Zr modification is an effective method for improving hot-cracking resistance and elevated-temperature mechanical properties during laser powder bed fusion(L-PBF)of traditional medium and high strength wrought aluminum...Zr modification is an effective method for improving hot-cracking resistance and elevated-temperature mechanical properties during laser powder bed fusion(L-PBF)of traditional medium and high strength wrought aluminum alloys.This study investigated the l-PBF processability and elevated-temperature mechanical properties of a Zr-modified 2024Al alloy.It was found that the hot-cracking susceptibility increased with the increased scanning speed,which was in reasonable agreement with the modified Rappaz-Drezet-Gremaud criterion.Furthermore,the primary L1_(2)-Al_(3)Zr precipitates,which acted as ef-ficient nucleation sites,precipitated at the fusion boundary of the melt pool,leading to the formation of a heterogeneous grain structure.The yield strength(YS)of the as-fabricated samples at 150,250,and 350℃was 363,210,and 48 MPa,respectively.Despite the slight decrease to 360 MPa of the YS when tested at 150℃,owing to the additional precipitate strengthening from the L1_(2)-Al_(3)Zr precipitates,the YS achieved yield strengths of 253 and 69 MPa,an increase of 20.5%and 30.4%,when tested at 250 and 350℃,respectively.The yield strengths in both the as-fabricated and T6-treated conditions tested at 150 and 250℃were comparable to those of casting Al-Cu-Mg-Ag alloys and superior to those of traditionally heat-resistant 2219-T6 and 2618-T6 of Al-Cu alloys.展开更多
The effect of pan-milling on morphological structure,processability and properties of PVC was studied throughSEM,FTIR,granulometer,GPC and mechanical properties test in the hope of gaining ease in operation,needless o...The effect of pan-milling on morphological structure,processability and properties of PVC was studied throughSEM,FTIR,granulometer,GPC and mechanical properties test in the hope of gaining ease in operation,needless ofplasticizers,a clean and efficient route for improving the processability of PVC through stress-induced reactions,fulfilling the idea of“plasticizing PVC by itself”.The experimental results show that during pan-milling at ambienttemperature,within 2-3 min,the microcrystalline structure of PVC becomes indistinct,the grain size of PVC is reducedfrom 130-160 μm to 1-50 μm the molecular weight of PVC is slightly decreased,the variation of molecular weightdistribution is indistinct,the plasticizing time and torque at balance drop a great deal from 71-132 s to 31-33 s and from18.2-22.1 Nm to 14.7-18.4 Nm,respectively,the processability of PVC is markedly improved,and the mechanicalproperties get enhanced too.展开更多
The purpose of this article is twofold.First,it explores the order of the development of nominal and verbal gender of Amharic,which is one of the Ethio-Semitic languages.Second,it provides empirical evidence for the t...The purpose of this article is twofold.First,it explores the order of the development of nominal and verbal gender of Amharic,which is one of the Ethio-Semitic languages.Second,it provides empirical evidence for the typological plausibility of processability theory(PT).In fact,PT has been tested in typologically different languages(e.g.,English,Italian,and Japan);however,it does not have any validation from Ethiopian languages in general and Ethio-Semitic languages in particular yet.Relevant data was collected from sixteen respondents via picture description tasks,short storytelling,interviews,story re-telling,and spot the difference tasks.Distributional analysis was conducted for the analysis,and the point of emergence of target structures was determined using the emergence criteria.Accordingly,the result shows that the development of gender assignment is compatible with processability theory’s predictions in that lexical procedure precedes phrasal procedure,which is followed by S-procedure.Moreover,the masculine gender emerged earlier than its feminine counterpart at all developmental stages.However,subject agreement markers in pro-drop context emerged at stage two preceding subject verb agreement.This finding is against processability theory’s claim that suggests subject agreement markers only emerge at stage four of the processability hierarchy disregarding their stages of development in pro-drop context in particular.展开更多
Metal-organic frameworks(MOFs) show great potential for various applications, but many of them suffer from the drawbacks of hydrolysis propensity and poor processability. Herein, we employ polymers of intrinsic microp...Metal-organic frameworks(MOFs) show great potential for various applications, but many of them suffer from the drawbacks of hydrolysis propensity and poor processability. Herein, we employ polymers of intrinsic microporosity(PIMs) with hydrophobic pores to decorate MOFs toward substantially improved water stability and shapeability. Through simple PIM-1 decoration, the sub-5 nm polymer layers can be uniformly deposited on MOF surfaces with almost no deterioration in porosity. Owing to the existence of superhydrophobic coating and the obstruction of water entrance into MOFs, the PIM-1 coated Cu BTC exhibits impressive water resistance and excellent pore preservation ability after exposure in water, even in acidic and alkaline solutions. Moreover, polymer decoration improves the processability of MOFs, while various MOF/PIM-1 bulk wafers and oil-water separators can be obtained straightforwardly.展开更多
