BACKGROUND The use of a problem-solving model guided by stimulus-organism-response(SOR)theory for women with postpartum depression after cesarean delivery may inform nursing interventions for women with postpartum dep...BACKGROUND The use of a problem-solving model guided by stimulus-organism-response(SOR)theory for women with postpartum depression after cesarean delivery may inform nursing interventions for women with postpartum depression.AIM To explore the state of mind and coping style of women with depression after cesarean delivery guided by SOR theory.METHODS Eighty postpartum depressed women with cesarean delivery admitted to the hospital between January 2022 and October 2023 were selected and divided into two groups of 40 cases each,according to the random number table method.In the control group,the observation group adopted the problem-solving nursing model under SOR theory.The two groups were consecutively intervened for 12 weeks,and the state of mind,coping styles,and degree of post-partum depression were analyzed at the end of the intervention.RESULTS The Edinburgh Postnatal Depression Scale and Hamilton Depression Scale-24-item scores of the observation group were lower than in the control group after care,and the level of improvement in the state of mind was higher than that of the control group(P<0.05).The level of coping with illness in the observation group after care(26.48±3.35)was higher than that in the control group(21.73±3.20),and the level of avoidance(12.04±2.68)and submission(8.14±1.15)was lower than that in the control group(15.75±2.69 and 9.95±1.20),with significant differences(P<0.05).CONCLUSION Adopting the problem-solving nursing model using SOR theory for postpartum depressed mothers after cesarean delivery reduced maternal depression,improved their state of mind,and coping level with illness.展开更多
This study constructs a reflective feedback model based on a pedagogical agent(PA)and explores its impact on students’problem-solving ability and cognitive load.A quasi-experimental design was used in the study,with ...This study constructs a reflective feedback model based on a pedagogical agent(PA)and explores its impact on students’problem-solving ability and cognitive load.A quasi-experimental design was used in the study,with 84 students from a middle school selected as the research subjects(44 in the experimental group and 40 in the control group).The experimental group used the reflective feedback model,while the control group used the factual feedback model.The results show that,compared with factual feedback,the reflective feedback model based on the pedagogical agent significantly improves students’problem-solving ability,especially at the action and thinking levels.In addition,this model effectively reduces students’cognitive load,especially in terms of internal and external load.展开更多
In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and cha...In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and change.Likewise,this period has seen a significant increase in our understanding of the physical processes and mechanisms that drive precipitation and its variability across different regions of Africa.By leveraging a large volume of climate model outputs,numerous studies have investigated the model representation of African precipitation as well as underlying physical processes.These studies have assessed whether the physical processes are well depicted and whether the models are fit for informing mitigation and adaptation strategies.This paper provides a review of the progress in precipitation simulation overAfrica in state-of-the-science climate models and discusses the major issues and challenges that remain.展开更多
Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(...Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].展开更多
Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying ...Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying issues with services,products,or customer experience,resulting in considerable income loss.Prediction of customer churn is a crucial task aimed at retaining customers and maintaining revenue growth.Traditional machine learning(ML)models often struggle to capture complex temporal dependencies in client behavior data.To address this,an optimized deep learning(DL)approach using a Regularized Bidirectional Long Short-Term Memory(RBiLSTM)model is proposed to mitigate overfitting and improve generalization error.The model integrates dropout,L2-regularization,and early stopping to enhance predictive accuracy while preventing over-reliance on specific patterns.Moreover,this study investigates the effect of optimization techniques on boosting the training efficiency of the developed model.Experimental results on a recent public customer churn dataset demonstrate that the trained model outperforms the traditional ML models and some other DL models,such as Long Short-Term Memory(LSTM)and Deep Neural Network(DNN),in churn prediction performance and stability.The proposed approach achieves 96.1%accuracy,compared with LSTM and DNN,which attain 94.5%and 94.1%accuracy,respectively.These results confirm that the proposed approach can be used as a valuable tool for businesses to identify at-risk consumers proactively and implement targeted retention strategies.展开更多
