Accurate determination of rockhead is crucial for underground construction.Traditionally,borehole data are mainly used for this purpose.However,borehole drilling is costly,time-consuming,and sparsely distributed.Non-i...Accurate determination of rockhead is crucial for underground construction.Traditionally,borehole data are mainly used for this purpose.However,borehole drilling is costly,time-consuming,and sparsely distributed.Non-invasive geophysical methods,particularly those using passive seismic surface waves,have emerged as viable alternatives for geological profiling and rockhead detection.This study proposes three interpretation methods for rockhead determination using passive seismic surface wave data from Microtremor Array Measurement(MAM)and Horizontal-to-Vertical Spectral Ratio(HVSR)tests.These are:(1)the Wavelength-Normalized phase velocity(WN)method in which a nonlinear relationship between rockhead depth and wavelength is established;(2)the Statistically Determined-shear wave velocity(SD-V_(s))method in which the representative V_(s) value for rockhead is automatically determined using a statistical method;and(3)the empirical HVSR method in which the rockhead is determined by interpreting resonant frequencies using a reliably calibrated empirical equation.These methods were implemented to determine rockhead depths at 28 locations across two distinct geological formations in Singapore,and the results were evaluated using borehole data.The WN method can determine rockhead depths accurately and reliably with minimal absolute errors(average RMSE=3.11 m),demonstrating robust performance across both geological formations.Its advantage lies in interpreting dispersion curves alone,without the need for the inversion process.The SD-V_(s) method is practical in engineering practice owing to its simplicity.The empirical HVSR method reasonably determines rockhead depths with moderate accuracy,benefiting from a reliably calibrated empirical equation.展开更多
The uniaxial compressive strength(UCS)of rocks is a vital geomechanical parameter widely used for rock mass classification,stability analysis,and engineering design in rock engineering.Various UCS testing methods and ...The uniaxial compressive strength(UCS)of rocks is a vital geomechanical parameter widely used for rock mass classification,stability analysis,and engineering design in rock engineering.Various UCS testing methods and apparatuses have been proposed over the past few decades.The objective of the present study is to summarize the status and development in theories,test apparatuses,data processing of the existing testing methods for UCS measurement.It starts with elaborating the theories of these test methods.Then the test apparatus and development trends for UCS measurement are summarized,followed by a discussion on rock specimens for test apparatus,and data processing methods.Next,the method selection for UCS measurement is recommended.It reveals that the rock failure mechanism in the UCS testing methods can be divided into compression-shear,compression-tension,composite failure mode,and no obvious failure mode.The trends of these apparatuses are towards automation,digitization,precision,and multi-modal test.Two size correction methods are commonly used.One is to develop empirical correlation between the measured indices and the specimen size.The other is to use a standard specimen to calculate the size correction factor.Three to five input parameters are commonly utilized in soft computation models to predict the UCS of rocks.The selection of the test methods for the UCS measurement can be carried out according to the testing scenario and the specimen size.The engineers can gain a comprehensive understanding of the UCS testing methods and its potential developments in various rock engineering endeavors.展开更多
The big-tapered profiled ring disk is a key component of engines for rockets and missiles.A new forming technology,as called spinning-rolling process,has been proposed previously for the high performance,high efficien...The big-tapered profiled ring disk is a key component of engines for rockets and missiles.A new forming technology,as called spinning-rolling process,has been proposed previously for the high performance,high efficiency and low-cost manufacturing of the component.Blank design is the key part of plastic forming process design.For spinning-rolling process,the shape and size of the blank play a crucial role in process stability,deformation behavior and dimensional accuracy.So this work proposes a blank design method to determine the geometry structure and sizes of the blank.The mathematical model for calculating the blank size has been deduced based on volume conservation and neutral layer length invariance principle.The FE simulation and corresponding trial production of an actual big-tapered profiled ring disk show that the proposed blank design method is applicative.In order to obtain a preferred blank,the influence rules of blank size determined by different deformation degrees(rolling ratio k)on the spinning-rolling process are revealed by comprehensive FE simulations.Overall considering the process stability,circularity of the deformed ring disk and forming forces,a reasonable range of deformation degree(rolling ratio k)is recommended for the blank design of the new spinning-rolling process.展开更多