There is usually a trade-off between the mechanical properties and processability of polymers because the mechanisms underlying these properties are mutually exclusive.Herein,we discovered that rationally designed cro...There is usually a trade-off between the mechanical properties and processability of polymers because the mechanisms underlying these properties are mutually exclusive.Herein,we discovered that rationally designed crosslinking can simultaneously enhance both the mechanical properties and processability of polymers.To achieve this,a dynamically dissociable crosslinker was designed using a reversible Diels-Alder reaction that forms a stable covalently crosslinked network from the linear polymer.During processing,the crosslinked network dissociates to release a small-molecule crosslinking agent,which increases the free volume of the polymer and weakens the non-covalent interactions between the molecular chains.Consequently,the polymer exhibits superior processing performance compared to its linear polymer counterpart.A polyurethane model was designed to demonstrate this strategy.After crosslinking,the strength and toughness of the polyurethane increased significantly compared to those of the linear polyurethane counterpart.Additionally,the solid-liquid transition temperature of the polyurethane decreased from 149℃ to 118℃,and the processing viscosity decreased by 48%.An application of this technology was demonstrated by producing fibers with the highest tensile strength(78.7 MPa)at the lowest processing temperature(125℃)reported for meltspun crosslinked fibers.展开更多
Ultra-high molecular weight polyethylene(UHMWPE,M_(w)>10^(6)g mol^(−1))has been prepared using slurryphase titanium permethylindenyl-phenoxy(PHENI^(*))catalysts.Four strategies have been investigated for improving ...Ultra-high molecular weight polyethylene(UHMWPE,M_(w)>10^(6)g mol^(−1))has been prepared using slurryphase titanium permethylindenyl-phenoxy(PHENI^(*))catalysts.Four strategies have been investigated for improving the melt processability of UHMWPE,which is the chief limiting factor to the applications of this high-performance polymer.1)Active site engineering was used to explore the entanglement density in the resulting polymer,with substantially disentangled PE identified through thermal and rheological characterisation.2)Hydrogen and ZnEt2 were employed as chain transfer agents to modulate the polyethylene molecular weight and distribution(MWD).A sequential reactivity protocol using ZnEt2 was able to produce bimodal UHMWPE with improved processability.3)MWD tuning was further investigated using multisite catalysts,with the reaction conditions and Ti:Zr ratio able to control MWD to essentially arbitrary shapes.The inclusion of low molecular weight fractions into UHMWPE improves the processability without compromising mechanical characteristics.4)Polymer-reinforced composite blends of UHMWPE with either HDPE or LDPE as a highly processable matrix were extruded and explored,with polymer miscibility and mechanical properties studied in detail.展开更多
Inorganic semiconductors are widely used in many fields such as information,energy,and electronics due to their rich functionalities.The chemical bonds in inorganic semiconductors are usually directional covalent bond...Inorganic semiconductors are widely used in many fields such as information,energy,and electronics due to their rich functionalities.The chemical bonds in inorganic semiconductors are usually directional covalent bonds,which inhibit the movement of dislocations.Thus,being different with metals and alloys,inorganic semiconductors are usually brittle at room temperature,with very small strain below 1%and poor machinability[1].Many metalworking techniques,such as the cold-forming processing,which is a crucial means for the cost-effective production of metal and alloy parts,cannot be applied to most inorganic semiconductors,greatly limiting their low-cost fabrication and applications in flexible electronics.展开更多
一、作为哲学的AI for Process(一)郭为的哲学思想1.郭为是谁郭为是谁?他是一位哲学家。顺便说,他同时还领导着神州数码。为什么说郭为是哲学家呢?因为他在著作中谈到高深的哲学,如“数据如水,奔流不息,无界融合”。他引述古希腊哲学家...一、作为哲学的AI for Process(一)郭为的哲学思想1.郭为是谁郭为是谁?他是一位哲学家。顺便说,他同时还领导着神州数码。为什么说郭为是哲学家呢?因为他在著作中谈到高深的哲学,如“数据如水,奔流不息,无界融合”。他引述古希腊哲学家赫拉克利特所说的“万物流转”,又说“你不能两次踏进同一条河流,因为新的水不断地流过你的身旁”,他所表达的意思是“世界上唯一不变的就是变化”。展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing addit...Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.展开更多
Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational,organizational,or regulatory factors.These changes,referred to as incremental con...Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational,organizational,or regulatory factors.These changes,referred to as incremental concept drift,gradually alter the behavior or structure of processes,making their detection and localization a challenging task.Traditional process mining techniques frequently assume process stationarity and are limited in their ability to detect such drift,particularly from a control-flow perspective.The objective of this research is to develop an interpretable and robust framework capable of detecting and localizing incremental concept drift in event logs,with a specific emphasis on the structural evolution of control-flow semantics in processes.We propose DriftXMiner,a control-flow-aware hybrid framework that combines statistical,machine learning,and process model analysis techniques.The approach comprises three key components:(1)Cumulative Drift Scanner that tracks directional statistical deviations to detect early drift signals;(2)a Temporal Clustering and Drift-Aware Forest Ensemble(DAFE)to capture distributional and classification-level changes in process behavior;and(3)Petri net-based process model reconstruction,which enables the precise localization of structural drift using transition deviation metrics and replay fitness scores.Experimental validation on the BPI Challenge 2017 event log demonstrates that DriftXMiner effectively identifies and localizes gradual and incremental process drift over time.The framework achieves a detection accuracy of 92.5%,a localization precision of 90.3%,and an F1-score of 0.91,outperforming competitive baselines such as CUSUM+Histograms and ADWIN+Alpha Miner.Visual analyses further confirm that identified drift points align with transitions in control-flow models and behavioral cluster structures.DriftXMiner offers a novel and interpretable solution for incremental concept drift detection and localization in dynamic,process-aware systems.By integrating statistical signal accumulation,temporal behavior profiling,and structural process mining,the framework enables finegrained drift explanation and supports adaptive process intelligence in evolving environments.Its modular architecture supports extension to streaming data and real-time monitoring contexts.展开更多
