显示 20 50 100
Material driven workability simulation by FEM including 3D processing maps for magnesium alloy 被引量:3
1
作者 刘娟 李居强 +2 位作者 崔振山 欧立安 阮立群 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期3011-3019,共9页
The three-dimensional (3D) processing maps considering strain based on the two-dimensional (2D) processing maps proposed by PRASAD can describe the distribution of the efficiency of power dissipation and flow inst... The three-dimensional (3D) processing maps considering strain based on the two-dimensional (2D) processing maps proposed by PRASAD can describe the distribution of the efficiency of power dissipation and flow instability regions at various temperatures, strain rates and strains, which exhibit intrinsic workability related to material itself. Finite element (FE) simulation can obtain the distribution of strain, strain rate, temperature and die filling status, which indicates state-of-stress (SOS) workability decided by die shape and different processing conditions. On the basis of this, a new material driven analysis method for hot deformation was put forward by the combination of FE simulation with 3D processing maps, which can demonstrate material workability of the entire hot deformation process including SOS workability and intrinsic workability. The hot forging process for hard-to-work metal magnesium alloy was studied, and the 3D thermomechanical FE simulation including 3D processing maps of complex hot forging spur bevel gear was first conducted. The hot forging experiments were carried out. The results show that the new method is reasonable and suitable to determine the aoorooriate nrocess narameters. 展开更多
关键词 material driven workability simulation 3D processing maps magnesium alloy hot forging
在线阅读 下载PDF
Hot deformation behavior of Al-9.0Mg-0.5Mn-0.1Ti alloy based on processing maps 被引量:7
2
作者 范才河 彭英彪 +2 位作者 阳海棠 周伟 严红革 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第2期289-297,共9页
Hot deformation behavior of extrusion preform of the spray-formed Al-9.0Mg-0.5Mn-0.1Ti alloy was studied using hot compression tests over deformation temperature range of 300-450 ℃ and strain rate range of 0.01... Hot deformation behavior of extrusion preform of the spray-formed Al-9.0Mg-0.5Mn-0.1Ti alloy was studied using hot compression tests over deformation temperature range of 300-450 ℃ and strain rate range of 0.01-10 s-1. On the basis of experiments and dynamic material model, 2D processing maps and 3D power dissipation maps were developed for identification of exact instability regions and optimization of hot processing parameters. The experimental results indicated that the efficiency factor of energy dissipate (η) lowered to the minimum value when the deformation conditions located at the strain of 0.4, temperature of 300 ° C and strain rate of 1 s-1. The softening mechanism was dynamic recovery, the grain shape was mainly flat, and the portion of high angle grain boundary (〉15°) was 34%. While increasing the deformation temperature to 400 ° C and decreasing the strain rate to 0.1 s-1, a maximum value of η was obtained. It can be found that the main softening mechanism was dynamic recrystallization, the structures were completely recrystallized, and the portion of high angle grain boundary accounted for 86.5%. According to 2D processing maps and 3D power dissipation maps, the optimum processing conditions for the extrusion preform of the spray-formed Al?9.0Mg?0.5Mn?0.1Ti alloy were in the deformation temperature range of 340-450 ° C and the strain rate range of 0.01-0.1 s-1 with the power dissipation efficiency range of 38%?43%. 展开更多
关键词 spray forming Al-9.0Mg-0.5Mn-0.1Ti alloy hot compressing deformation processing map dynamic recrystallization
在线阅读 下载PDF
Hot deformation behavior and processing maps of Mg-Zn-Cu-Zr magnesium alloy 被引量:7
3
作者 余晖 于化顺 +2 位作者 Young-min KIM Bong-sun YOU 闵光辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期756-764,共9页