Atractylodis Rhizoma,a traditional Chinese medicine with an extensive history of treating gastrointestinal disorders and other diseases,undergoes various processing methods in China to enhance its therapeutic efficacy...Atractylodis Rhizoma,a traditional Chinese medicine with an extensive history of treating gastrointestinal disorders and other diseases,undergoes various processing methods in China to enhance its therapeutic efficacy for specific conditions.However,a comprehensive report detailing the changes in chemical composition and pharmacological effects due to these processing methods is currently lacking.This article provides a systematic review of the commonly employed processing techniques for Atractylodis Rhizoma,including raw Atractylodis Rhizoma(SCZ),bran-fried Atractylodis Rhizoma(FCZ),deep-fried Atractylodis Rhizoma(JCZ),and rice water-processed Atractylodis Rhizoma(MCZ).It examines the alterations in chemical constituents and pharmacological activities resulting from these processes and elucidates the mechanisms of action of the primary components in the various processed forms of Atractylodis Rhizoma in the treatment of gastrointestinal diseases.展开更多
The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and u...The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and uncertainties during optimization remains a formidable challenge. In this study, a strategy combining interpretable machine learning with metaheuristic optimization algorithms is employed to optimize the reaction process. First, experimental data from a biodiesel production process are collected to establish a database. These data are then used to construct a predictive model based on artificial neural network (ANN) models. Subsequently, interpretable machine learning techniques are applied for quantitative analysis and verification of the model. Finally, four metaheuristic optimization algorithms are coupled with the ANN model to achieve the desired optimization. The research results show that the methanol: palm fatty acid distillate (PFAD) molar ratio contributes the most to the reaction outcome, accounting for 41%. The ANN-simulated annealing (SA) hybrid method is more suitable for this optimization, and the optimal process parameters are a catalyst concentration of 3.00% (mass), a methanol: PFAD molar ratio of 8.67, and a reaction time of 30 min. This study provides deeper insights into reaction process optimization, which will facilitate future applications in various reaction optimization processes.展开更多
As a pathfinder of the SiTian project,the Mini-SiTian(MST)Array,employed three commercial CMOS cameras,represents a next-generation,cost-effective optical time-domain survey project.This paper focuses primarily on the...As a pathfinder of the SiTian project,the Mini-SiTian(MST)Array,employed three commercial CMOS cameras,represents a next-generation,cost-effective optical time-domain survey project.This paper focuses primarily on the precise data processing pipeline designed for wide-field,CMOS-based devices,including the removal of instrumental effects,astrometry,photometry,and flux calibration.When applying this pipeline to approximately3000 observations taken in the Field 02(f02)region by MST,the results demonstrate a remarkable astrometric precision of approximately 70–80 mas(about 0.1 pixel),an impressive calibration accuracy of approximately1 mmag in the MST zero points,and a photometric accuracy of about 4 mmag for bright stars.Our studies demonstrate that MST CMOS can achieve photometric accuracy comparable to that of CCDs,highlighting the feasibility of large-scale CMOS-based optical time-domain surveys and their potential applications for cost optimization in future large-scale time-domain surveys,like the SiTian project.展开更多
Geological radar probing technology finds wide application in engineering projects. The high-precision characteristics of geologic radar should be studied in connection with fine processing and interpretation. This ar...Geological radar probing technology finds wide application in engineering projects. The high-precision characteristics of geologic radar should be studied in connection with fine processing and interpretation. This article discusses such issues as (1) geologic radar noise source and (2) fine processing and interpretation of radar data. It is focused on how to achieve fine processing and interpretation.展开更多
Nowadays, it becomes very urgent to find remain oil under the oil shortage worldwide.However, most of simple reservoirs have been discovered and those undiscovered are mostly complex structural, stratigraphic and lith...Nowadays, it becomes very urgent to find remain oil under the oil shortage worldwide.However, most of simple reservoirs have been discovered and those undiscovered are mostly complex structural, stratigraphic and lithologic ones. Summarized in this paper is the integrated seismic processing/interpretation technique established on the basis of pre-stack AVO processing and interpretation.Information feedbacks occurred between the pre-stack and post-stack processes so as to improve the accuracy in utilization of data and avoid pitfalls in seismic attributes. Through the integration of seismic data with geologic data, parameters that were most essential to describing hydrocarbon characteristics were determined and comprehensively appraised, and regularities of reservoir generation and distribution were described so as to accurately appraise reservoirs, delineate favorite traps and pinpoint wells.展开更多