Calcium carboaluminate was successfully prepared by a simple and efficient one-step method,and the effects of temperature,time,raw material ratio,carbonate type and heavy CaCO_(3)particle size on the products were inv...Calcium carboaluminate was successfully prepared by a simple and efficient one-step method,and the effects of temperature,time,raw material ratio,carbonate type and heavy CaCO_(3)particle size on the products were investigated in detail.The results show that increasing the temperature and extending the reaction time can enhance the yield and crystallisation degree of calcium carboaluminate.The proportion of Ca(OH)_(2),Al(OH)_(3)and CaCO_(3)is a pivotal factor in the synthesis of calcium carboaluminate.When the ratio of Ca(OH)_(2),Al(OH)_(3)and CaCO_(3)is 3:2:1,the diffraction peaks of calcium carboaluminate in the products are relatively sharp and strong.Furthermore,the purity and crystallinity of the synthesized calcium carboaluminate are higher when heavy CaCO_(3)with the particle size of 120 mesh is used as the carbonate raw material,in comparison to CO_(2),Na_(2)CO_(3)and light CaCO_(3).As results,a simple and efficient method for the synthesis of calcium carboaluminate is proposed,which will provide a solid experimental foundation and technical support for the industrial application of calcium carboaluminate in marine concrete.展开更多
The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurode...The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.展开更多
Graphite,encompassing both natural graphite and synthetic graphite,and graphene,have been extensively utilized and investigated as anode materials and additives in lithium-ion batteries(LIBs).In the pursuit of carbon ...Graphite,encompassing both natural graphite and synthetic graphite,and graphene,have been extensively utilized and investigated as anode materials and additives in lithium-ion batteries(LIBs).In the pursuit of carbon neutrality,LIBs are expected to play a pivotal role in reducing CO_(2)emissions by decreasing reliance on fossil fuels and enabling the integration of renewable energy sources.Owing to their technological maturity and exceptional electrochemical performance,the global production of graphite and graphene for LIBs is projected to continue expanding.Over the past decades,numerous researchers have concentrated on reducing the material and energy input whilst optimising the electrochemical performance of graphite and graphene,through novel synthesis methods and various modifications at the laboratory scale.This review provides a comprehensive examination of the manufacturing methods,environmental impact,research progress,and challenges associated with graphite and graphene in LIBs from an industrial perspective,with a particular focus on the carbon footprint of production processes.Additionally,it considers emerging challenges and future development directions of graphite and graphene,offering significant insights for ongoing and future research in the field of green LIBs.展开更多
Achieving high-energy density remains a key objective for advanced energy storage systems.However,challenges,such as poor cathode conductivity,anode dendrite formation,polysulfide shuttling,and electrolyte degradation...Achieving high-energy density remains a key objective for advanced energy storage systems.However,challenges,such as poor cathode conductivity,anode dendrite formation,polysulfide shuttling,and electrolyte degradation,continue to limit performance and stability.Molecular and ionic dipole interactions have emerged as an effective strategy to address these issues by regulating ionic transport,modulating solvation structures,optimizing interfacial chemistry,and enhancing charge transfer kinetics.These interactions also stabilize electrode interfaces,suppress side reactions,and mitigate anode corrosion,collectively improving the durability of high-energy batteries.A deeper understanding of these mechanisms is essential to guide the design of next-generation battery materials.Herein,this review summarizes the development,classification,and advantages of dipole interactions in high-energy batteries.The roles of dipoles,including facilitating ion transport,controlling solvation dynamics,stabilizing the electric double layer,optimizing solid electrolyte interphase and cathode–electrolyte interface layers,and inhibiting parasitic reactions—are comprehensively discussed.Finally,perspectives on future research directions are proposed to advance dipole-enabled strategies for high-performance energy storage.This review aims to provide insights into the rational design of dipole-interactive systems and promote the progress of electrochemical energy storage technologies.展开更多
To explore the best preparation process for terminal blend(TB)composite-modified asphalt and to filter its formulation with excellent performance,this study evaluates the performance of TB composite modified asphalt b...To explore the best preparation process for terminal blend(TB)composite-modified asphalt and to filter its formulation with excellent performance,this study evaluates the performance of TB composite modified asphalt by physical property index,microscopic morphology,rheological testing,and infrared spectroscopy on multiple scales.The results show that the best preparation process for TB-modified asphalt is stirring at 260℃ for 4 h at 400 rpm,which significantly reduces the modification time of the asphalt.From a physical property viewpoint,the TB composite-modified asphalt sample with 5% styrene-butadiene-styrene(SBS)+1% aromatics+0.1% sulfur exhibits high-comprehensive,high-and low-temperature properties.More-over,its crosslinked mesh structure comprises black rubber particles uniformly interwoven in the middle,which further enhances the performance of the asphalt and results in an excellent performance formulation.In addition,the sample with 5%SBS content has a higher G*value and smaller δ value than that with 3%SBS content,indicating that its high-temperature resistance is improved.The effect of adding 3%SBS content on the viscoelastic ratio is,to some extent,less than that caused by 20% rubber powder.展开更多
