Fault diagnosis in industrial process is essential for ensuring production safety and efficiency.However,existing methods exhibit limited capability in recognizing hard samples and struggle to maintain consistency in ...Fault diagnosis in industrial process is essential for ensuring production safety and efficiency.However,existing methods exhibit limited capability in recognizing hard samples and struggle to maintain consistency in feature distributions across domains,resulting in suboptimal performance and robustness.Therefore,this paper proposes a fault diagnosis neural network for hard sample mining and domain adaptive(SmdaNet).First,the method uses deep belief networks(DBN)to build a diagnostic model.Hard samples are mined based on the loss values,dividing the data set into hard and easy samples.Second,elastic weight consolidation(EWC)is used to train the model on hard samples,effectively preventing information forgetting.Finally,the feature space domain adaptation is introduced to optimize the feature space by minimizing the Kullback–Leibler divergence of the feature distributions.Experimental results show that the proposed SmdaNet method outperforms existing approaches in terms of classification accuracy,robustness and interpretability on the penicillin simulation and Tennessee Eastman process datasets.展开更多
The increased accessibility of social networking services(SNSs)has facilitated communication and information sharing among users.However,it has also heightened concerns about digital safety,particularly for children a...The increased accessibility of social networking services(SNSs)has facilitated communication and information sharing among users.However,it has also heightened concerns about digital safety,particularly for children and adolescents who are increasingly exposed to online grooming crimes.Early and accurate identification of grooming conversations is crucial in preventing long-term harm to victims.However,research on grooming detection in South Korea remains limited,as existing models trained primarily on English text and fail to reflect the unique linguistic features of SNS conversations,leading to inaccurate classifications.To address these issues,this study proposes a novel framework that integrates optical character recognition(OCR)technology with KcELECTRA,a deep learning-based natural language processing(NLP)model that shows excellent performance in processing the colloquial Korean language.In the proposed framework,the KcELECTRA model is fine-tuned by an extensive dataset,including Korean social media conversations,Korean ethical verification data from AI-Hub,and Korean hate speech data from Hug-gingFace,to enable more accurate classification of text extracted from social media conversation images.Experimental results show that the proposed framework achieves an accuracy of 0.953,outperforming existing transformer-based models.Furthermore,OCR technology shows high accuracy in extracting text from images,demonstrating that the proposed framework is effective for online grooming detection.The proposed framework is expected to contribute to the more accurate detection of grooming text and the prevention of grooming-related crimes.展开更多
Software-defined satellite networks(SDSNs)play an essential role in future networks.Due to the diverse service scenarios,SDSN faces the demand of packet processing for heterogeneous protocols.Existing packet switching...Software-defined satellite networks(SDSNs)play an essential role in future networks.Due to the diverse service scenarios,SDSN faces the demand of packet processing for heterogeneous protocols.Existing packet switching typically works on one single protocol.For protocol-heterogeneous users,existing packet switch architectures have to construct multiple protocol-specific switching instances,resulting in severe resource waste.In this article,we propose the heterogeneous protocol-independent packet switch architecture(HISA).HISA employs a fast parsing structure to achieve efficient heterogeneous packet parsing and a novel match-action pipeline to achieve shared packet processing among heterogeneous users.HISA can also support the online configuration of switching behaviors.Use cases illustrate the effectiveness of applying HISA in SDSN.Numerical results show that compared to existing packet switching,HISA can significantly improve the resource utilization of SDSN.展开更多