The deformation behaviors of a new quaternary Mg-6Zn-1.5Cu-0.5Zr alloy at temperatures of 523-673 K and strain rates of 0.001-1 s-1 were studied by compressive tests using a Gleeble 3800 thermal-simulator.The results ... The deformation behaviors of a new quaternary Mg-6Zn-1.5Cu-0.5Zr alloy at temperatures of 523-673 K and strain rates of 0.001-1 s-1 were studied by compressive tests using a Gleeble 3800 thermal-simulator.The results show that the flow stress increases as the deformation temperature decreases or as the strain rate increases.A strain-dependent constitutive equation and a feed-forward back-propagation artificial neural network were used to predict flow stress,which showed good agreement with experimental data.The processing map suggests that the domains of 643-673 K and 0.001-0.01 s-1 are corresponded to optimum conditions for hot working of the T4-treated Mg-6Zn-1.5Cu-0.5Zr alloy. 展开更多
关键词 Mg alloy Cu addition flow stress deformation behavior constitutive equation artificial neural network processing map
在线阅读 下载PDF
Deformation behaviors and processing maps of CNTs/Al alloy composite fabricated by flake powder metallurgy 被引量:2
4
作者 何维均 李春红 +4 位作者 栾佰峰 邱日盛 王柯 李志强 刘庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3578-3584,共7页
Deformation behaviors of CNTs/Al alloy composite fabricated by the method of flake powder metallurgy were investigated by hot compression tests, which were performed in the temperature range of 300?550 °C and str... Deformation behaviors of CNTs/Al alloy composite fabricated by the method of flake powder metallurgy were investigated by hot compression tests, which were performed in the temperature range of 300?550 °C and strain rate range of 0.001? 10 s?1 with Gleeble?3500 thermal simulator system. Processing maps of the CNTs/Al alloy at different strains were calculated to study the optimum processing domain. Microstructures before and after hot compressions were characterized by electron backscattered diffraction (EBSD) method. Stress?strain curves indicate that the flow stress increases with the increase of strain rate and the decrease of temperature. The processing maps of the CNTs/Al alloy at different strains show that the optimum processing domain is 500?550 °C, 10 s?1 for hot working. EBSD analysis demonstrates that fully dynamic recrystallization occurs in the optimum processing domain (high strainrate 10 s?1), whereas the main soften mechanism is dynamic recovery at low strain rate (0.001 s?1). 展开更多
关键词 CNTs/Al alloy composite flake powder metallurgy recrystallization processing map flow stress
在线阅读 下载PDF
Hot deformation and processing maps of Al_2O_3/Al composites fabricated by flake powder metallurgy 被引量:1
5
作者 栾佰峰 邱日盛 +4 位作者 李春红 杨晓芳 李志强 张荻 刘庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1056-1063,共8页
The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The r... The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The results show that the flow stress increases with increasing strain rate and decreasing temperature. The hyperbolic sine constitutive equation can describe the flow stress behavior of Al2O3/Al composites, and the deformation activation energy and constitutive equations were calculated. The processing maps of Al2O3/Al-2 μm and Al2O3/Al-1 μm composites at strain of 0.6 were obtained and the optimum processing domains are in ranges of 300-330 °C, 0.007-0.03 s-1 and 335-360 °C, 0.015-0.06 s-1 for hot working, respectively. The instability zones of flow behavior can also be recognized by the maps. 展开更多
关键词 Al2O3/Al composites flake powder metallurgy flow stress processing map
在线阅读 下载PDF
Hot Deformation Behavior and Processing Maps of a High Al-low Si Transformation-Induced Plasticity Steel: Microstructural Evolution and Flow Stress Behavior 被引量:4
6
作者 H.Q.Huang H.S.Di +4 位作者 N.Yan J.C.Zhang Y.G.Deng R.D.K.Misra J.P.Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第5期503-514,共12页