Machine learning-assisted methods for rapid and accurate prediction of temperature field,mushy zone,and grain size were proposed for the heating−cooling combined mold(HCCM)horizontal continuous casting of C70250 alloy...Machine learning-assisted methods for rapid and accurate prediction of temperature field,mushy zone,and grain size were proposed for the heating−cooling combined mold(HCCM)horizontal continuous casting of C70250 alloy plates.First,finite element simulations of casting processes were carried out with various parameters to build a dataset.Subsequently,different machine learning algorithms were employed to achieve high precision in predicting temperature fields,mushy zone locations,mushy zone inclination angle,and billet grain size.Finally,the process parameters were quickly optimized using a strategy consisting of random generation,prediction,and screening,allowing the mushy zone to be controlled to the desired target.The optimized parameters are 1234℃for heating mold temperature,47 mm/min for casting speed,and 10 L/min for cooling water flow rate.The optimized mushy zone is located in the middle of the second heat insulation section and has an inclination angle of roughly 7°.展开更多
The microbial degradation of aromatic organic pollutants is incomplete due to their metabolic characteristics,which can easily produce certain highly toxic intermediates.Therefore,this article designs a dual template ...The microbial degradation of aromatic organic pollutants is incomplete due to their metabolic characteristics,which can easily produce certain highly toxic intermediates.Therefore,this article designs a dual template molec-ularly imprinted sensor(DTMIP/Fe-Mn@C)for iron manganese metal nanomaterials,prepared Fe-Mn@C com-posite materials by a one pot method were coated on the surface of glassy carbon electrodes and covered with molecularly imprinted membranes through electropolymerization and elution methods,achieving real-time de-tection of specific intermediate products 2-methylbutyric acid(2-MBA)and 3-methylbutyric acid(3-MBA)de-graded by azo dyes.In order to determine the detection sensitivity and intensity range of the sensor,optimization experiments were conducted on various parameters that affect the detection performance,such as the type of func-tional monomer and its composition ratio with the template molecule,detection time window,environmental pH value,etc.Finally,o-Phenylenediamine was determined as the functional monomer,with a molar ratio of 1:1:6 to the template molecules 2-MBA and 3-MBA.Electrochemical testing was conducted in a neutral environment with an incubation time of 5 min and pH=7.The results indicate that the sensor has a relatively wide detection range,high sensitivity,obvious recognition features,and excellent stability for 2-MBA and 3-MBA.This new dual template molecularly imprinted sensor can quickly and accurately determine the safety of highly toxic interme-diates in the degradation process of aromatic organic pollutants,providing a theoretical basis and application potential for trace detection and real-time monitoring.展开更多
Unwarranted death of neurons is a major cause of neurodegenerative diseases.Since mature neurons are postmitotic and do not replicate,their death usually constitutes an irreversible step in pathology.A logical strateg...Unwarranted death of neurons is a major cause of neurodegenerative diseases.Since mature neurons are postmitotic and do not replicate,their death usually constitutes an irreversible step in pathology.A logical strategy to prevent neurodegeneration would then be to save all neurons that are still alive,i.e.protecting the ones that are still healthy as well as trying to rescue the ones that are damaged and in the process of dying.Regarding the latter,recent experiments have indicated that the possibility of reversing the cell death process and rescuing dying cells is more significant than previously anticipated.In many situations,the elimination of the cell death trigger alone enables dying cells to spontaneously repair their damage,recover,and survive.In this review,we explore the factors,which determine the fate of neurons engaged in the cell death process.A deeper insight into cell death mechanisms and the intrinsic capacity of cells to recover could pave the way for novel therapeutic approaches to neurodegenerative diseases.展开更多
Oil-fired construction machinery(OCM)is a major source of urban air pollutants and CO_(2) emissions,and elec-trification is a crucial pathway for improving air quality and achieving China’s dual carbon goals;however,...Oil-fired construction machinery(OCM)is a major source of urban air pollutants and CO_(2) emissions,and elec-trification is a crucial pathway for improving air quality and achieving China’s dual carbon goals;however,its feasibility has not been fully explored.This study uses data envelopment analysis and the analytic hierarchy process to establish a development potential index,covering technical efficiency,economic cost,application sce-narios,and charging time and range,with an empirical analysis conducted in Beijing.The findings indicated the high feasibility of replacing OCM with electric alternatives,especially within the low-power range.Based on 2023 registered coding dat1,it is projected that by 2030,electrification could reduce regional average con-centrations of CO,NO_(x),PM_(2.5) and VOCs by 12.2%to 56.4%and reduce CO_(2) by 11.7%to 56.9%.Owing to economic considerations,small-and medium-sized machinery are particularly feasible for electrification.Key recommendations include prioritizing the electrification of forklifts,lifting platforms,and small-sized machinery in high-emission areas,particularly in central urban districts.Policies such as carbon taxes,carbon markets,and performance grading systems are suggested to incentivize electrification,along with expanding high-emission restriction zones and improving energy infrastructure to support widespread electrification.展开更多
基金The work was financially supported by the National Key R&D Program of China(No.2016YFB1100100)the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(No.2020-TZ-02)+3 种基金the Advance Research Projects in the Field of Manned Spaceflight(No.040302)the Shanghai Aerospace Science and Technology Innovation Fund Project(No.SAST2018-066)This work was also supported by the“Fundamental Research Funds for the Central Universities”(No.G2021KY05104)the“Natural Science Basis Research Plan in Shaanxi Province of China”(No.2022JQ-479).We would like to thank Editage(www.editage.com)for En-glish language editing.