Branching river channels and the coexistence of valleys, ridges, hiils, and slopes'as the result of long-term weathering and erosion form the unique loess topography. The Changqing Geophysical Company, working in the...Branching river channels and the coexistence of valleys, ridges, hiils, and slopes'as the result of long-term weathering and erosion form the unique loess topography. The Changqing Geophysical Company, working in these complex conditions, has established a suite of technologies for high-fidelity processing and fine interpretation of seismic data. This article introduces the processes involved in the data processing and interpretation and illustrates the results.展开更多
Difficulty discrimination is an important step in autonomous design and interpreting teaching materials development, which is related to scientifi c nature of the materials, teaching effectiveness, and sequential teac...Difficulty discrimination is an important step in autonomous design and interpreting teaching materials development, which is related to scientifi c nature of the materials, teaching effectiveness, and sequential teaching progress. In this paper, we focus on the diffi culty discrimination of interpretation teaching materials on the basis of analytic hierarchy process and natural language processing. We analyze several factors which affect interpretation teaching materials, and we introduce theories of analytic hierarchy process and natural language processing which is intuitive and credible operation basis.展开更多
Processing method is one of the maln factors affecting the quality of hon-eysuckIe herbs, which is directIy reIated to economic benefits of farmers. This paper compares various processing methods of honeysuckIe to pro...Processing method is one of the maln factors affecting the quality of hon-eysuckIe herbs, which is directIy reIated to economic benefits of farmers. This paper compares various processing methods of honeysuckIe to provide some references for deveIoping a suitabIe processing procedure that can be used in Iarge-scale pro-duction and improve herb quality.展开更多
Taking Terminalia chebula Retz. as the control product, the polyphenolic contents of the processed products in Tibetian, Rubia cordifolia L. processed Terminalia chebula Retz. and Euphorbia fischeriana Steud processed...Taking Terminalia chebula Retz. as the control product, the polyphenolic contents of the processed products in Tibetian, Rubia cordifolia L. processed Terminalia chebula Retz. and Euphorbia fischeriana Steud processed Terminalia chebula Retz. were analyzed by HPLC. Polyphenolic contents increased from 4.54% to 5.69% and 7.46%, respectively, which may lead to the change in their pharmacological effects.展开更多
To equip data-driven dynamic chemical process models with strong interpretability,we develop a light attention–convolution–gate recurrent unit(LACG)architecture with three sub-modules—a basic module,a brand-new lig...To equip data-driven dynamic chemical process models with strong interpretability,we develop a light attention–convolution–gate recurrent unit(LACG)architecture with three sub-modules—a basic module,a brand-new light attention module,and a residue module—that are specially designed to learn the general dynamic behavior,transient disturbances,and other input factors of chemical processes,respectively.Combined with a hyperparameter optimization framework,Optuna,the effectiveness of the proposed LACG is tested by distributed control system data-driven modeling experiments on the discharge flowrate of an actual deethanization process.The LACG model provides significant advantages in prediction accuracy and model generalization compared with other models,including the feedforward neural network,convolution neural network,long short-term memory(LSTM),and attention-LSTM.Moreover,compared with the simulation results of a deethanization model built using Aspen Plus Dynamics V12.1,the LACG parameters are demonstrated to be interpretable,and more details on the variable interactions can be observed from the model parameters in comparison with the traditional interpretable model attention-LSTM.This contribution enriches interpretable machine learning knowledge and provides a reliable method with high accuracy for actual chemical process modeling,paving a route to intelligent manufacturing.展开更多
The distribution-free P-box process serves as an effective quantification model for timevarying uncertainties in dynamical systems when only imprecise probabilistic information is available.However,its application to ...The distribution-free P-box process serves as an effective quantification model for timevarying uncertainties in dynamical systems when only imprecise probabilistic information is available.However,its application to nonlinear systems remains limited due to excessive computation.This work develops an efficient method for propagating distribution-free P-box processes in nonlinear dynamics.First,using the Covariance Analysis Describing Equation Technique(CADET),the dynamic problems with P-box processes are transformed into interval Ordinary Differential Equations(ODEs).These equations provide the Mean-and-Covariance(MAC)bounds of the system responses in relation to the MAC bounds of P-box-process excitations.They also separate the previously coupled P-box analysis and nonlinear-dynamic simulations into two sequential steps,including the MAC bound analysis of excitations and the MAC bounds calculation of responses by solving the interval ODEs.Afterward,a Gaussian assumption of the CADET is extended to the P-box form,i.e.,the responses are approximate parametric Gaussian P-box processes.As a result,the probability bounds of the responses are approximated by using the solutions of the interval ODEs.Moreover,the Chebyshev method is introduced and modified to efficiently solve the interval ODEs.The proposed method is validated based on test cases,including a duffing oscillator,a vehicle ride,and an engineering black-box problem of launch vehicle trajectory.Compared to the reference solutions based on the Monte Carlo method,with relative errors of less than 3%,the proposed method requires less than 0.2% calculation time.The proposed method also possesses the ability to handle complex black-box problems.展开更多
Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advecti...Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications.展开更多
In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back proj...In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks.展开更多
The aim of this study is to discipline construction in our hospital.The Delphi method was used to construct the constituent elements and specific connotations of the core competence of HCPs,and the analytic hierarchy ...The aim of this study is to discipline construction in our hospital.The Delphi method was used to construct the constituent elements and specific connotations of the core competence of HCPs,and the analytic hierarchy process(AHP)was used to determine the index weight.A total of 19 experts were included,all with intermediate or higher professional titles.The positive coefficients of experts in the two rounds of consultation were all 100%.The judgment basis of experts is 0.895,the degree of familiarity is 0.842,and the coefficient of authority is 0.868.The Kendall harmony coefficients of the first,second,and third-level indicators were 0.381,0.383,and 0.320,respectively.The expert coordination degree was tested by x^(2) test,the P values were all less than 0.05,indicating that the degree of expert coordination was well.After two rounds of letter inquiry,an evaluation index system of core competence of HCPs with professional accomplishment,theoretical knowledge,basic skills,professional skills,and professional development ability as the main framework was formed,including 5 first-level indicators,18 second-level indicators,and 62 third-level indicators.Based on the Delphi and AHP methods,the index system of HCPs'core competence established has high authority and scientificity,to provide the theoretical basis for the standardized training and comprehensive evaluation of HCPs.展开更多
In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers a...In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches.展开更多
As a novel structural and functional material,porous titanium and its alloys have been widely used in the aerospace,marine engineering and biomedical fields due to their high corrosion resistance,low density,good bioc...As a novel structural and functional material,porous titanium and its alloys have been widely used in the aerospace,marine engineering and biomedical fields due to their high corrosion resistance,low density,good biocompatibility and excellent mechanical properties.Therefore,in this paper,a comprehensive review of powder metallurgy(PM)(including additive manufacturing(AM)processes)for fabricating porous titanium is firstly covered in terms of their working principles,capabilities,shortcomings and strengths.Simultaneously,the influencing factors of various methods on final pore structure of porous Ti are involved.Secondly,a summary of the chemical methods(CM)to obtain the porous Ti is also provided,such as dealloying method and reduction method.Finally,the tendency and direction of preparation technology as well as application of porous titanium were prospected.展开更多
Based on the high flux synchrotron X-ray of the Shanghai Synchrotron Radiation Facility (SSRF), high precision 3D digital models of diesel nozzle tips have been established by X-ray micro-tomography technology, which ...Based on the high flux synchrotron X-ray of the Shanghai Synchrotron Radiation Facility (SSRF), high precision 3D digital models of diesel nozzle tips have been established by X-ray micro-tomography technology, which reveal the internal surfaces and structures of orifices. To analyze the machining precision and characteristics of orifice processing methods, an ap- proach is presented based on the parameters of the internal structures of nozzle orifices, including the nozzle diameter, the orifice inner surface waviness, the eccentricity distance and the angle between orifices. Using this approach, two kinds of nozzle orifice processing methods, computerized numerical control drilling and electric discharge machining, have been studied and compared. The results show that this approach enables a simple, direct, and comprehensive contrastive analysis of nozzle orifice processing methods. When processing a single orifice, the electric discharge machining method has obvious advantages. However, when there are multiple orifices, the error levels of the two methods are similar in relation to the symmetry of distribution of the orifices.展开更多
基金partially supported by the Singapore Ministry of National Development and the National Research Foundation,Prime Minister’s Office,Singapore,under the Land and Liveability National Innovation Challenge(L2 NIC)Research Program(Grant No.L2NICCFP2-2015-1)by the National Research Foundation(NRF)of Singapore,under the Virtual Singapore program(Grant No.NRF2019VSG-GMS-001).