Hot deformation behavior of a high Al-low Si transformation-induced plasticity(TRIP) steel was studied by an MMS-300 thermo-simulation machine at the temperature range of 1050–1200℃ and strain rate range of 0.01–... Hot deformation behavior of a high Al-low Si transformation-induced plasticity(TRIP) steel was studied by an MMS-300 thermo-simulation machine at the temperature range of 1050–1200℃ and strain rate range of 0.01–10s^(-1). The constitutive equations of the TRIP steel were established at high temperature by fitting the strain factor with a sixth-order polynomial. The instability during hot rolling was discussed using processing maps. The results reveal that two types of flow stress curves(dynamic recrystallization and dynamic recovery) were observed during the hot compression of the high Al-low Si TRIP steel. Flow stress decreased with increasing deformation temperature and decreasing strain rate. The predicted flow stress of experimental TRIP steel is in agreement with the experimental values with an average absolute relative error of 4.49% and a coefficient of determination of 0.9952. According to the obtained processing maps, the TRIP steel exhibits a better workability at strain rate of 0.1s^(-1) and deformation temperature of 1200℃ as compared to other deformation conditions. 展开更多
关键词 TRIP steel Hot compression Constitutive equation processing maps
原文传递
Optimization of TC11 alloy forging parameters using processing maps 被引量:3
7
作者 LI Miaoquan ZHANG Xiaoyuan 《Rare Metals》 SCIE EI CAS CSCD 2011年第3期222-226,共5页
Isothermal compression of TC11 alloy at the deformation temperatures ranging from 1023 to 1323 K with an interval of 20 K, the strain rates of 0.001, 0.1, 1.0, and 10.0 s-1, and the height reductions of 50% and 70% wa... Isothermal compression of TC11 alloy at the deformation temperatures ranging from 1023 to 1323 K with an interval of 20 K, the strain rates of 0.001, 0.1, 1.0, and 10.0 s-1, and the height reductions of 50% and 70% was conducted on a Gleeble-1500D thermomechanical simulator. According to the experimental results, the isothermal compression and the processing maps of TC11 alloy at different strains were drawn by using the dynamic material model (DMM). Based on the processing maps, the proper forging parameters, including a combination of defor-mation temperature and strain rate, vary with the strain in different phases of TC11 alloy. 展开更多
关键词 FORGING isothermal compression OPTIMIZATION titanium alloys processing maps
在线阅读 下载PDF
Characterization of Hot Deformation Behavior of a Novel Al–Cu–Li Alloy Using Processing Maps 被引量:3
8
作者 Xin-Xiang Yu Yi-Ran Zhang +2 位作者 Deng-Feng Yin Zhi-Ming Yu Shu-Fei Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第7期817-825,共9页
The isothermally compression deformation behavior of an elevated Cu/Li weight ratio Al–Cu–Li alloy was investigated under various deformation conditions.The isothermal compression tests were carried out in a tempera... The isothermally compression deformation behavior of an elevated Cu/Li weight ratio Al–Cu–Li alloy was investigated under various deformation conditions.The isothermal compression tests were carried out in a temperature range from 300 to 500℃ and at a strain rate range from 0.001 to 10 s^-1.The results show that the peak stress level decreases with temperature increasing and strain rate decreasing,which is represented by the Zener–Hollomon parameter Z in the hyperbolic sine equation with the hot deformation activation energy of 218.5 k J/mol.At low Z value,the dynamic recrystallized grain is well formed with clean high-angle boundaries.At high Z value,a high dislocation density with poorly developed cellularity and considerable fine dynamic precipitates are observed.Based on the experimental data and dynamic material model,the processing maps at strain of 0.3,0.5 and 0.7 were developed to demonstrate the hot workability of the alloy.The results show that the main softening mechanism at high Z value is precipitate coarsening and dynamic recovery;the dynamic recrystallization of the alloy can be easily observed as ln Z ≤ 29.44,with peak efficiency of power dissipation of around 70%.At strains of 0.3,0.5 and 0.7,the flow instability domains are found at higher strain rates,which mainly locate at the upper part of processing maps.In addition,when the strain rate is 0.001 or 0.02 s^-1,there is a particular instability domain at 300–350℃. 展开更多