文摘Zr modification is an effective method for improving hot-cracking resistance and elevated-temperature mechanical properties during laser powder bed fusion(L-PBF)of traditional medium and high strength wrought aluminum alloys.This study investigated the l-PBF processability and elevated-temperature mechanical properties of a Zr-modified 2024Al alloy.It was found that the hot-cracking susceptibility increased with the increased scanning speed,which was in reasonable agreement with the modified Rappaz-Drezet-Gremaud criterion.Furthermore,the primary L1_(2)-Al_(3)Zr precipitates,which acted as ef-ficient nucleation sites,precipitated at the fusion boundary of the melt pool,leading to the formation of a heterogeneous grain structure.The yield strength(YS)of the as-fabricated samples at 150,250,and 350℃was 363,210,and 48 MPa,respectively.Despite the slight decrease to 360 MPa of the YS when tested at 150℃,owing to the additional precipitate strengthening from the L1_(2)-Al_(3)Zr precipitates,the YS achieved yield strengths of 253 and 69 MPa,an increase of 20.5%and 30.4%,when tested at 250 and 350℃,respectively.The yield strengths in both the as-fabricated and T6-treated conditions tested at 150 and 250℃were comparable to those of casting Al-Cu-Mg-Ag alloys and superior to those of traditionally heat-resistant 2219-T6 and 2618-T6 of Al-Cu alloys.
基金Subsidized by the Special Funds for Major State Basic Research Projects of China(Contract/grant number:199064809)
文摘The effect of pan-milling on morphological structure,processability and properties of PVC was studied throughSEM,FTIR,granulometer,GPC and mechanical properties test in the hope of gaining ease in operation,needless ofplasticizers,a clean and efficient route for improving the processability of PVC through stress-induced reactions,fulfilling the idea of“plasticizing PVC by itself”.The experimental results show that during pan-milling at ambienttemperature,within 2-3 min,the microcrystalline structure of PVC becomes indistinct,the grain size of PVC is reducedfrom 130-160 μm to 1-50 μm the molecular weight of PVC is slightly decreased,the variation of molecular weightdistribution is indistinct,the plasticizing time and torque at balance drop a great deal from 71-132 s to 31-33 s and from18.2-22.1 Nm to 14.7-18.4 Nm,respectively,the processability of PVC is markedly improved,and the mechanicalproperties get enhanced too.
文摘The purpose of this article is twofold.First,it explores the order of the development of nominal and verbal gender of Amharic,which is one of the Ethio-Semitic languages.Second,it provides empirical evidence for the typological plausibility of processability theory(PT).In fact,PT has been tested in typologically different languages(e.g.,English,Italian,and Japan);however,it does not have any validation from Ethiopian languages in general and Ethio-Semitic languages in particular yet.Relevant data was collected from sixteen respondents via picture description tasks,short storytelling,interviews,story re-telling,and spot the difference tasks.Distributional analysis was conducted for the analysis,and the point of emergence of target structures was determined using the emergence criteria.Accordingly,the result shows that the development of gender assignment is compatible with processability theory’s predictions in that lexical procedure precedes phrasal procedure,which is followed by S-procedure.Moreover,the masculine gender emerged earlier than its feminine counterpart at all developmental stages.However,subject agreement markers in pro-drop context emerged at stage two preceding subject verb agreement.This finding is against processability theory’s claim that suggests subject agreement markers only emerge at stage four of the processability hierarchy disregarding their stages of development in pro-drop context in particular.
基金financially supported by National Natural Science Foundation of China (No. 51708252)Guangdong Basic and Applied Basic Research Foundation (Nos. 2020B1515120036,2021A1515010187)。
文摘Metal-organic frameworks(MOFs) show great potential for various applications, but many of them suffer from the drawbacks of hydrolysis propensity and poor processability. Herein, we employ polymers of intrinsic microporosity(PIMs) with hydrophobic pores to decorate MOFs toward substantially improved water stability and shapeability. Through simple PIM-1 decoration, the sub-5 nm polymer layers can be uniformly deposited on MOF surfaces with almost no deterioration in porosity. Owing to the existence of superhydrophobic coating and the obstruction of water entrance into MOFs, the PIM-1 coated Cu BTC exhibits impressive water resistance and excellent pore preservation ability after exposure in water, even in acidic and alkaline solutions. Moreover, polymer decoration improves the processability of MOFs, while various MOF/PIM-1 bulk wafers and oil-water separators can be obtained straightforwardly.