文摘Accurate determination of rockhead is crucial for underground construction.Traditionally,borehole data are mainly used for this purpose.However,borehole drilling is costly,time-consuming,and sparsely distributed.Non-invasive geophysical methods,particularly those using passive seismic surface waves,have emerged as viable alternatives for geological profiling and rockhead detection.This study proposes three interpretation methods for rockhead determination using passive seismic surface wave data from Microtremor Array Measurement(MAM)and Horizontal-to-Vertical Spectral Ratio(HVSR)tests.These are:(1)the Wavelength-Normalized phase velocity(WN)method in which a nonlinear relationship between rockhead depth and wavelength is established;(2)the Statistically Determined-shear wave velocity(SD-V_(s))method in which the representative V_(s) value for rockhead is automatically determined using a statistical method;and(3)the empirical HVSR method in which the rockhead is determined by interpreting resonant frequencies using a reliably calibrated empirical equation.These methods were implemented to determine rockhead depths at 28 locations across two distinct geological formations in Singapore,and the results were evaluated using borehole data.The WN method can determine rockhead depths accurately and reliably with minimal absolute errors(average RMSE=3.11 m),demonstrating robust performance across both geological formations.Its advantage lies in interpreting dispersion curves alone,without the need for the inversion process.The SD-V_(s) method is practical in engineering practice owing to its simplicity.The empirical HVSR method reasonably determines rockhead depths with moderate accuracy,benefiting from a reliably calibrated empirical equation.
基金the National Natural Science Foundation of China(Grant Nos.52308403 and 52079068)the Yunlong Lake Laboratory of Deep Underground Science and Engineering(No.104023005)the China Postdoctoral Science Foundation(Grant No.2023M731998)for funding provided to this work.
文摘The uniaxial compressive strength(UCS)of rocks is a vital geomechanical parameter widely used for rock mass classification,stability analysis,and engineering design in rock engineering.Various UCS testing methods and apparatuses have been proposed over the past few decades.The objective of the present study is to summarize the status and development in theories,test apparatuses,data processing of the existing testing methods for UCS measurement.It starts with elaborating the theories of these test methods.Then the test apparatus and development trends for UCS measurement are summarized,followed by a discussion on rock specimens for test apparatus,and data processing methods.Next,the method selection for UCS measurement is recommended.It reveals that the rock failure mechanism in the UCS testing methods can be divided into compression-shear,compression-tension,composite failure mode,and no obvious failure mode.The trends of these apparatuses are towards automation,digitization,precision,and multi-modal test.Two size correction methods are commonly used.One is to develop empirical correlation between the measured indices and the specimen size.The other is to use a standard specimen to calculate the size correction factor.Three to five input parameters are commonly utilized in soft computation models to predict the UCS of rocks.The selection of the test methods for the UCS measurement can be carried out according to the testing scenario and the specimen size.The engineers can gain a comprehensive understanding of the UCS testing methods and its potential developments in various rock engineering endeavors.
基金the National Natural Science Foundation of China(No.52275378)the National Key Laboratory for Precision Hot Processing of Metals(6142909200208)。
文摘The big-tapered profiled ring disk is a key component of engines for rockets and missiles.A new forming technology,as called spinning-rolling process,has been proposed previously for the high performance,high efficiency and low-cost manufacturing of the component.Blank design is the key part of plastic forming process design.For spinning-rolling process,the shape and size of the blank play a crucial role in process stability,deformation behavior and dimensional accuracy.So this work proposes a blank design method to determine the geometry structure and sizes of the blank.The mathematical model for calculating the blank size has been deduced based on volume conservation and neutral layer length invariance principle.The FE simulation and corresponding trial production of an actual big-tapered profiled ring disk show that the proposed blank design method is applicative.In order to obtain a preferred blank,the influence rules of blank size determined by different deformation degrees(rolling ratio k)on the spinning-rolling process are revealed by comprehensive FE simulations.Overall considering the process stability,circularity of the deformed ring disk and forming forces,a reasonable range of deformation degree(rolling ratio k)is recommended for the blank design of the new spinning-rolling process.
基金supported by the National Natural Science Foundation of China (No.82304722)Hubei Provincial Natural Science Foundation of China (No.2023AFD154).