关键词 Al-Cu-Li alloy Hot deformation behavior Microstructure evolution processing maps
原文传递
Constitutive Relationship and Hot Processing Maps of Mg-Gd-Y-Nb-Zr Alloy 被引量:2
9
作者 Zhaohui Zhou Qichao Fan +4 位作者 Zhihui Xia Aiguo Hao Wenhua Yang Wei Ji Haiqiao Cao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第7期637-644,共8页
The hot working behavior of Mg-Gd-Y-Nb-Zr alloy was investigated using constitutive model and hot processing maps in this work. Isothermal compression tests were conducted with temperature and strain rate range of 703... The hot working behavior of Mg-Gd-Y-Nb-Zr alloy was investigated using constitutive model and hot processing maps in this work. Isothermal compression tests were conducted with temperature and strain rate range of 703-773 K and 0.01-5 s^(-1), respectively. Improved Arrhenius-type equation incorporated with strain compensations was used to predict flow behavior of the alloy, and the predictability was evaluated using correlation coefficient, root mean square error and absolute relative error. Processing maps were constructed at different strains for Mg-Gd-Y-Nb-Zr alloy based on dynamic materials model.The processing maps are divided into three domains and the corresponding microstructure evolutions are referred to the forming of straight grain boundaries, twinning, dynamic recrystallization and grain growth. Instability occurred mainly at the strain rate range of 0.3s^(-1)-0.5s^(-1). The optimum processing domain is mainly at the temperature range of 703-765 K with the strain rate range of 0.01-0.1 s^(-1). 展开更多
关键词 Magnesium alloy RECRYSTALLIZATION Constitutive model processing maps Hot deformation
原文传递
Optimization of thermal processing parameters of Ti555211 alloy using processing maps based on Murty criterion 被引量:2
10
作者 Zhen An Jin-Shan Li Yong Feng 《Rare Metals》 SCIE EI CAS CSCD 2016年第2期154-161,共8页
Isothermal compression testing of Ti555211 titanium alloys was carried out at deformation temperatures from 750 to 950 °C in 50 °C intervals with a strain rate of0.001-1.000 s^(-1). The high-temperature de... Isothermal compression testing of Ti555211 titanium alloys was carried out at deformation temperatures from 750 to 950 °C in 50 °C intervals with a strain rate of0.001-1.000 s^(-1). The high-temperature deformation behavior of the Ti555211 alloy was characterized by analysis of stress-strain behavior, kinetics and processing maps. A constitutive equation was formulated to describe the flow stress as a function of deformation temperature and strain rate, and the calculated apparent activation energies are found to be 454.50 and 207.52 k J mol^(-1)in the a b-phase and b-phase regions, respectively. A processing map based on the Murty instability criterion was developed at a strain of 0.7. The maps exhibit two domains of peak efficiency from 750 to 950 °C. A *60 % peak efficiency occurs at 800-850 °C/0.001-0.010 s^(-1). The other peak efficiency of *60 % occurs at C950 °C/0.001-0.010 s^(-1), which can be considered to be the optimum condition for high-temperature working of this alloy.However, at strain rates of higher than 1.000 s^(-1)and deformation temperatures of 750 and 950 °C, clear process flow lines and bands of flow localization occur in the hightemperature deformation process, which should be avoided in Ti555211 alloy hot processing. The mechanism in stability domain and instability domain was also discussed. 展开更多
关键词 Ti555211 titanium alloy High temperature Deformation behavior processing maps
原文传递
Technological Aspect of Processing Maps for the AA2099 Alloy 被引量:2
11
作者 Aneta Lukaszek-Solek 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第1期22-31,共10页