基金supported by the National Key Research and Development Program of China(2021YFC2101800)the National Natural Science Foundation of China(52473004,52173117)+1 种基金the Science and Technology Commission of Shanghai Municipality(20DZ2254900)the Fundamental Research Funds for the Central Universities(CUSF-DH-T-2024005)。
文摘There is usually a trade-off between the mechanical properties and processability of polymers because the mechanisms underlying these properties are mutually exclusive.Herein,we discovered that rationally designed crosslinking can simultaneously enhance both the mechanical properties and processability of polymers.To achieve this,a dynamically dissociable crosslinker was designed using a reversible Diels-Alder reaction that forms a stable covalently crosslinked network from the linear polymer.During processing,the crosslinked network dissociates to release a small-molecule crosslinking agent,which increases the free volume of the polymer and weakens the non-covalent interactions between the molecular chains.Consequently,the polymer exhibits superior processing performance compared to its linear polymer counterpart.A polyurethane model was designed to demonstrate this strategy.After crosslinking,the strength and toughness of the polyurethane increased significantly compared to those of the linear polyurethane counterpart.Additionally,the solid-liquid transition temperature of the polyurethane decreased from 149℃ to 118℃,and the processing viscosity decreased by 48%.An application of this technology was demonstrated by producing fibers with the highest tensile strength(78.7 MPa)at the lowest processing temperature(125℃)reported for meltspun crosslinked fibers.
基金funding from the Engineering and Physical Sciences Research Council Impact Acceleration Account(EP/X525777/1).
文摘Ultra-high molecular weight polyethylene(UHMWPE,M_(w)>10^(6)g mol^(−1))has been prepared using slurryphase titanium permethylindenyl-phenoxy(PHENI^(*))catalysts.Four strategies have been investigated for improving the melt processability of UHMWPE,which is the chief limiting factor to the applications of this high-performance polymer.1)Active site engineering was used to explore the entanglement density in the resulting polymer,with substantially disentangled PE identified through thermal and rheological characterisation.2)Hydrogen and ZnEt2 were employed as chain transfer agents to modulate the polyethylene molecular weight and distribution(MWD).A sequential reactivity protocol using ZnEt2 was able to produce bimodal UHMWPE with improved processability.3)MWD tuning was further investigated using multisite catalysts,with the reaction conditions and Ti:Zr ratio able to control MWD to essentially arbitrary shapes.The inclusion of low molecular weight fractions into UHMWPE improves the processability without compromising mechanical characteristics.4)Polymer-reinforced composite blends of UHMWPE with either HDPE or LDPE as a highly processable matrix were extruded and explored,with polymer miscibility and mechanical properties studied in detail.
文摘Inorganic semiconductors are widely used in many fields such as information,energy,and electronics due to their rich functionalities.The chemical bonds in inorganic semiconductors are usually directional covalent bonds,which inhibit the movement of dislocations.Thus,being different with metals and alloys,inorganic semiconductors are usually brittle at room temperature,with very small strain below 1%and poor machinability[1].Many metalworking techniques,such as the cold-forming processing,which is a crucial means for the cost-effective production of metal and alloy parts,cannot be applied to most inorganic semiconductors,greatly limiting their low-cost fabrication and applications in flexible electronics.
文摘一、作为哲学的AI for Process(一)郭为的哲学思想1.郭为是谁郭为是谁?他是一位哲学家。顺便说,他同时还领导着神州数码。为什么说郭为是哲学家呢?因为他在著作中谈到高深的哲学,如“数据如水,奔流不息,无界融合”。他引述古希腊哲学家赫拉克利特所说的“万物流转”,又说“你不能两次踏进同一条河流,因为新的水不断地流过你的身旁”,他所表达的意思是“世界上唯一不变的就是变化”。
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
基金National Key Research and Development Program of China(2022YFB4600902)Shandong Provincial Science Foundation for Outstanding Young Scholars(ZR2024YQ020)。
文摘Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.
文摘Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational,organizational,or regulatory factors.These changes,referred to as incremental concept drift,gradually alter the behavior or structure of processes,making their detection and localization a challenging task.Traditional process mining techniques frequently assume process stationarity and are limited in their ability to detect such drift,particularly from a control-flow perspective.The objective of this research is to develop an interpretable and robust framework capable of detecting and localizing incremental concept drift in event logs,with a specific emphasis on the structural evolution of control-flow semantics in processes.We propose DriftXMiner,a control-flow-aware hybrid framework that combines statistical,machine learning,and process model analysis techniques.The approach comprises three key components:(1)Cumulative Drift Scanner that tracks directional statistical deviations to detect early drift signals;(2)a Temporal Clustering and Drift-Aware Forest Ensemble(DAFE)to capture distributional and classification-level changes in process behavior;and(3)Petri net-based process model reconstruction,which enables the precise localization of structural drift using transition deviation metrics and replay fitness scores.Experimental validation on the BPI Challenge 2017 event log demonstrates that DriftXMiner effectively identifies and localizes gradual and incremental process drift over time.The framework achieves a detection accuracy of 92.5%,a localization precision of 90.3%,and an F1-score of 0.91,outperforming competitive baselines such as CUSUM+Histograms and ADWIN+Alpha Miner.Visual analyses further confirm that identified drift points align with transitions in control-flow models and behavioral cluster structures.DriftXMiner offers a novel and interpretable solution for incremental concept drift detection and localization in dynamic,process-aware systems.By integrating statistical signal accumulation,temporal behavior profiling,and structural process mining,the framework enables finegrained drift explanation and supports adaptive process intelligence in evolving environments.Its modular architecture supports extension to streaming data and real-time monitoring contexts.