This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to use...This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to user behavior and platform-driven moderation on social media.The proposed methodological framework(1)utilizes large language models for social media post analysis and categorization,(2)employs k-means clustering for content characterization,and(3)incorporates the TODIM(Tomada de Decisão Interativa Multicritério)method to determine moderation strategies based on expert judgments.In general,the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation of large-scale decision problems.When applied in social media moderation,this approach promotes nuanced and context-sensitive self-moderation by taking into account factors such as cultural background and geographic location.The application of this framework is demonstrated within Facebook groups.Eight distinct content clusters encompassing safety,harassment,diversity,and misinformation are identified.Analysis revealed a preference for content removal across all clusters,suggesting a cautious approach towards potentially harmful content.However,the framework also highlights the use of other moderation actions,like account suspension,depending on the content category.These findings contribute to the growing body of research on self-moderation and offer valuable insights for creating safer and more inclusive online spaces within smaller communities.展开更多
The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is m...The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is mainly used for finite element analysis at present,and the effectiveness of the surrogate material model has been fully confirmed.However,there are some accuracy problems when dealing with boundary elements using the surrogate material model,which will affect the topology optimization results.In this study,a boundary element reconstruction(BER)model is proposed based on the surrogate material model under the MMC topology optimization framework to improve the accuracy of topology optimization.The proposed BER model can reconstruct the boundary elements by refining the local meshes and obtaining new nodes in boundary elements.Then the density of boundary elements is recalculated using the new node information,which is more accurate than the original model.Based on the new density of boundary elements,the material properties and volume information of the boundary elements are updated.Compared with other finite element analysis methods,the BER model is simple and feasible and can improve computational accuracy.Finally,the effectiveness and superiority of the proposed method are verified by comparing it with the optimization results of the original surrogate material model through several numerical examples.展开更多
To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework ba...To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions.展开更多
Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frame...Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frames remains a fundamental yet unresolved challenge.Existing methods typically rely on dense keyframe inputs or complex prior structures,making it difficult to balance motion quality and plausibility under conditions such as sparse constraints,long-term dependencies,and diverse motion styles.To address this,we propose a motion generation framework based on a frequency-domain diffusion model,which aims to better model complex motion distributions and enhance generation stability under sparse conditions.Our method maps motion sequences to the frequency domain via the Discrete Cosine Transform(DCT),enabling more effective modeling of low-frequency motion structures while suppressing high-frequency noise.A denoising network based on self-attention is introduced to capture long-range temporal dependencies and improve global structural awareness.Additionally,a multi-objective loss function is employed to jointly optimize motion smoothness,pose diversity,and anatomical consistency,enhancing the realism and physical plausibility of the generated sequences.Comparative experiments on the Human3.6M and LaFAN1 datasets demonstrate that our method outperforms state-of-the-art approaches across multiple performance metrics,showing stronger capabilities in generating intermediate motion frames.This research offers a new perspective and methodology for human motion generation and holds promise for applications in character animation,game development,and virtual interaction.展开更多
Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of kn...Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities,a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed.Thus,we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment,with a particular emphasis on traumatic brain injury and stroke.Due to the lack of translational models in most noninvasive brain stimulation techniques proposed,we found this review to the most relevant techniques used in humans,i.e.,transcranial magnetic stimulation and transcranial direct current stimulation.We searched the literature in Pub Med,encompassing the MEDLINE and PMC databases,for studies published between January 1,2020 and September 30,2024.Thirty-five studies were eligible.Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury,with emerging mechanistic evidence.Overall,we identified neuronal,inflammatory,microvascular,and apoptotic pathways highlighted in the literature.This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation.展开更多
Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in ...Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in their serum, targeting acetylcholine receptor, muscle-specific kinase, or related proteins. Current treatment for myasthenia gravis involves symptomatic therapy, immunosuppressive drugs such as corticosteroids, azathioprine, and mycophenolate mofetil, and thymectomy, which is primarily indicated in patients with thymoma or thymic hyperplasia. However, this condition continues to pose significant challenges including an unpredictable and variable disease progression, differing response to individual therapies, and substantial longterm side effects associated with standard treatments(including an increased risk of infections, osteoporosis, and diabetes), underscoring the necessity for a more personalized approach to treatment. Furthermore, about fifteen percent of patients, called “refractory myasthenia gravis patients”, do not respond adequately to standard therapies. In this context, the introduction of molecular therapies has marked a significant advance in myasthenia gravis management. Advances in understanding myasthenia gravis pathogenesis, especially the role of pathogenic antibodies, have driven the development of these biological drugs, which offer more selective, rapid, and safer alternatives to traditional immunosuppressants. This review aims to provide a comprehensive overview of emerging therapeutic strategies targeting specific immune pathways in myasthenia gravis, with a particular focus on preclinical evidence, therapeutic rationale, and clinical translation of B-cell depletion therapies, neonatal Fc receptor inhibitors, and complement inhibitors.展开更多