This study systematically investigates the hot deformation behavior and microstructural evolution of CoNiV medium-entropy alloy(MEA)in the temperature range of 950-1100℃ and strain rates of 0.001-1 s^(-1).The Arrheni...This study systematically investigates the hot deformation behavior and microstructural evolution of CoNiV medium-entropy alloy(MEA)in the temperature range of 950-1100℃ and strain rates of 0.001-1 s^(-1).The Arrhenius model and machine learning model were developed to forecast flow stresses at various conditions.The predictive capability of both models was assessed using the coefficients of determination(R^(2)),average absolute relative error(AARE),and root mean square error(RMSE).The findings show that the osprey optimization algorithm convolutional neural network(OOA-CNN)model outperforms the Arrhenius model,achieving a high R^(2) value of 0.99959 and lower AARE and RMSE values.The flow stress that the OOA-CNN model predicted was used to generate power dissipation maps and instability maps under different strains.Finally,combining the processing map and microstructure characterization,the ideal processing domain was identified as 1100℃ at strain rates of 0.01-0.1 s^(-1).This study provided key insights into optimizing the hot working process of CoNiV MEA.展开更多
Artificial intelligence(AI)is a revolutionizing problem-solver across various domains,including scientific research.Its application to chemical processes holds remarkable potential for rapid optimization of protocols ...Artificial intelligence(AI)is a revolutionizing problem-solver across various domains,including scientific research.Its application to chemical processes holds remarkable potential for rapid optimization of protocols and methods.A notable application of AI is in the photoFenton degradation of organic compounds.Despite the high novelty and recent surge of interest in this area,a comprehensive synthesis of existing literature on AI applications in the photo-Fenton process is lacking.This review aims to bridge this gap by providing an in-depth summary of the state-of-the-art use of artificial neural networks(ANN)in the photo-Fenton process,with the goal of aiding researchers in the water treatment field to identify the most crucial and relevant variables.It examines the types and architectures of ANNs,input and output variables,and the efficiency of these networks.The findings reveal a rapidly expanding field with increasing publications highlighting AI's potential to optimize the photo-Fenton process.This review also discusses the benefits and drawbacks of using ANNs,emphasizing the need for further research to advance this promising area.展开更多
Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have b...Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have been proposed,most of them can only address part of the practical difficulties.An oscillation is heuristically defined as a visually apparent periodic variation.However,manual visual inspection is labor-intensive and prone to missed detection.Convolutional neural networks(CNNs),inspired by animal visual systems,have been raised with powerful feature extraction capabilities.In this work,an exploration of the typical CNN models for visual oscillation detection is performed.Specifically,we tested MobileNet-V1,ShuffleNet-V2,Efficient Net-B0,and GhostNet models,and found that such a visual framework is well-suited for oscillation detection.The feasibility and validity of this framework are verified utilizing extensive numerical and industrial cases.Compared with state-of-theart oscillation detectors,the suggested framework is more straightforward and more robust to noise and mean-nonstationarity.In addition,this framework generalizes well and is capable of handling features that are not present in the training data,such as multiple oscillations and outliers.展开更多
Steam-assisted combustion elevated flares are currently the most widely used type of petrochemical flares.Due to the complex and variable composition of the waste gas they handle,the combustion environment is severely...Steam-assisted combustion elevated flares are currently the most widely used type of petrochemical flares.Due to the complex and variable composition of the waste gas they handle,the combustion environment is severely affected by meteorological conditions.Key process parameters such as intake composition,flow rate,and real-time data of post-combustion residues are difficult to measure or exhibit lag in data availability.As a result,the control methods for these flares are limited,leading to poor control effectiveness.To address this issue,this paper proposes an adaptive sliding mode control method based on the radial basis function(RBF)network.Firstly,the operational characteristics of the petrochemical flare combustion process are analyzed,and a control model for the combustion process is established based on carbon dioxide detection.Secondly,an RBF neural network-based unknown function approximator is designed to identify the nonlinear part of the actual operating system.Finally,by combining the control model of the petrochemical flare combustion and designing the RBF sliding mode controller with its adaptive control law,fast and stable control of the flare combustion state is achieved.Simulation results demonstrate that the designed control strategy can achieve tracking control of the petrochemical flare combustion state,and the adaptive law also accomplishes system identification.展开更多