Results of an experimental and modelling study of forming processes in the AA2099 Al–Cu–Li alloy, for a wide range of temperatures, strains and strain rates, are presented. The analyses are based on tensile testing ... Results of an experimental and modelling study of forming processes in the AA2099 Al–Cu–Li alloy, for a wide range of temperatures, strains and strain rates, are presented. The analyses are based on tensile testing at 20 °C at a strain rate of 0.02 s-1and uniaxial compression testing in the temperature range 400–550 °C at strain rates ranging from0.001 to 100 s-1, for constant values of true strain of 0.5 and 0.9. The stability of plastic deformation and its relationship with a sensitivity of stress to strain rate are considered. The power dissipation efficiency coefficient, g(%), and the flow instability parameter, n B 0, were determined. The complex processing maps for hot working were determined and quantified, including process frames for basic forging processes: conventional forging and for near-superplastic and isothermal conditions. A significant aspect is the convergence of power dissipation when passing through the 500 °C peak.Deformation, temperature and strain-rate-dependent microstructures at 500 °C for strain rates of 0.1, 1, 10 and 100 s-1are described and analysed for the conventional die forging process frame, corresponding to 465–523 °C and strain rates of50–100 s-1. 展开更多
关键词 Al–Cu–Li alloy Power dissipation efficiency processing maps Microstructure Hot deformation
原文传递
Hot deformation behavior and processing maps of as-cast Mg-8Zn-1Al-0.5Cu-0.5Mn alloy 被引量:6
12
作者 朱绍珍 罗天骄 +1 位作者 张廷安 杨院生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3232-3239,共8页
The hot deformation behavior of as-cast Mg-8Zn-1Al-0.5Cu-0.5Mn alloy was studied by hot compression tests at temperatures of 200-350 °C and strain rates of 0.001-1 s-1.The results show that the flow stress increa... The hot deformation behavior of as-cast Mg-8Zn-1Al-0.5Cu-0.5Mn alloy was studied by hot compression tests at temperatures of 200-350 °C and strain rates of 0.001-1 s-1.The results show that the flow stress increases significantly with increasing strain rate,and decreases as the temperature increases.The flow stress model based on the regression analysis was developed to predict the flow behavior of Mg-8Zn-1Al-0.5Cu-0.5Mn alloy during the hot compression,and the model shows a good agreement with experimental results.Meanwhile,the processing maps were established according to the dynamic materials model.The processing maps show that the increase of strain enlarges the instability domains,and the alloy shows good hot workability at high temperatures and low strain rates. 展开更多
关键词 magnesium alloy hot deformation flow stress processing map dynamic recrystallization
在线阅读 下载PDF
Research progress on microstructure evolution and hot processing maps of high strength β titanium alloys during hot deformation 被引量:18
13
作者 Liang HUANG Chang-min LI +5 位作者 Cheng-lin LI Song-xiao HUI Yang YU Ming-jie ZHAO Shi-qi GUO Jian-jun LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第12期3835-3859,共25页
High strength β titanium alloys are widely used in large load bearing components in the aerospace field. At present, large parts are generally formed by die forging. Different initial microstructures and deformation ... High strength β titanium alloys are widely used in large load bearing components in the aerospace field. At present, large parts are generally formed by die forging. Different initial microstructures and deformation process parameters will significantly affect the flow behavior. To precisely control the microstructures, researchers have conducted many studies to analyze the microstructure evolution law and deformation mechanism during hot compression. This review focuses on the microstructure evolution of high strength β titanium alloys during hot deformation, including dynamic recrystallization and dynamic recovery in the single-phase region and the dynamic evolution of the α phase in the two-phase region. Furthermore, the optimal hot processing regions, instability regions,and the relationship between the efficiency of power dissipation and the deformation mechanism in the hot processing map are summarized. Finally, the problems and development direction of using hot processing maps to optimize process parameters are also emphasized. 展开更多