The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cereb...The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cerebral organoids have emerged as valuable tools offering a more complex,versatile,and human-relevant system than traditional animal models,which are often unable to replicate the intricate architecture and functionality of the human brain.Since human cerebral organoids are a state-of-the-art model for the study of neurodevelopment and different pathologies affecting the brain,this field is currently under constant development,and work in this area is abundant.In this review,we give a complete overview of human cerebral organoids technology,starting from the different types of protocols that exist to generate different human cerebral organoids.We continue with the use of brain organoids for the study of brain pathologies,highlighting neurodevelopmental,psychiatric,neurodegenerative,brain tumor,and infectious diseases.Because of the potential value of human cerebral organoids,we describe their use in transplantation,drug screening,and toxicology assays.We also discuss the technologies available to study cell diversity and physiological characteristics of organoids.Finally,we summarize the limitations that currently exist in the field,such as the development of vasculature and microglia,and highlight some of the novel approaches being pursued through bioengineering.展开更多
Background: Caregiving for someone is a huge task for informal caregivers. The caregiving role is often challenging and overwhelming for them. Stress, burden, and depression have been frequently identified as the nega...Background: Caregiving for someone is a huge task for informal caregivers. The caregiving role is often challenging and overwhelming for them. Stress, burden, and depression have been frequently identified as the negative caregiving experiences. This systematic review synthesized the available evidence for the problem-based intervention provided for caregivers as there is little insight about the effects of problem-based intervention on caregivers. Objectives: To describe: 1) the design of problem-solving intervention;2) the effects of problem-solving intervention for caregiver outcomes. Methods: This review followed Arksey and O’Malley’s methodological framework for conducting scoping reviews which entail setting research questions, selecting relevant studies, charting the data and synthesizing the results. FPRISMA guidelines were adopted and several databases were searched including MEDLINE;EMBASE;web of science. This review contains literature from 2012 to 2019 on problem-solving-based intervention which intended to caregivers. Results: 41 publications representing 27 unique problem-based interventions. Problem-solving-based intervention has different extent effects on caregiver emotion status, burden and quality of life. Conclusions: Problem-solving intervention is promising in caregiver intervention which could reduce caregiver depression, anxiety and burden.展开更多
Objective: To explore the effects of self-directed learning readiness and learning attitude on problem-solving ability among Chinese undergraduate nursing students. Methods: A convenience sampling of 460 undergraduate...Objective: To explore the effects of self-directed learning readiness and learning attitude on problem-solving ability among Chinese undergraduate nursing students. Methods: A convenience sampling of 460 undergraduate nursing students was surveyed in Tianjin, China. Students who participated in the study completed a questionnaire that included social demographic questionnaire, Self-directed Learning Readiness Scale, Attitude to Learning Scale, and Social Problem-Solving Inventory. Pearson’s correlation analysis was performed to test the correlations among problem-solving ability, self-directed learning readiness, and learning attitude. Hierarchical linear regression analyses were performed to explore the mediating role of learning attitude. Results: The results showed that learning attitude (r=0.338, P<0.01) and self-directed learning readiness (r=0.493, P<0.01) were positively correlated with problem-solving ability. Learning attitude played a partial intermediary role between self-directed learning readiness and problem-solving ability (F=74.227, P<0.01). Conclusions: It is concluded that nursing educators should pay attention on students’ individual differences and take proper actions to inspire students’ self-directed learning readiness and learning attitude.展开更多
Based on the biological key-lock-principle common in various biological systems such as the human brain, this paper relates to a method and device for creating problem-solving complexes from individual elements that c...Based on the biological key-lock-principle common in various biological systems such as the human brain, this paper relates to a method and device for creating problem-solving complexes from individual elements that can be coupled with one another and that have different properties to solve problems. The problem solution can be carried out either serially with a large computer, or with several independent, hierarchically joined computers. In this system, an independent control unit that assumes a multitude of tasks and also acts as an interface with access to all participating computers, is assigned to each problem or object class according to the amount of potential problem-oriented solutions. Such a unit prepares the partial solutions found in its computer for the totality of the solutions computed in the associated computers, finally leading to a total problem solution.展开更多