Fault detection and diagnosis(FDD)plays a significant role in ensuring the safety and stability of chemical processes.With the development of artificial intelligence(AI)and big data technologies,data-driven approaches...Fault detection and diagnosis(FDD)plays a significant role in ensuring the safety and stability of chemical processes.With the development of artificial intelligence(AI)and big data technologies,data-driven approaches with excellent performance are widely used for FDD in chemical processes.However,improved predictive accuracy has often been achieved through increased model complexity,which turns models into black-box methods and causes uncertainty regarding their decisions.In this study,a causal temporal graph attention network(CTGAN)is proposed for fault diagnosis of chemical processes.A chemical causal graph is built by causal inference to represent the propagation path of faults.The attention mechanism and chemical causal graph were combined to help us notice the key variables relating to fault fluctuations.Experiments in the Tennessee Eastman(TE)process and the green ammonia(GA)process showed that CTGAN achieved high performance and good explainability.展开更多
Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In exist...Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes.展开更多
In the coal-to-ethylene glycol(CTEG)process,precisely estimating quality variables is crucial for process monitoring,optimization,and control.A significant challenge in this regard is relying on offline laboratory ana...In the coal-to-ethylene glycol(CTEG)process,precisely estimating quality variables is crucial for process monitoring,optimization,and control.A significant challenge in this regard is relying on offline laboratory analysis to obtain these variables,which often incurs substantial monetary costs and significant time delays.The resulting few-shot learning scenarios present a hurdle to the efficient development of predictive models.To address this issue,our study introduces the transferable adversarial slow feature extraction network(TASF-Net),an innovative approach designed specifically for few-shot quality prediction in the CTEG process.TASF-Net uniquely integrates the slowness principle with a deep Bayesian framework,effectively capturing the nonlinear and inertial characteristics of the CTEG process.Additionally,the model employs a variable attention mechanism to identify quality-related input variables adaptively at each time step.A key strength of TASF-Net lies in its ability to navigate the complex measurement noise,outliers,and system interference typical in CTEG data.Adversarial learning strategy using a min-max game is adopted to improve its robustness and ability to model irregular industrial data accurately and significantly.Furthermore,an incremental refining transfer learning framework is designed to further improve few-shot prediction performance achieved by transferring knowledge from the pretrained model on the source domain to the target domain.The effectiveness and superiority of TASF-Net have been empirically validated using a real-world CTEG dataset.Compared with some state-of-the-art methods,TASF-Net demonstrates exceptional capability in addressing the intricate challenges for few-shot quality prediction in the CTEG process.展开更多
The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and ...The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and renewable nature.However,limitations such as brittleness,hydrophilicity,and thermal properties restrict its widespread application.To overcome these issues,covalent adaptable network was constructed to fabricate a fully bio-based starch plastic with multiple advantages via Schiff base reactions.This strategy endowed starch plastic with excellent thermal processability,as evidenced by a low glass transition temperature(T_(g)=20.15℃).Through introducing Priamine with long carbon chains,the starch plastic demonstrated superior flexibility(elongation at break=45.2%)and waterproof capability(water contact angle=109.2°).Besides,it possessed a good thermal stability and self-adaptability,as well as solvent resistance and chemical degradability.This work provides a promising method to fabricate fully bio-based plastics as alternative to petroleum-based plastics.展开更多
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u...Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.展开更多
The dual frequency Heterogeneous Network(HetNet),including sub-6 GHz networks together with Millimeter Wave(mmWave),achieves the high data rates of user in the networks with hotspots.The cache-enabled HetNets with hot...The dual frequency Heterogeneous Network(HetNet),including sub-6 GHz networks together with Millimeter Wave(mmWave),achieves the high data rates of user in the networks with hotspots.The cache-enabled HetNets with hotspots are investigated using an analytical framework in which Macro Base Stations(MBSs)and hotspot centers are treated as two independent homogeneous Poisson Point Processes(PPPs),and locations of Small Base Stations(SBSs)and users are modeled as two Poisson Cluster Processes(PCPs).Under the PCP-based modeling method and the Most Popular Caching(MPC)scheme,we propose a cache-enabled association strategy for HetNets with limited storage capacity.The performance of association probability and coverage probability is explicitly derived,and Monte Carlo simulation is utilized to verify that the results are correct.The outcomes of the simulation present the influence of antenna configuration and cache capacities of MBSs and SBSs on network performance.Numerical optimization of the standard deviation ratio of SBSs and users of association probability is enabled by our analysis.展开更多
Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a w...Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a wide range of factors, spanning from genetic to environmental factors, and even includes the gut microbiome(GM)(Mayer et al., 2022). All these processes coincide at some point in the inflammatory process, oxidative stress, and apoptosis, at different degrees in various organs and systems that constitute a living organism(Mayer et al., 2022;AguilarHernández et al., 2023).展开更多
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a...Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.展开更多
Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the p...Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.展开更多
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us...Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.展开更多
基金support from the following foundations:the National Natural Science Foundation of China(62322309,62433004)Shanghai Science and Technology Innovation Action Plan(23S41900500)Shanghai Pilot Program for Basic Research(22TQ1400100-16).
文摘Fault diagnosis in industrial process is essential for ensuring production safety and efficiency.However,existing methods exhibit limited capability in recognizing hard samples and struggle to maintain consistency in feature distributions across domains,resulting in suboptimal performance and robustness.Therefore,this paper proposes a fault diagnosis neural network for hard sample mining and domain adaptive(SmdaNet).First,the method uses deep belief networks(DBN)to build a diagnostic model.Hard samples are mined based on the loss values,dividing the data set into hard and easy samples.Second,elastic weight consolidation(EWC)is used to train the model on hard samples,effectively preventing information forgetting.Finally,the feature space domain adaptation is introduced to optimize the feature space by minimizing the Kullback–Leibler divergence of the feature distributions.Experimental results show that the proposed SmdaNet method outperforms existing approaches in terms of classification accuracy,robustness and interpretability on the penicillin simulation and Tennessee Eastman process datasets.
基金supported by the IITP(Institute of Information&Communications Technology Planning&Evaluation)-ITRC(Information Technology Research Center)grant funded by the Korean government(Ministry of Science and ICT)(IITP-2025-RS-2024-00438056).
文摘The increased accessibility of social networking services(SNSs)has facilitated communication and information sharing among users.However,it has also heightened concerns about digital safety,particularly for children and adolescents who are increasingly exposed to online grooming crimes.Early and accurate identification of grooming conversations is crucial in preventing long-term harm to victims.However,research on grooming detection in South Korea remains limited,as existing models trained primarily on English text and fail to reflect the unique linguistic features of SNS conversations,leading to inaccurate classifications.To address these issues,this study proposes a novel framework that integrates optical character recognition(OCR)technology with KcELECTRA,a deep learning-based natural language processing(NLP)model that shows excellent performance in processing the colloquial Korean language.In the proposed framework,the KcELECTRA model is fine-tuned by an extensive dataset,including Korean social media conversations,Korean ethical verification data from AI-Hub,and Korean hate speech data from Hug-gingFace,to enable more accurate classification of text extracted from social media conversation images.Experimental results show that the proposed framework achieves an accuracy of 0.953,outperforming existing transformer-based models.Furthermore,OCR technology shows high accuracy in extracting text from images,demonstrating that the proposed framework is effective for online grooming detection.The proposed framework is expected to contribute to the more accurate detection of grooming text and the prevention of grooming-related crimes.
基金supported by the National Natural Science Foundation of China(62101300,62341130)the Youth Fund Program of the Beijing National Research Center for Information Science and Technology under Grant BNR2021RC01012the Open Research Fund Program of the Beijing National Research Center for Information Science and Technology under Grant BNR2021KF02001.