文摘Atractylodis Rhizoma,a traditional Chinese medicine with an extensive history of treating gastrointestinal disorders and other diseases,undergoes various processing methods in China to enhance its therapeutic efficacy for specific conditions.However,a comprehensive report detailing the changes in chemical composition and pharmacological effects due to these processing methods is currently lacking.This article provides a systematic review of the commonly employed processing techniques for Atractylodis Rhizoma,including raw Atractylodis Rhizoma(SCZ),bran-fried Atractylodis Rhizoma(FCZ),deep-fried Atractylodis Rhizoma(JCZ),and rice water-processed Atractylodis Rhizoma(MCZ).It examines the alterations in chemical constituents and pharmacological activities resulting from these processes and elucidates the mechanisms of action of the primary components in the various processed forms of Atractylodis Rhizoma in the treatment of gastrointestinal diseases.
基金supported by the National Natural Science Foundation of China(22408227,22238005)the Postdoctoral Research Foundation of China(GZC20231576).
文摘The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and uncertainties during optimization remains a formidable challenge. In this study, a strategy combining interpretable machine learning with metaheuristic optimization algorithms is employed to optimize the reaction process. First, experimental data from a biodiesel production process are collected to establish a database. These data are then used to construct a predictive model based on artificial neural network (ANN) models. Subsequently, interpretable machine learning techniques are applied for quantitative analysis and verification of the model. Finally, four metaheuristic optimization algorithms are coupled with the ANN model to achieve the desired optimization. The research results show that the methanol: palm fatty acid distillate (PFAD) molar ratio contributes the most to the reaction outcome, accounting for 41%. The ANN-simulated annealing (SA) hybrid method is more suitable for this optimization, and the optimal process parameters are a catalyst concentration of 3.00% (mass), a methanol: PFAD molar ratio of 8.67, and a reaction time of 30 min. This study provides deeper insights into reaction process optimization, which will facilitate future applications in various reaction optimization processes.
基金supported by the National Key Basic R&D Program of China via 2023YFA1608303the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0550103)+3 种基金the National Science Foundation of China 12422303,12403024,12222301,12173007,and 12261141690the Postdoctoral Fellowship Program of CPSF under grant Number GZB20240731the Young Data Scientist Project of the National Astronomical Data Center,and the China Post-doctoral Science Foundation No.2023M743447support from the NSFC through grant No.12303039 and No.12261141690.
文摘As a pathfinder of the SiTian project,the Mini-SiTian(MST)Array,employed three commercial CMOS cameras,represents a next-generation,cost-effective optical time-domain survey project.This paper focuses primarily on the precise data processing pipeline designed for wide-field,CMOS-based devices,including the removal of instrumental effects,astrometry,photometry,and flux calibration.When applying this pipeline to approximately3000 observations taken in the Field 02(f02)region by MST,the results demonstrate a remarkable astrometric precision of approximately 70–80 mas(about 0.1 pixel),an impressive calibration accuracy of approximately1 mmag in the MST zero points,and a photometric accuracy of about 4 mmag for bright stars.Our studies demonstrate that MST CMOS can achieve photometric accuracy comparable to that of CCDs,highlighting the feasibility of large-scale CMOS-based optical time-domain surveys and their potential applications for cost optimization in future large-scale time-domain surveys,like the SiTian project.
基金This project is sponsored by The Special Fund of Scientific Instruments of National Natural Science Foundation of China(50127402) and The Geophysical Responses to The High-resolution Exploration for Coal-methane of 973 Program(2002CB211707).
文摘Geological radar probing technology finds wide application in engineering projects. The high-precision characteristics of geologic radar should be studied in connection with fine processing and interpretation. This article discusses such issues as (1) geologic radar noise source and (2) fine processing and interpretation of radar data. It is focused on how to achieve fine processing and interpretation.
文摘Nowadays, it becomes very urgent to find remain oil under the oil shortage worldwide.However, most of simple reservoirs have been discovered and those undiscovered are mostly complex structural, stratigraphic and lithologic ones. Summarized in this paper is the integrated seismic processing/interpretation technique established on the basis of pre-stack AVO processing and interpretation.Information feedbacks occurred between the pre-stack and post-stack processes so as to improve the accuracy in utilization of data and avoid pitfalls in seismic attributes. Through the integration of seismic data with geologic data, parameters that were most essential to describing hydrocarbon characteristics were determined and comprehensively appraised, and regularities of reservoir generation and distribution were described so as to accurately appraise reservoirs, delineate favorite traps and pinpoint wells.