Objective: Problem-solving should be a fundamental component of nursing education because It is a core ability for professional nurses. For more effective learning, nursing students must understand the relationship be...Objective: Problem-solving should be a fundamental component of nursing education because It is a core ability for professional nurses. For more effective learning, nursing students must understand the relationship between self-directed learning readiness and problem-solving ability. The aim of this study was to investigate the relationships among self-directed learning readiness, problemsolving ability, and academic self-efficacy among undergraduate nursing students.Methods: From November to December 2016, research was conducted among 500 nursing undergraduate students in Tianjin, China,using a self-directed learning readiness scale, an academic self-efficacy scale, a questionnaire related to problem-solving, and selfdesigned demographics. The response rate was 85.8%.Results: For Chinese nursing students, self-directed learning readiness and academic self-efficacy reached a medium-to-high level,while problem-solving abilities were at a low level. There were significant positive correlations among the students' self-directed learning readiness, academic self-efficacy, and problem-solving ability. Furthermore, academic self-efficacy demonstrated a mediating effect on the relationship between the students' self-directed learning readiness and problem-solving ability.Conclusions: To enhance students' problem-solving ability, nursing educators should pay more attention to the positive impact of self-directed learning readiness and self-efficacy in nursing students' education.展开更多
文摘BACKGROUND The use of a problem-solving model guided by stimulus-organism-response(SOR)theory for women with postpartum depression after cesarean delivery may inform nursing interventions for women with postpartum depression.AIM To explore the state of mind and coping style of women with depression after cesarean delivery guided by SOR theory.METHODS Eighty postpartum depressed women with cesarean delivery admitted to the hospital between January 2022 and October 2023 were selected and divided into two groups of 40 cases each,according to the random number table method.In the control group,the observation group adopted the problem-solving nursing model under SOR theory.The two groups were consecutively intervened for 12 weeks,and the state of mind,coping styles,and degree of post-partum depression were analyzed at the end of the intervention.RESULTS The Edinburgh Postnatal Depression Scale and Hamilton Depression Scale-24-item scores of the observation group were lower than in the control group after care,and the level of improvement in the state of mind was higher than that of the control group(P<0.05).The level of coping with illness in the observation group after care(26.48±3.35)was higher than that in the control group(21.73±3.20),and the level of avoidance(12.04±2.68)and submission(8.14±1.15)was lower than that in the control group(15.75±2.69 and 9.95±1.20),with significant differences(P<0.05).CONCLUSION Adopting the problem-solving nursing model using SOR theory for postpartum depressed mothers after cesarean delivery reduced maternal depression,improved their state of mind,and coping level with illness.
基金023 Zhejiang Provincial Department of Education General Project:Research on an interdisciplinary teaching model to promote the development of computational thinking in the context of the new curriculum standards[Grant NO:Y202351596]Key Project of Zhejiang Provincial Education Science Planning:Research on an interdisciplinary teaching model to promote students’computational thinking from multiple analytical perspectives[Grant NO:2025SB103].
文摘This study constructs a reflective feedback model based on a pedagogical agent(PA)and explores its impact on students’problem-solving ability and cognitive load.A quasi-experimental design was used in the study,with 84 students from a middle school selected as the research subjects(44 in the experimental group and 40 in the control group).The experimental group used the reflective feedback model,while the control group used the factual feedback model.The results show that,compared with factual feedback,the reflective feedback model based on the pedagogical agent significantly improves students’problem-solving ability,especially at the action and thinking levels.In addition,this model effectively reduces students’cognitive load,especially in terms of internal and external load.
基金the World Climate Research Programme(WCRP),Climate Variability and Predictability(CLIVAR),and Global Energy and Water Exchanges(GEWEX)for facilitating the coordination of African monsoon researchsupport from the Center for Earth System Modeling,Analysis,and Data at the Pennsylvania State Universitythe support of the Office of Science of the U.S.Department of Energy Biological and Environmental Research as part of the Regional&Global Model Analysis(RGMA)program area。
文摘In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and change.Likewise,this period has seen a significant increase in our understanding of the physical processes and mechanisms that drive precipitation and its variability across different regions of Africa.By leveraging a large volume of climate model outputs,numerous studies have investigated the model representation of African precipitation as well as underlying physical processes.These studies have assessed whether the physical processes are well depicted and whether the models are fit for informing mitigation and adaptation strategies.This paper provides a review of the progress in precipitation simulation overAfrica in state-of-the-science climate models and discusses the major issues and challenges that remain.
