The inter-electrode gap(IEG) is an essential parameter for the anode shaping process in electrochemical machining(ECM) and directly affects the machining accuracy. In this paper, the IEG during the leveling process of...The inter-electrode gap(IEG) is an essential parameter for the anode shaping process in electrochemical machining(ECM) and directly affects the machining accuracy. In this paper, the IEG during the leveling process of an oval anode workpiece in counter-rotating ECM(CRECM)is investigated. The variation of the minimum IEG is analyzed theoretically, and the results indicate that rather than reaching equilibrium, the minimum IEG in CRECM expands constantly when a constant feed speed is used for the cathode tool. This IEG expansion leads to a poor localization effect and has an adverse influence on the roundness of the machined workpiece. To maintain a small constant IEG in CRECM, a variable feed speed is used for the cathode based on a fitted equation. The theoretical results show that the minimum IEG can be controlled at a small value by using an accelerated feed speed. Experiments have been conducted using a specific experimental apparatus in which the cathode tool is designed as a combined structure of two sectors and a thin sheet. By detecting the machining currents flowing through the minimum IEG, how the latter varies is obtained indirectly. The results indicate that using an accelerated feed speed is effective for controlling the IEG, thereby improving the roundness of the machined workpiece.展开更多
In the Ruhrstahl-Heraeus (RH) refining process, liquid steel flow pattern in a ladle is controlled by the fluid flow behavior in the vacuum chamber. Potassium chloride solution and NaOH solution saturated with CO2 w...In the Ruhrstahl-Heraeus (RH) refining process, liquid steel flow pattern in a ladle is controlled by the fluid flow behavior in the vacuum chamber. Potassium chloride solution and NaOH solution saturated with CO2 were respectively used as a tracer to investigate the liquid and gas flow behaviors in the vacuum chamber. Principal compo nent and comparative analysis were made to show the factors controlling mixing and circulation flow rate. The liquid level and bubble behavior in the vacuum chamber greatly affect fluid flow in RH process. Experiments were performed to investigate the effects of liquid steel level, gas flow rate, bubble residence time, and gas injection mode on mixing, decarburization, and void fraction. The results indicate that the mixing process can be divided into three regions: the flow rate affected zone, the concentration gradient-affected zone, and their combination. The liquid steel level in the vacuum chamber of 300 mm is a critical point in the decarburization transition. For liquid level lower than 300 mm, liquid steel circulation controls decarburization, while for liquid level higher than 300mm, bubble behavior is the main controlling factor. During the RH process, it is recommended to use the concentrated bubble injection mode for low gas flow rates and the uniform bubble injection mode for high gas flow rates.展开更多
Parkinson's disease is a neurodegenerative disorder caused by loss of dopamine neurons in the substantia nigra pars compacta. Tremor, rigidity, and bradykinesia are the major symptoms of the disease. These motor i...Parkinson's disease is a neurodegenerative disorder caused by loss of dopamine neurons in the substantia nigra pars compacta. Tremor, rigidity, and bradykinesia are the major symptoms of the disease. These motor impairments are often accompanied by affective and emotional dysfunctions which have been largely studied over the last decade. The aim of this study was to investigate emotional processing organization in the brain of patients with Parkinson's disease and to explore whether there are differences between recognition of different types of emotions in Parkinson's disease. We examined 18 patients with Parkinson's disease(8 men, 10 women) with no history of neurological or psychiatric comorbidities. All these patients underwent identical brain blood oxygenation level-dependent functional magnetic resonance imaging for emotion evaluation. Blood oxygenation level-dependent functional magnetic resonance imaging results revealed that the occipito-temporal cortices, insula, orbitofrontal cortex, basal ganglia, and parietal cortex which are involved in emotion processing, were activated during the functional control. Additionally, positive emotions activate larger volumes of the same anatomical entities than neutral and negative emotions. Results also revealed that Parkinson's disease associated with emotional disorders are increasingly recognized as disabling as classic motor symptoms. These findings help clinical physicians to recognize the emotional dysfunction of patients with Parkinson's disease.展开更多
Analysis results of the average annual sea levels in the Caspian Sea obtained from ground and satellite observations, corresponding to solar activity characteristics, magnetic field data, and length of day are present...Analysis results of the average annual sea levels in the Caspian Sea obtained from ground and satellite observations, corresponding to solar activity characteristics, magnetic field data, and length of day are presented. Spectra of the indicated processes were investigated and their approximation models were also built. Previously assumed statistical relationships between space-geophysical processes and Caspian Sea level(CSL) changes were confirmed. A close connection was revealed between the low-frequency models of the solar and geomagnetic activity parameters and the CSL changes. Predictions extending into the next decades showed a high probability of an increase in the CSL and a decrease of the compared space-geophysical parameters.展开更多
On the basis of analysis the governing process of downstream water level gates AVIO and AVIS, a mathematical model for simulation of dynamic operation process of hydraulically automated irrigation canals instalIed wit...On the basis of analysis the governing process of downstream water level gates AVIO and AVIS, a mathematical model for simulation of dynamic operation process of hydraulically automated irrigation canals instalIed with AVIO and AVIS gates is presented, the main point of this rnathematical model is firstly applying a set of unsteady flow equations (St. Venant equations here) and treating the condition of gate movement as its dynamic boundary, and then deeoupling this interaction of gate movement with the change of canal flow. In this process, it is necessary to give the gateg open-loop transfer function whose input is water level deviation and output is gate discharge. The result of this simulation for a practical reach has shown it has satisfactory accuracy.展开更多
基金supported by the National Natural Science Foundation of China (51535006, 51805259)Natural Science Foundation of Jiangsu Province of China (BK20180431)+2 种基金Fundamental Research Funds for the Central Universities of China (3082018NP2018406)Young Elite Scientists Sponsorship Program by CAST of ChinaJiangsu Key Laboratory of Precision and Micro-Manufacturing Technology of China
文摘The inter-electrode gap(IEG) is an essential parameter for the anode shaping process in electrochemical machining(ECM) and directly affects the machining accuracy. In this paper, the IEG during the leveling process of an oval anode workpiece in counter-rotating ECM(CRECM)is investigated. The variation of the minimum IEG is analyzed theoretically, and the results indicate that rather than reaching equilibrium, the minimum IEG in CRECM expands constantly when a constant feed speed is used for the cathode tool. This IEG expansion leads to a poor localization effect and has an adverse influence on the roundness of the machined workpiece. To maintain a small constant IEG in CRECM, a variable feed speed is used for the cathode based on a fitted equation. The theoretical results show that the minimum IEG can be controlled at a small value by using an accelerated feed speed. Experiments have been conducted using a specific experimental apparatus in which the cathode tool is designed as a combined structure of two sectors and a thin sheet. By detecting the machining currents flowing through the minimum IEG, how the latter varies is obtained indirectly. The results indicate that using an accelerated feed speed is effective for controlling the IEG, thereby improving the roundness of the machined workpiece.