基金Funded by the National Nature Science Foundation of China(No.52078321)。
文摘Calcium carboaluminate was successfully prepared by a simple and efficient one-step method,and the effects of temperature,time,raw material ratio,carbonate type and heavy CaCO_(3)particle size on the products were investigated in detail.The results show that increasing the temperature and extending the reaction time can enhance the yield and crystallisation degree of calcium carboaluminate.The proportion of Ca(OH)_(2),Al(OH)_(3)and CaCO_(3)is a pivotal factor in the synthesis of calcium carboaluminate.When the ratio of Ca(OH)_(2),Al(OH)_(3)and CaCO_(3)is 3:2:1,the diffraction peaks of calcium carboaluminate in the products are relatively sharp and strong.Furthermore,the purity and crystallinity of the synthesized calcium carboaluminate are higher when heavy CaCO_(3)with the particle size of 120 mesh is used as the carbonate raw material,in comparison to CO_(2),Na_(2)CO_(3)and light CaCO_(3).As results,a simple and efficient method for the synthesis of calcium carboaluminate is proposed,which will provide a solid experimental foundation and technical support for the industrial application of calcium carboaluminate in marine concrete.
文摘The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.
基金supported by European Union's Horizon Europe,UK Research and Innovation(UKRI).
文摘Graphite,encompassing both natural graphite and synthetic graphite,and graphene,have been extensively utilized and investigated as anode materials and additives in lithium-ion batteries(LIBs).In the pursuit of carbon neutrality,LIBs are expected to play a pivotal role in reducing CO_(2)emissions by decreasing reliance on fossil fuels and enabling the integration of renewable energy sources.Owing to their technological maturity and exceptional electrochemical performance,the global production of graphite and graphene for LIBs is projected to continue expanding.Over the past decades,numerous researchers have concentrated on reducing the material and energy input whilst optimising the electrochemical performance of graphite and graphene,through novel synthesis methods and various modifications at the laboratory scale.This review provides a comprehensive examination of the manufacturing methods,environmental impact,research progress,and challenges associated with graphite and graphene in LIBs from an industrial perspective,with a particular focus on the carbon footprint of production processes.Additionally,it considers emerging challenges and future development directions of graphite and graphene,offering significant insights for ongoing and future research in the field of green LIBs.
基金supported by the introduction of Talent Research Fund in Nanjing Institute of Technology(YKJ202204)the National Natural Science Foundation of China(52401282 and 52300206)the Natural Science Foundation of Jiangsu Province(BK20230701 and BK20230705).
文摘Achieving high-energy density remains a key objective for advanced energy storage systems.However,challenges,such as poor cathode conductivity,anode dendrite formation,polysulfide shuttling,and electrolyte degradation,continue to limit performance and stability.Molecular and ionic dipole interactions have emerged as an effective strategy to address these issues by regulating ionic transport,modulating solvation structures,optimizing interfacial chemistry,and enhancing charge transfer kinetics.These interactions also stabilize electrode interfaces,suppress side reactions,and mitigate anode corrosion,collectively improving the durability of high-energy batteries.A deeper understanding of these mechanisms is essential to guide the design of next-generation battery materials.Herein,this review summarizes the development,classification,and advantages of dipole interactions in high-energy batteries.The roles of dipoles,including facilitating ion transport,controlling solvation dynamics,stabilizing the electric double layer,optimizing solid electrolyte interphase and cathode–electrolyte interface layers,and inhibiting parasitic reactions—are comprehensively discussed.Finally,perspectives on future research directions are proposed to advance dipole-enabled strategies for high-performance energy storage.This review aims to provide insights into the rational design of dipole-interactive systems and promote the progress of electrochemical energy storage technologies.
基金Funded by the National Natural Science Foundation of China(No.52278446)。
文摘To explore the best preparation process for terminal blend(TB)composite-modified asphalt and to filter its formulation with excellent performance,this study evaluates the performance of TB composite modified asphalt by physical property index,microscopic morphology,rheological testing,and infrared spectroscopy on multiple scales.The results show that the best preparation process for TB-modified asphalt is stirring at 260℃ for 4 h at 400 rpm,which significantly reduces the modification time of the asphalt.From a physical property viewpoint,the TB composite-modified asphalt sample with 5% styrene-butadiene-styrene(SBS)+1% aromatics+0.1% sulfur exhibits high-comprehensive,high-and low-temperature properties.More-over,its crosslinked mesh structure comprises black rubber particles uniformly interwoven in the middle,which further enhances the performance of the asphalt and results in an excellent performance formulation.In addition,the sample with 5%SBS content has a higher G*value and smaller δ value than that with 3%SBS content,indicating that its high-temperature resistance is improved.The effect of adding 3%SBS content on the viscoelastic ratio is,to some extent,less than that caused by 20% rubber powder.