文摘Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].
文摘Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying issues with services,products,or customer experience,resulting in considerable income loss.Prediction of customer churn is a crucial task aimed at retaining customers and maintaining revenue growth.Traditional machine learning(ML)models often struggle to capture complex temporal dependencies in client behavior data.To address this,an optimized deep learning(DL)approach using a Regularized Bidirectional Long Short-Term Memory(RBiLSTM)model is proposed to mitigate overfitting and improve generalization error.The model integrates dropout,L2-regularization,and early stopping to enhance predictive accuracy while preventing over-reliance on specific patterns.Moreover,this study investigates the effect of optimization techniques on boosting the training efficiency of the developed model.Experimental results on a recent public customer churn dataset demonstrate that the trained model outperforms the traditional ML models and some other DL models,such as Long Short-Term Memory(LSTM)and Deep Neural Network(DNN),in churn prediction performance and stability.The proposed approach achieves 96.1%accuracy,compared with LSTM and DNN,which attain 94.5%and 94.1%accuracy,respectively.These results confirm that the proposed approach can be used as a valuable tool for businesses to identify at-risk consumers proactively and implement targeted retention strategies.
基金funded by the Office of the Vice-President for Research and Development of Cebu Technological University.
文摘This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to user behavior and platform-driven moderation on social media.The proposed methodological framework(1)utilizes large language models for social media post analysis and categorization,(2)employs k-means clustering for content characterization,and(3)incorporates the TODIM(Tomada de Decisão Interativa Multicritério)method to determine moderation strategies based on expert judgments.In general,the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation of large-scale decision problems.When applied in social media moderation,this approach promotes nuanced and context-sensitive self-moderation by taking into account factors such as cultural background and geographic location.The application of this framework is demonstrated within Facebook groups.Eight distinct content clusters encompassing safety,harassment,diversity,and misinformation are identified.Analysis revealed a preference for content removal across all clusters,suggesting a cautious approach towards potentially harmful content.However,the framework also highlights the use of other moderation actions,like account suspension,depending on the content category.These findings contribute to the growing body of research on self-moderation and offer valuable insights for creating safer and more inclusive online spaces within smaller communities.
基金supported by the Science and Technology Research Project of Henan Province(242102241055)the Industry-University-Research Collaborative Innovation Base on Automobile Lightweight of“Science and Technology Innovation in Central Plains”(2024KCZY315)the Opening Fund of State Key Laboratory of Structural Analysis,Optimization and CAE Software for Industrial Equipment(GZ2024A03-ZZU).
文摘The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is mainly used for finite element analysis at present,and the effectiveness of the surrogate material model has been fully confirmed.However,there are some accuracy problems when dealing with boundary elements using the surrogate material model,which will affect the topology optimization results.In this study,a boundary element reconstruction(BER)model is proposed based on the surrogate material model under the MMC topology optimization framework to improve the accuracy of topology optimization.The proposed BER model can reconstruct the boundary elements by refining the local meshes and obtaining new nodes in boundary elements.Then the density of boundary elements is recalculated using the new node information,which is more accurate than the original model.Based on the new density of boundary elements,the material properties and volume information of the boundary elements are updated.Compared with other finite element analysis methods,the BER model is simple and feasible and can improve computational accuracy.Finally,the effectiveness and superiority of the proposed method are verified by comparing it with the optimization results of the original surrogate material model through several numerical examples.
基金supported by the confidential research grant No.a8317。
文摘To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions.
基金supported by the National Natural Science Foundation of China(Grant No.72161034).