文摘Software-defined satellite networks(SDSNs)play an essential role in future networks.Due to the diverse service scenarios,SDSN faces the demand of packet processing for heterogeneous protocols.Existing packet switching typically works on one single protocol.For protocol-heterogeneous users,existing packet switch architectures have to construct multiple protocol-specific switching instances,resulting in severe resource waste.In this article,we propose the heterogeneous protocol-independent packet switch architecture(HISA).HISA employs a fast parsing structure to achieve efficient heterogeneous packet parsing and a novel match-action pipeline to achieve shared packet processing among heterogeneous users.HISA can also support the online configuration of switching behaviors.Use cases illustrate the effectiveness of applying HISA in SDSN.Numerical results show that compared to existing packet switching,HISA can significantly improve the resource utilization of SDSN.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.51901078)the Central Guidance for Local Scientific and Technological Development Funding Project(Grant No.236Z1003G)+3 种基金the Science and Technology Plan Project of Tangshan City(Grant No.24130207C)the Natural Science Foundation of Hebei Province(Grant No.E2022209070)the High-level Talent Project of Hebei(Grant No.E2019100007)the Open Project Program of Key Laboratory of Ministry of Education for Modern Metallurgy Technology(Grant No.2024YJKF02).
文摘This study systematically investigates the hot deformation behavior and microstructural evolution of CoNiV medium-entropy alloy(MEA)in the temperature range of 950-1100℃ and strain rates of 0.001-1 s^(-1).The Arrhenius model and machine learning model were developed to forecast flow stresses at various conditions.The predictive capability of both models was assessed using the coefficients of determination(R^(2)),average absolute relative error(AARE),and root mean square error(RMSE).The findings show that the osprey optimization algorithm convolutional neural network(OOA-CNN)model outperforms the Arrhenius model,achieving a high R^(2) value of 0.99959 and lower AARE and RMSE values.The flow stress that the OOA-CNN model predicted was used to generate power dissipation maps and instability maps under different strains.Finally,combining the processing map and microstructure characterization,the ideal processing domain was identified as 1100℃ at strain rates of 0.01-0.1 s^(-1).This study provided key insights into optimizing the hot working process of CoNiV MEA.
基金financial support provided by the Valencian Regional Governement(Grant No.CIPROM2023/037)Davide Palma and Alessandra Bianco Prevot acknowledge support from the Project CH4.0 under the MUR program"Dipartimenti di Eccellenza 2023-2027"(Grant No.CUP:D13C22003520001).
文摘Artificial intelligence(AI)is a revolutionizing problem-solver across various domains,including scientific research.Its application to chemical processes holds remarkable potential for rapid optimization of protocols and methods.A notable application of AI is in the photoFenton degradation of organic compounds.Despite the high novelty and recent surge of interest in this area,a comprehensive synthesis of existing literature on AI applications in the photo-Fenton process is lacking.This review aims to bridge this gap by providing an in-depth summary of the state-of-the-art use of artificial neural networks(ANN)in the photo-Fenton process,with the goal of aiding researchers in the water treatment field to identify the most crucial and relevant variables.It examines the types and architectures of ANNs,input and output variables,and the efficiency of these networks.The findings reveal a rapidly expanding field with increasing publications highlighting AI's potential to optimize the photo-Fenton process.This review also discusses the benefits and drawbacks of using ANNs,emphasizing the need for further research to advance this promising area.