基金Item Sponsored by National Natural Science Foundation of China(51404022)Doctoral Fund of Ministry of Education of China(20130006110023)Ph.D Early Development Program of Taiyuan University of Science and Technology of China(20152008,20142001)
文摘In the Ruhrstahl-Heraeus (RH) refining process, liquid steel flow pattern in a ladle is controlled by the fluid flow behavior in the vacuum chamber. Potassium chloride solution and NaOH solution saturated with CO2 were respectively used as a tracer to investigate the liquid and gas flow behaviors in the vacuum chamber. Principal compo nent and comparative analysis were made to show the factors controlling mixing and circulation flow rate. The liquid level and bubble behavior in the vacuum chamber greatly affect fluid flow in RH process. Experiments were performed to investigate the effects of liquid steel level, gas flow rate, bubble residence time, and gas injection mode on mixing, decarburization, and void fraction. The results indicate that the mixing process can be divided into three regions: the flow rate affected zone, the concentration gradient-affected zone, and their combination. The liquid steel level in the vacuum chamber of 300 mm is a critical point in the decarburization transition. For liquid level lower than 300 mm, liquid steel circulation controls decarburization, while for liquid level higher than 300mm, bubble behavior is the main controlling factor. During the RH process, it is recommended to use the concentrated bubble injection mode for low gas flow rates and the uniform bubble injection mode for high gas flow rates.
文摘Parkinson's disease is a neurodegenerative disorder caused by loss of dopamine neurons in the substantia nigra pars compacta. Tremor, rigidity, and bradykinesia are the major symptoms of the disease. These motor impairments are often accompanied by affective and emotional dysfunctions which have been largely studied over the last decade. The aim of this study was to investigate emotional processing organization in the brain of patients with Parkinson's disease and to explore whether there are differences between recognition of different types of emotions in Parkinson's disease. We examined 18 patients with Parkinson's disease(8 men, 10 women) with no history of neurological or psychiatric comorbidities. All these patients underwent identical brain blood oxygenation level-dependent functional magnetic resonance imaging for emotion evaluation. Blood oxygenation level-dependent functional magnetic resonance imaging results revealed that the occipito-temporal cortices, insula, orbitofrontal cortex, basal ganglia, and parietal cortex which are involved in emotion processing, were activated during the functional control. Additionally, positive emotions activate larger volumes of the same anatomical entities than neutral and negative emotions. Results also revealed that Parkinson's disease associated with emotional disorders are increasingly recognized as disabling as classic motor symptoms. These findings help clinical physicians to recognize the emotional dysfunction of patients with Parkinson's disease.
文摘Analysis results of the average annual sea levels in the Caspian Sea obtained from ground and satellite observations, corresponding to solar activity characteristics, magnetic field data, and length of day are presented. Spectra of the indicated processes were investigated and their approximation models were also built. Previously assumed statistical relationships between space-geophysical processes and Caspian Sea level(CSL) changes were confirmed. A close connection was revealed between the low-frequency models of the solar and geomagnetic activity parameters and the CSL changes. Predictions extending into the next decades showed a high probability of an increase in the CSL and a decrease of the compared space-geophysical parameters.
基金Supported by the 863 Programof China (2001AA242111)
文摘On the basis of analysis the governing process of downstream water level gates AVIO and AVIS, a mathematical model for simulation of dynamic operation process of hydraulically automated irrigation canals instalIed with AVIO and AVIS gates is presented, the main point of this rnathematical model is firstly applying a set of unsteady flow equations (St. Venant equations here) and treating the condition of gate movement as its dynamic boundary, and then deeoupling this interaction of gate movement with the change of canal flow. In this process, it is necessary to give the gateg open-loop transfer function whose input is water level deviation and output is gate discharge. The result of this simulation for a practical reach has shown it has satisfactory accuracy.