文摘Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frames remains a fundamental yet unresolved challenge.Existing methods typically rely on dense keyframe inputs or complex prior structures,making it difficult to balance motion quality and plausibility under conditions such as sparse constraints,long-term dependencies,and diverse motion styles.To address this,we propose a motion generation framework based on a frequency-domain diffusion model,which aims to better model complex motion distributions and enhance generation stability under sparse conditions.Our method maps motion sequences to the frequency domain via the Discrete Cosine Transform(DCT),enabling more effective modeling of low-frequency motion structures while suppressing high-frequency noise.A denoising network based on self-attention is introduced to capture long-range temporal dependencies and improve global structural awareness.Additionally,a multi-objective loss function is employed to jointly optimize motion smoothness,pose diversity,and anatomical consistency,enhancing the realism and physical plausibility of the generated sequences.Comparative experiments on the Human3.6M and LaFAN1 datasets demonstrate that our method outperforms state-of-the-art approaches across multiple performance metrics,showing stronger capabilities in generating intermediate motion frames.This research offers a new perspective and methodology for human motion generation and holds promise for applications in character animation,game development,and virtual interaction.
基金funded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation):project ID 431549029-SFB 1451the Marga-und-Walter-Boll-Stiftung(#210-10-15)(to MAR)a stipend from the'Gerok Program'(Faculty of Medicine,University of Cologne,Germany)。
文摘Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities,a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed.Thus,we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment,with a particular emphasis on traumatic brain injury and stroke.Due to the lack of translational models in most noninvasive brain stimulation techniques proposed,we found this review to the most relevant techniques used in humans,i.e.,transcranial magnetic stimulation and transcranial direct current stimulation.We searched the literature in Pub Med,encompassing the MEDLINE and PMC databases,for studies published between January 1,2020 and September 30,2024.Thirty-five studies were eligible.Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury,with emerging mechanistic evidence.Overall,we identified neuronal,inflammatory,microvascular,and apoptotic pathways highlighted in the literature.This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation.
文摘Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in their serum, targeting acetylcholine receptor, muscle-specific kinase, or related proteins. Current treatment for myasthenia gravis involves symptomatic therapy, immunosuppressive drugs such as corticosteroids, azathioprine, and mycophenolate mofetil, and thymectomy, which is primarily indicated in patients with thymoma or thymic hyperplasia. However, this condition continues to pose significant challenges including an unpredictable and variable disease progression, differing response to individual therapies, and substantial longterm side effects associated with standard treatments(including an increased risk of infections, osteoporosis, and diabetes), underscoring the necessity for a more personalized approach to treatment. Furthermore, about fifteen percent of patients, called “refractory myasthenia gravis patients”, do not respond adequately to standard therapies. In this context, the introduction of molecular therapies has marked a significant advance in myasthenia gravis management. Advances in understanding myasthenia gravis pathogenesis, especially the role of pathogenic antibodies, have driven the development of these biological drugs, which offer more selective, rapid, and safer alternatives to traditional immunosuppressants. This review aims to provide a comprehensive overview of emerging therapeutic strategies targeting specific immune pathways in myasthenia gravis, with a particular focus on preclinical evidence, therapeutic rationale, and clinical translation of B-cell depletion therapies, neonatal Fc receptor inhibitors, and complement inhibitors.
基金supported by the Grant PID2021-126715OB-IOO financed by MCIN/AEI/10.13039/501100011033 and"ERDFA way of making Europe"by the Grant PI22CⅢ/00055 funded by Instituto de Salud CarlosⅢ(ISCⅢ)+6 种基金the UFIECPY 398/19(PEJ2018-004965) grant to RGS funded by AEI(Spain)the UFIECPY-396/19(PEJ2018-004961)grant financed by MCIN (Spain)FI23CⅢ/00003 grant funded by ISCⅢ-PFIS Spain) to PMMthe UFIECPY 328/22 (PEJ-2021-TL/BMD-21001) grant to LM financed by CAM (Spain)the grant by CAPES (Coordination for the Improvement of Higher Education Personnel)through the PDSE program (Programa de Doutorado Sanduiche no Exterior)to VSCG financed by MEC (Brazil)
文摘The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cerebral organoids have emerged as valuable tools offering a more complex,versatile,and human-relevant system than traditional animal models,which are often unable to replicate the intricate architecture and functionality of the human brain.Since human cerebral organoids are a state-of-the-art model for the study of neurodevelopment and different pathologies affecting the brain,this field is currently under constant development,and work in this area is abundant.In this review,we give a complete overview of human cerebral organoids technology,starting from the different types of protocols that exist to generate different human cerebral organoids.We continue with the use of brain organoids for the study of brain pathologies,highlighting neurodevelopmental,psychiatric,neurodegenerative,brain tumor,and infectious diseases.Because of the potential value of human cerebral organoids,we describe their use in transplantation,drug screening,and toxicology assays.We also discuss the technologies available to study cell diversity and physiological characteristics of organoids.Finally,we summarize the limitations that currently exist in the field,such as the development of vasculature and microglia,and highlight some of the novel approaches being pursued through bioengineering.