关键词 high strengthβtitanium alloy hot deformation microstructure evolution hot processing map
在线阅读 下载PDF
Determination of dynamic recrystallization parameter domains of Ni80A superalloy by enhanced processing maps 被引量:11
14
作者 Guo-zheng QUAN Qiao LIU +2 位作者 Jiang ZHAO Wei XIONG Rui-ju SHI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第7期1449-1464,共16页
The determination of intrinsic deformation parameters inducing grain refinement mechanism of dynamic recrystallization (DRX) contributes to the relative forming process design. For Ni80A superalloy, the processing map... The determination of intrinsic deformation parameters inducing grain refinement mechanism of dynamic recrystallization (DRX) contributes to the relative forming process design. For Ni80A superalloy, the processing maps were constructed by the derivation of the stress-strain data coming from a series of isothermal compression tests at temperatures of 1273^-1473 K and strain rates of 0.01-10 s^-1. According to the processing maps and microstructural validation, the deformation parameter windows with DRX mechanism were separated in an innovative deformation mechanism map. In addition, the deformation activation energy representing deformation energy barrier was introduced to further optimize such windows. Finally, the enhanced processing maps were constructed and the parameter domains corresponding to DRX mechanism and lower deformation barrier were determined as follows: at ε=0.3, domains: 1296-1350 K, 0.056-0.32 s^-1 and 1350-1375 K, 0.035-0.11 s^-1;at ε=0.5, domains: 1290-1348 K, 0.2-0.5 s^-1 and 1305-1370 K, 0.035-0.2 s^-1;at ε=0.7, domains: 1290-1355 K, 0.042-0.26 s^-1;at ε=0.9, domains: 1298-1348 K, 0.037-0.224 s^-1. 展开更多
关键词 nickel-based superalloy deformation activation energy processing map dynamic recrystallization
在线阅读 下载PDF
Hot deformation behaviors and processing maps of Mg-Zn-Er alloys based on Gleeble-1500 hot compression simulation 被引量:8
15
作者 Cui-cui SUN Ke LIU +3 位作者 Zhao-hui WANG Shu-bo LI Xian DU Wen-bo DU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第12期3123-3134,共12页
The hot deformation behaviors of as-solution Mg?xZn?yEr alloys (x/y=6, x=3.0, 4.5 and 6.0; y=0.50, 0.75 and 1.00) wereinvestigated on Gleeble?1500 thermal simulator in a temperature range of 200?450 °C at a strai... The hot deformation behaviors of as-solution Mg?xZn?yEr alloys (x/y=6, x=3.0, 4.5 and 6.0; y=0.50, 0.75 and 1.00) wereinvestigated on Gleeble?1500 thermal simulator in a temperature range of 200?450 °C at a strain rate of 0.001?1 s?1. The truestress?strain curves showed the dynamic competition between the working hardening and working softening mainly due to thedynamic recrystallization (DRX) occurring during hot compression. The constitutive equations were constructed which couldaccurately predict the peak stress of the alloys. The addition of Zn and/or Er resulted in higher deformation activation energy forMg?3Zn?0.5Er (alloy A). The processing maps were constructed as function of the temperature and the strain rate, providing theoptimum hot working conditions (i.e., at strain of 0.3, Mg?3Zn?0.5Er (alloy A): 380?430 ?C, <0.1 s?1; Mg?4.5Zn?0.75Er (alloy B):380?450 ?C, 0.01?0.1 s?1; Mg?6Zn?1Er (alloy C): 390?440 ?C, 0.01?0.1 s?1). The as-solution treated Mg?4.5Zn?0.75Er (alloy B)demonstrated more optimum hot working window comparing with Mg?3Zn?0.5Er (alloy A) and Mg?6Zn?1Er (alloy C). 展开更多
关键词 Mg-Zn-Er alloy compression behavior microstructure evolution constitutive equations processing map
在线阅读 下载PDF
Hot deformation characterization of as-homogenized Al-Cu-Li X2A66 alloy through processing maps and microstructural evolution 被引量:7