文摘Branching river channels and the coexistence of valleys, ridges, hiils, and slopes'as the result of long-term weathering and erosion form the unique loess topography. The Changqing Geophysical Company, working in these complex conditions, has established a suite of technologies for high-fidelity processing and fine interpretation of seismic data. This article introduces the processes involved in the data processing and interpretation and illustrates the results.
文摘Difficulty discrimination is an important step in autonomous design and interpreting teaching materials development, which is related to scientifi c nature of the materials, teaching effectiveness, and sequential teaching progress. In this paper, we focus on the diffi culty discrimination of interpretation teaching materials on the basis of analytic hierarchy process and natural language processing. We analyze several factors which affect interpretation teaching materials, and we introduce theories of analytic hierarchy process and natural language processing which is intuitive and credible operation basis.
基金Supported by National Key Technology Research and Development Program during the12thFive-Year Plan Period(2011BAI06B01,2011BAC02B04)Special Fund for Traditional Chinese Medicine Scientific Research(201407002)+1 种基金Science and Technology Development Program of Shandong Province(2014GSF119018)Traditional Chinese Medicine Science and Technology Development Program of Shandong Province(2011Z-003-2)~~
文摘Processing method is one of the maln factors affecting the quality of hon-eysuckIe herbs, which is directIy reIated to economic benefits of farmers. This paper compares various processing methods of honeysuckIe to provide some references for deveIoping a suitabIe processing procedure that can be used in Iarge-scale pro-duction and improve herb quality.
基金The Research Platform for the Project of the Application Basic Plan in Sichuan Province(Grant No.2014JY0113)the Project of Department of Science in Sichuan Province(Grant No.14ZA0003)
文摘Taking Terminalia chebula Retz. as the control product, the polyphenolic contents of the processed products in Tibetian, Rubia cordifolia L. processed Terminalia chebula Retz. and Euphorbia fischeriana Steud processed Terminalia chebula Retz. were analyzed by HPLC. Polyphenolic contents increased from 4.54% to 5.69% and 7.46%, respectively, which may lead to the change in their pharmacological effects.
基金support provided by the National Natural Science Foundation of China(22122802,22278044,and 21878028)the Chongqing Science Fund for Distinguished Young Scholars(CSTB2022NSCQ-JQX0021)the Fundamental Research Funds for the Central Universities(2022CDJXY-003).
文摘To equip data-driven dynamic chemical process models with strong interpretability,we develop a light attention–convolution–gate recurrent unit(LACG)architecture with three sub-modules—a basic module,a brand-new light attention module,and a residue module—that are specially designed to learn the general dynamic behavior,transient disturbances,and other input factors of chemical processes,respectively.Combined with a hyperparameter optimization framework,Optuna,the effectiveness of the proposed LACG is tested by distributed control system data-driven modeling experiments on the discharge flowrate of an actual deethanization process.The LACG model provides significant advantages in prediction accuracy and model generalization compared with other models,including the feedforward neural network,convolution neural network,long short-term memory(LSTM),and attention-LSTM.Moreover,compared with the simulation results of a deethanization model built using Aspen Plus Dynamics V12.1,the LACG parameters are demonstrated to be interpretable,and more details on the variable interactions can be observed from the model parameters in comparison with the traditional interpretable model attention-LSTM.This contribution enriches interpretable machine learning knowledge and provides a reliable method with high accuracy for actual chemical process modeling,paving a route to intelligent manufacturing.
基金supported by the major advanced research project of Civil Aerospace from State Administration of Science,Technology and Industry of China.
文摘The distribution-free P-box process serves as an effective quantification model for timevarying uncertainties in dynamical systems when only imprecise probabilistic information is available.However,its application to nonlinear systems remains limited due to excessive computation.This work develops an efficient method for propagating distribution-free P-box processes in nonlinear dynamics.First,using the Covariance Analysis Describing Equation Technique(CADET),the dynamic problems with P-box processes are transformed into interval Ordinary Differential Equations(ODEs).These equations provide the Mean-and-Covariance(MAC)bounds of the system responses in relation to the MAC bounds of P-box-process excitations.They also separate the previously coupled P-box analysis and nonlinear-dynamic simulations into two sequential steps,including the MAC bound analysis of excitations and the MAC bounds calculation of responses by solving the interval ODEs.Afterward,a Gaussian assumption of the CADET is extended to the P-box form,i.e.,the responses are approximate parametric Gaussian P-box processes.As a result,the probability bounds of the responses are approximated by using the solutions of the interval ODEs.Moreover,the Chebyshev method is introduced and modified to efficiently solve the interval ODEs.The proposed method is validated based on test cases,including a duffing oscillator,a vehicle ride,and an engineering black-box problem of launch vehicle trajectory.Compared to the reference solutions based on the Monte Carlo method,with relative errors of less than 3%,the proposed method requires less than 0.2% calculation time.The proposed method also possesses the ability to handle complex black-box problems.