基金the National Natural Science Foundation of China(62003298,62163036)the Major Project of Science and Technology of Yunnan Province(202202AD080005,202202AH080009)the Yunnan University Professional Degree Graduate Practice Innovation Fund Project(ZC-22222770)。
文摘Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have been proposed,most of them can only address part of the practical difficulties.An oscillation is heuristically defined as a visually apparent periodic variation.However,manual visual inspection is labor-intensive and prone to missed detection.Convolutional neural networks(CNNs),inspired by animal visual systems,have been raised with powerful feature extraction capabilities.In this work,an exploration of the typical CNN models for visual oscillation detection is performed.Specifically,we tested MobileNet-V1,ShuffleNet-V2,Efficient Net-B0,and GhostNet models,and found that such a visual framework is well-suited for oscillation detection.The feasibility and validity of this framework are verified utilizing extensive numerical and industrial cases.Compared with state-of-theart oscillation detectors,the suggested framework is more straightforward and more robust to noise and mean-nonstationarity.In addition,this framework generalizes well and is capable of handling features that are not present in the training data,such as multiple oscillations and outliers.
基金gratefully acknowledge the financial support from the Scientific and Technological Innovation 2030-“New Generation Artificial Intelligence”Major Project(2021ZD0112301)National Natural Science Foundation of China(62273011,62076013,62303027).
文摘Steam-assisted combustion elevated flares are currently the most widely used type of petrochemical flares.Due to the complex and variable composition of the waste gas they handle,the combustion environment is severely affected by meteorological conditions.Key process parameters such as intake composition,flow rate,and real-time data of post-combustion residues are difficult to measure or exhibit lag in data availability.As a result,the control methods for these flares are limited,leading to poor control effectiveness.To address this issue,this paper proposes an adaptive sliding mode control method based on the radial basis function(RBF)network.Firstly,the operational characteristics of the petrochemical flare combustion process are analyzed,and a control model for the combustion process is established based on carbon dioxide detection.Secondly,an RBF neural network-based unknown function approximator is designed to identify the nonlinear part of the actual operating system.Finally,by combining the control model of the petrochemical flare combustion and designing the RBF sliding mode controller with its adaptive control law,fast and stable control of the flare combustion state is achieved.Simulation results demonstrate that the designed control strategy can achieve tracking control of the petrochemical flare combustion state,and the adaptive law also accomplishes system identification.
基金support of the National Key Research and Development Program of China(2021YFB4000505).
文摘Fault detection and diagnosis(FDD)plays a significant role in ensuring the safety and stability of chemical processes.With the development of artificial intelligence(AI)and big data technologies,data-driven approaches with excellent performance are widely used for FDD in chemical processes.However,improved predictive accuracy has often been achieved through increased model complexity,which turns models into black-box methods and causes uncertainty regarding their decisions.In this study,a causal temporal graph attention network(CTGAN)is proposed for fault diagnosis of chemical processes.A chemical causal graph is built by causal inference to represent the propagation path of faults.The attention mechanism and chemical causal graph were combined to help us notice the key variables relating to fault fluctuations.Experiments in the Tennessee Eastman(TE)process and the green ammonia(GA)process showed that CTGAN achieved high performance and good explainability.
基金supported by National Natural Sciences Foundation of China(No.62271165,62027802,62201307)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030297)+2 种基金the Shenzhen Science and Technology Program ZDSYS20210623091808025Stable Support Plan Program GXWD20231129102638002the Major Key Project of PCL(No.PCL2024A01)。
文摘Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes.
基金supported by the National Natural Science Foundation of China(62333010,61673205).
文摘In the coal-to-ethylene glycol(CTEG)process,precisely estimating quality variables is crucial for process monitoring,optimization,and control.A significant challenge in this regard is relying on offline laboratory analysis to obtain these variables,which often incurs substantial monetary costs and significant time delays.The resulting few-shot learning scenarios present a hurdle to the efficient development of predictive models.To address this issue,our study introduces the transferable adversarial slow feature extraction network(TASF-Net),an innovative approach designed specifically for few-shot quality prediction in the CTEG process.TASF-Net uniquely integrates the slowness principle with a deep Bayesian framework,effectively capturing the nonlinear and inertial characteristics of the CTEG process.Additionally,the model employs a variable attention mechanism to identify quality-related input variables adaptively at each time step.A key strength of TASF-Net lies in its ability to navigate the complex measurement noise,outliers,and system interference typical in CTEG data.Adversarial learning strategy using a min-max game is adopted to improve its robustness and ability to model irregular industrial data accurately and significantly.Furthermore,an incremental refining transfer learning framework is designed to further improve few-shot prediction performance achieved by transferring knowledge from the pretrained model on the source domain to the target domain.The effectiveness and superiority of TASF-Net have been empirically validated using a real-world CTEG dataset.Compared with some state-of-the-art methods,TASF-Net demonstrates exceptional capability in addressing the intricate challenges for few-shot quality prediction in the CTEG process.