16
作者 Liwei Zhong Wenli Gao +2 位作者 Zhaohui Feng Zheng Lu Congcong Zhu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第10期2409-2421,共13页
Uniaxial compression tests were carried out on an Al-Cu-Li alloy at a temperature range of 300–500℃ and a strain rate range of 0.001–10 s^-1. Four representative instability maps based on Gegel, AlexanderMalas(A-M)... Uniaxial compression tests were carried out on an Al-Cu-Li alloy at a temperature range of 300–500℃ and a strain rate range of 0.001–10 s^-1. Four representative instability maps based on Gegel, AlexanderMalas(A-M), Kumar-Prasad(K-P) and Murty-Rao(M-R) criteria were constructed. Through formula deduction and microstructural observation, it can be concluded that M-R criterion is more accurate than K-P criterion, and the first two criteria are better than Gegel and A-M criteria. From a power dissipation map and a M-R instability map, the optimized processing parameters are 480–500℃/0.001–0.1 s^-1 and 420–480℃/0.1-1 s^-1. The corresponding microstructural analysis shows that dynamic recovery and partial dynamic recrystallization are main dynamic softening mechanisms. Transmission electron microscopy observation indicated that a large number of primary coarse T1(Al2 Cu Li) particles precipitated in the homogenized specimen. After deformation at 500℃, most of the primary T1 particles dissolved back into the matrix, and secondary fine T1 particles precipitated at deformation-induced dislocations, high angle grain boundaries and other dispersed particles. 展开更多
关键词 Al-Cu-Li alloy Hot deformation processing map Dynamic recrystallization PRECIPITATE
原文传递
Constitutive modeling of flow behavior and processing maps of Mg-8.1 Gd-4.5Y-0.3Zr alloy 被引量:11
17
作者 Xiangsheng Xia Kui Zhang +1 位作者 Minglong Ma Ting Li 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第3期917-928,共12页
High temperature deformation behavior and workability of Mg-8.1 Gd-4.5Y-0.3Zr alloy were studied by compression tests.Arrhenius equation with strain compensation and processing maps were established.The results show t... High temperature deformation behavior and workability of Mg-8.1 Gd-4.5Y-0.3Zr alloy were studied by compression tests.Arrhenius equation with strain compensation and processing maps were established.The results show that the activation energy Q,structure factor a,n and In A varies with the strain,its relationship fit well by fifth order polynomial.The flow stresses predicted by the extracted model are in good agreement with the experimental results.There are five typical domains in the processing map,and the deformation mechanisms in different domains were determined by microstructure analysis.The feasible processing window of the alloy is in the areas of 400-500℃/0.001-0.1 s^(-1). 展开更多
关键词 Mg-Gd-Y-Zr alloy WORKABILITY Strain compensation processing map
在线阅读 下载PDF
Characterization of the Hot Deformation Behavior of Cu–Cr–Zr Alloy by Processing Maps 被引量:6
18
作者 Yi Zhang Hui-Li Sun +4 位作者 Alex A.Volinsky Bao-Hong Tian Zhe Chai Ping Liu Yong Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第5期422-430,共9页
Hot deformation behavior of the Cu-Cr-Zr alloy was investigated using hot compressive tests in the tem- perature range of 650-850℃ and strain rate range of 0.001-10 s-1. The constitutive equation of the alloy based o... Hot deformation behavior of the Cu-Cr-Zr alloy was investigated using hot compressive tests in the tem- perature range of 650-850℃ and strain rate range of 0.001-10 s-1. The constitutive equation of the alloy based on the hyperbolic-sine equation was established to characterize the flow stress as a function of strain rate and deformation temperature. The critical conditions for the occurrence of dynamic recrystallization were determined based on the alloy strain hardening rate curves. Based on the dynamic material model, the processing maps at the strains of 0.3, 0.4 and 0.5 were obtained. When the true strain was 0.5, greater power dissipation efficiency was observed at 800-850 ℃ and under 0.001-0.1 s-1, with the peak efficiency of 47%. The evolution of DRX microstructure strongly depends on the deformation temperature and the strain rate. Based on the processing maps and microstructure evolution, the optimal hot working conditions for the Cu-Cr-Zr alloy are in the temperature range of 800-850 ℃ and the strain rate range of 0.001-0.1 s-1. 展开更多