基金supported as part of the Center for Hierarchical Waste Form Materials,an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Science,Basic Energy Sciences under Award No.DE-SC0016574.
文摘Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications.
基金supported by the National Key R&D Program of China(No.2022YFF0800601)National Scientific Foundation of China(Nos.41930103 and 41774047).
文摘In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks.
文摘The aim of this study is to discipline construction in our hospital.The Delphi method was used to construct the constituent elements and specific connotations of the core competence of HCPs,and the analytic hierarchy process(AHP)was used to determine the index weight.A total of 19 experts were included,all with intermediate or higher professional titles.The positive coefficients of experts in the two rounds of consultation were all 100%.The judgment basis of experts is 0.895,the degree of familiarity is 0.842,and the coefficient of authority is 0.868.The Kendall harmony coefficients of the first,second,and third-level indicators were 0.381,0.383,and 0.320,respectively.The expert coordination degree was tested by x^(2) test,the P values were all less than 0.05,indicating that the degree of expert coordination was well.After two rounds of letter inquiry,an evaluation index system of core competence of HCPs with professional accomplishment,theoretical knowledge,basic skills,professional skills,and professional development ability as the main framework was formed,including 5 first-level indicators,18 second-level indicators,and 62 third-level indicators.Based on the Delphi and AHP methods,the index system of HCPs'core competence established has high authority and scientificity,to provide the theoretical basis for the standardized training and comprehensive evaluation of HCPs.
基金supported by the National Key R&D Program of China(2017YFF0205600)the International Research Cooperation Seed Fund of Beijing University of Technology(2018A08)+1 种基金Science and Technology Project of Beijing Municipal Commission of Transport(2018-kjc-01-213)the Construction of Service Capability of Scientific and Technological Innovation-Municipal Level of Fundamental Research Funds(Scientific Research Categories)of Beijing City(PXM2019_014204_500032).
文摘In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches.
基金financially supported by the National Natural Science Foundation of China(Nos.51777152 and52202296)the Natural Science Foundation of Shaanxi Province(Nos.2022JZ-01 and 2022JQ-048)。
文摘As a novel structural and functional material,porous titanium and its alloys have been widely used in the aerospace,marine engineering and biomedical fields due to their high corrosion resistance,low density,good biocompatibility and excellent mechanical properties.Therefore,in this paper,a comprehensive review of powder metallurgy(PM)(including additive manufacturing(AM)processes)for fabricating porous titanium is firstly covered in terms of their working principles,capabilities,shortcomings and strengths.Simultaneously,the influencing factors of various methods on final pore structure of porous Ti are involved.Secondly,a summary of the chemical methods(CM)to obtain the porous Ti is also provided,such as dealloying method and reduction method.Finally,the tendency and direction of preparation technology as well as application of porous titanium were prospected.
基金Project supported by the National Natural Science Foundation of China (Nos. 50946052, 51076118 and 51006075)the New Century Excellent Talents (No. NCET-10-0605)+2 种基金the Shanghai Rising-Star Program (No. 11QH1402500)the Fundamental Research Funds for the Central Universitiesthe Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 200802471052)
文摘Based on the high flux synchrotron X-ray of the Shanghai Synchrotron Radiation Facility (SSRF), high precision 3D digital models of diesel nozzle tips have been established by X-ray micro-tomography technology, which reveal the internal surfaces and structures of orifices. To analyze the machining precision and characteristics of orifice processing methods, an ap- proach is presented based on the parameters of the internal structures of nozzle orifices, including the nozzle diameter, the orifice inner surface waviness, the eccentricity distance and the angle between orifices. Using this approach, two kinds of nozzle orifice processing methods, computerized numerical control drilling and electric discharge machining, have been studied and compared. The results show that this approach enables a simple, direct, and comprehensive contrastive analysis of nozzle orifice processing methods. When processing a single orifice, the electric discharge machining method has obvious advantages. However, when there are multiple orifices, the error levels of the two methods are similar in relation to the symmetry of distribution of the orifices.