基金supported by the National Natural Science Foundation of China(U23A6005 and 32171721)State Key Laboratory of Pulp and Paper Engineering(202305,2023ZD01,2023C02)+1 种基金Guangdong Province Basic and Application Basic Research Fund(2023B1515040013)the Fundamental Research Funds for the Central Universities(2023ZYGXZR045).
文摘The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and renewable nature.However,limitations such as brittleness,hydrophilicity,and thermal properties restrict its widespread application.To overcome these issues,covalent adaptable network was constructed to fabricate a fully bio-based starch plastic with multiple advantages via Schiff base reactions.This strategy endowed starch plastic with excellent thermal processability,as evidenced by a low glass transition temperature(T_(g)=20.15℃).Through introducing Priamine with long carbon chains,the starch plastic demonstrated superior flexibility(elongation at break=45.2%)and waterproof capability(water contact angle=109.2°).Besides,it possessed a good thermal stability and self-adaptability,as well as solvent resistance and chemical degradability.This work provides a promising method to fabricate fully bio-based plastics as alternative to petroleum-based plastics.
文摘Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.
基金supported in part by National Key Research and Development Project under Grant 2020YFB1807204in part by the National Natural Science Foundation of China under Grant U2001213 and 61971191+2 种基金in part by the Beijing Natural Science Foundation under Grant L201011in part by the Key project of Natural Science Foundation of Jiangxi Province under Grant 20202ACBL202006in part by the Science and Technology Foundation of Jiangxi Province(20202BCD42010)。
文摘The dual frequency Heterogeneous Network(HetNet),including sub-6 GHz networks together with Millimeter Wave(mmWave),achieves the high data rates of user in the networks with hotspots.The cache-enabled HetNets with hotspots are investigated using an analytical framework in which Macro Base Stations(MBSs)and hotspot centers are treated as two independent homogeneous Poisson Point Processes(PPPs),and locations of Small Base Stations(SBSs)and users are modeled as two Poisson Cluster Processes(PCPs).Under the PCP-based modeling method and the Most Popular Caching(MPC)scheme,we propose a cache-enabled association strategy for HetNets with limited storage capacity.The performance of association probability and coverage probability is explicitly derived,and Monte Carlo simulation is utilized to verify that the results are correct.The outcomes of the simulation present the influence of antenna configuration and cache capacities of MBSs and SBSs on network performance.Numerical optimization of the standard deviation ratio of SBSs and users of association probability is enabled by our analysis.
基金funded by CONAHCYT grant(252808)to GFCONAHCYT’s“Estancias Posdoctorales por México”program(662350)to HTB。
文摘Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a wide range of factors, spanning from genetic to environmental factors, and even includes the gut microbiome(GM)(Mayer et al., 2022). All these processes coincide at some point in the inflammatory process, oxidative stress, and apoptosis, at different degrees in various organs and systems that constitute a living organism(Mayer et al., 2022;AguilarHernández et al., 2023).
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
基金supported by the General Program of the National Natural Science Foundation of China(No.52274326)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202109)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553).
文摘Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.
基金supported by the National Natural Science Foundation of China(51767017)the Basic Research Innovation Group Project of Gansu Province(18JR3RA133)the Industrial Support and Guidance Project of Universities in Gansu Province(2022CYZC-22).
文摘Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.
文摘Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.