关键词 Cu-Cr-Zr alloy Hot deformation behavior Strain hardening rate Constitutive equation processing map
原文传递
Characterization of hot deformation behavior of 30Si2MnCrMoVE low-alloying ultra-high-strength steel by constitutive equations and processing maps 被引量:7
19
作者 Hai Wang Dong Liu +3 位作者 Jian-guo Wang Hai-ping Wang Yang Hu Hao-dong Rao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2020年第7期807-819,共13页
Isothermal compression tests of as-forged 30Si2MnCrMoVE low-alloying ultra-high-strength steel were carried out on a Gleeble 3500 thermal simulator at the deformation temperatures of 950-1150℃and strain rates of 0.01... Isothermal compression tests of as-forged 30Si2MnCrMoVE low-alloying ultra-high-strength steel were carried out on a Gleeble 3500 thermal simulator at the deformation temperatures of 950-1150℃and strain rates of 0.01-10 s^−1.Based on the classical stress-dislocation density relationship and the kinematics of the dynamic recrystallization,the constitutive equations of the work hardening dynamical recovery period and dynamical recrystallization period were developed by using the work hardening curve and Avrami equation,which shows good agreement with the experimental value.Processing maps at the strain of 0.90 were constructed based on dynamic material model and were analyzed combined with microstructure observation under different conditions.The optimum parameter based on the processing maps was obtained and verified by a supplementary experiment.The power dissipation maps and instability maps at strains of 0.05-0.90 were also constructed,and the evolution law was analyzed in detail.The established constitutive equation and hot processing maps can provide some guidance for hot working process. 展开更多
关键词 30Si2MnCrMoVE ultra-high-strength steel Hot deformation Constitutive model processing map Power dissipation efficiency
原文传递
Constitutive behavior and processing maps of a new wrought magnesium alloy ZE20 (Mg-2Zn-0.2Ce) 被引量:9
20
作者 Scott C.Sutton Alan A.Luo 《Journal of Magnesium and Alloys》 SCIE 2020年第1期111-126,共16页
ZE20(Mg-2Zn-0.2Ce)^2 is a new wrought magnesium alloy with improved extrudability and mechanical properties[1].To understand the constitutive behavior and workability of this new alloy,Gleeble thermomechanical testing... ZE20(Mg-2Zn-0.2Ce)^2 is a new wrought magnesium alloy with improved extrudability and mechanical properties[1].To understand the constitutive behavior and workability of this new alloy,Gleeble thermomechanical testing has been carried out in this study.The flow stress behavior of ZE20 was investigated between 250℃–450℃ and 10^–3 s^–1–1.0 s^–1 in isothermal compression.Constitutive descriptions of the flow stress are provided.A new general approach at application of the extended Ludwik equation is demonstrated and was found to be more accurate than the hyperbolic sine Arrhenius model while having a similar number of model constants.Processing maps were developed based on the experimental results and are verified with microstructural investigation.A region of safe processing with non-basal texture and high activity of dynamic recrystallization(DRX)was found between 375℃ and 450℃,from 10^–1 s^–1 to 10^–2.5 s^–1.A region of potentially safe processing with annealing that is associated with shear band nucleation of non-basal grains was identified for temperatures as low as 300℃ and rates as high as 10^–1 s^–1. 展开更多
关键词 Magnesium alloys Thermomechanical processing Constitutive behavior processing map Deformation mechanisms
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部