基金financially supported by the National Key Research and Development Program of China (No. 2023YFB3812601)the National Natural Science Foundation of China (No. 51925401)the Young Elite Scientists Sponsorship Program by CAST, China (No. 2022QNRC001)。
文摘Machine learning-assisted methods for rapid and accurate prediction of temperature field,mushy zone,and grain size were proposed for the heating−cooling combined mold(HCCM)horizontal continuous casting of C70250 alloy plates.First,finite element simulations of casting processes were carried out with various parameters to build a dataset.Subsequently,different machine learning algorithms were employed to achieve high precision in predicting temperature fields,mushy zone locations,mushy zone inclination angle,and billet grain size.Finally,the process parameters were quickly optimized using a strategy consisting of random generation,prediction,and screening,allowing the mushy zone to be controlled to the desired target.The optimized parameters are 1234℃for heating mold temperature,47 mm/min for casting speed,and 10 L/min for cooling water flow rate.The optimized mushy zone is located in the middle of the second heat insulation section and has an inclination angle of roughly 7°.
基金supported by the Bingtuan Industrial Technology Research Institute,Bingtuan New materials Research Institute innovation platform project,Research initiation project of Shihezi University(No.RCZK202330)the Science and Technology Program-Regional Innovation Guidance Program(No.2023ZD080)Tianchi Talent Project(No.CZ002735).
文摘The microbial degradation of aromatic organic pollutants is incomplete due to their metabolic characteristics,which can easily produce certain highly toxic intermediates.Therefore,this article designs a dual template molec-ularly imprinted sensor(DTMIP/Fe-Mn@C)for iron manganese metal nanomaterials,prepared Fe-Mn@C com-posite materials by a one pot method were coated on the surface of glassy carbon electrodes and covered with molecularly imprinted membranes through electropolymerization and elution methods,achieving real-time de-tection of specific intermediate products 2-methylbutyric acid(2-MBA)and 3-methylbutyric acid(3-MBA)de-graded by azo dyes.In order to determine the detection sensitivity and intensity range of the sensor,optimization experiments were conducted on various parameters that affect the detection performance,such as the type of func-tional monomer and its composition ratio with the template molecule,detection time window,environmental pH value,etc.Finally,o-Phenylenediamine was determined as the functional monomer,with a molar ratio of 1:1:6 to the template molecules 2-MBA and 3-MBA.Electrochemical testing was conducted in a neutral environment with an incubation time of 5 min and pH=7.The results indicate that the sensor has a relatively wide detection range,high sensitivity,obvious recognition features,and excellent stability for 2-MBA and 3-MBA.This new dual template molecularly imprinted sensor can quickly and accurately determine the safety of highly toxic interme-diates in the degradation process of aromatic organic pollutants,providing a theoretical basis and application potential for trace detection and real-time monitoring.
基金supported by the following foundations:“Stichting Oogfonds Nederland(No.2023-26)”the“Landelijke Stichting voor Blinden en Slechtzienden(No.2023-24)”that contributed through UitZicht,ZonMw grant(No.435005020)a grant of the Chinese Scholarship Council(No.201809110169)(to TGMFG,CPMR,and WY).
文摘Unwarranted death of neurons is a major cause of neurodegenerative diseases.Since mature neurons are postmitotic and do not replicate,their death usually constitutes an irreversible step in pathology.A logical strategy to prevent neurodegeneration would then be to save all neurons that are still alive,i.e.protecting the ones that are still healthy as well as trying to rescue the ones that are damaged and in the process of dying.Regarding the latter,recent experiments have indicated that the possibility of reversing the cell death process and rescuing dying cells is more significant than previously anticipated.In many situations,the elimination of the cell death trigger alone enables dying cells to spontaneously repair their damage,recover,and survive.In this review,we explore the factors,which determine the fate of neurons engaged in the cell death process.A deeper insight into cell death mechanisms and the intrinsic capacity of cells to recover could pave the way for novel therapeutic approaches to neurodegenerative diseases.
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2024ZD1200200).
文摘Oil-fired construction machinery(OCM)is a major source of urban air pollutants and CO_(2) emissions,and elec-trification is a crucial pathway for improving air quality and achieving China’s dual carbon goals;however,its feasibility has not been fully explored.This study uses data envelopment analysis and the analytic hierarchy process to establish a development potential index,covering technical efficiency,economic cost,application sce-narios,and charging time and range,with an empirical analysis conducted in Beijing.The findings indicated the high feasibility of replacing OCM with electric alternatives,especially within the low-power range.Based on 2023 registered coding dat1,it is projected that by 2030,electrification could reduce regional average con-centrations of CO,NO_(x),PM_(2.5) and VOCs by 12.2%to 56.4%and reduce CO_(2) by 11.7%to 56.9%.Owing to economic considerations,small-and medium-sized machinery are particularly feasible for electrification.Key recommendations include prioritizing the electrification of forklifts,lifting platforms,and small-sized machinery in high-emission areas,particularly in central urban districts.Policies such as carbon taxes,carbon markets,and performance grading systems are suggested to incentivize electrification,along with expanding high-emission restriction zones and improving energy infrastructure to support widespread electrification.