文摘Background: Caregiving for someone is a huge task for informal caregivers. The caregiving role is often challenging and overwhelming for them. Stress, burden, and depression have been frequently identified as the negative caregiving experiences. This systematic review synthesized the available evidence for the problem-based intervention provided for caregivers as there is little insight about the effects of problem-based intervention on caregivers. Objectives: To describe: 1) the design of problem-solving intervention;2) the effects of problem-solving intervention for caregiver outcomes. Methods: This review followed Arksey and O’Malley’s methodological framework for conducting scoping reviews which entail setting research questions, selecting relevant studies, charting the data and synthesizing the results. FPRISMA guidelines were adopted and several databases were searched including MEDLINE;EMBASE;web of science. This review contains literature from 2012 to 2019 on problem-solving-based intervention which intended to caregivers. Results: 41 publications representing 27 unique problem-based interventions. Problem-solving-based intervention has different extent effects on caregiver emotion status, burden and quality of life. Conclusions: Problem-solving intervention is promising in caregiver intervention which could reduce caregiver depression, anxiety and burden.
文摘Objective: To explore the effects of self-directed learning readiness and learning attitude on problem-solving ability among Chinese undergraduate nursing students. Methods: A convenience sampling of 460 undergraduate nursing students was surveyed in Tianjin, China. Students who participated in the study completed a questionnaire that included social demographic questionnaire, Self-directed Learning Readiness Scale, Attitude to Learning Scale, and Social Problem-Solving Inventory. Pearson’s correlation analysis was performed to test the correlations among problem-solving ability, self-directed learning readiness, and learning attitude. Hierarchical linear regression analyses were performed to explore the mediating role of learning attitude. Results: The results showed that learning attitude (r=0.338, P<0.01) and self-directed learning readiness (r=0.493, P<0.01) were positively correlated with problem-solving ability. Learning attitude played a partial intermediary role between self-directed learning readiness and problem-solving ability (F=74.227, P<0.01). Conclusions: It is concluded that nursing educators should pay attention on students’ individual differences and take proper actions to inspire students’ self-directed learning readiness and learning attitude.
文摘Based on the biological key-lock-principle common in various biological systems such as the human brain, this paper relates to a method and device for creating problem-solving complexes from individual elements that can be coupled with one another and that have different properties to solve problems. The problem solution can be carried out either serially with a large computer, or with several independent, hierarchically joined computers. In this system, an independent control unit that assumes a multitude of tasks and also acts as an interface with access to all participating computers, is assigned to each problem or object class according to the amount of potential problem-oriented solutions. Such a unit prepares the partial solutions found in its computer for the totality of the solutions computed in the associated computers, finally leading to a total problem solution.
文摘Objective: Problem-solving should be a fundamental component of nursing education because It is a core ability for professional nurses. For more effective learning, nursing students must understand the relationship between self-directed learning readiness and problem-solving ability. The aim of this study was to investigate the relationships among self-directed learning readiness, problemsolving ability, and academic self-efficacy among undergraduate nursing students.Methods: From November to December 2016, research was conducted among 500 nursing undergraduate students in Tianjin, China,using a self-directed learning readiness scale, an academic self-efficacy scale, a questionnaire related to problem-solving, and selfdesigned demographics. The response rate was 85.8%.Results: For Chinese nursing students, self-directed learning readiness and academic self-efficacy reached a medium-to-high level,while problem-solving abilities were at a low level. There were significant positive correlations among the students' self-directed learning readiness, academic self-efficacy, and problem-solving ability. Furthermore, academic self-efficacy demonstrated a mediating effect on the relationship between the students' self-directed learning readiness and problem-solving ability.Conclusions: To enhance students' problem-solving ability, nursing educators should pay more attention to the positive impact of self-directed learning readiness and self-efficacy in nursing students' education.