In this paper, we consider the Cauchy problem for the Laplace equation, which is severely ill-posed in the sense that the solution does not depend continuously on the data. A modified Tikhonov regularization method is...In this paper, we consider the Cauchy problem for the Laplace equation, which is severely ill-posed in the sense that the solution does not depend continuously on the data. A modified Tikhonov regularization method is proposed to solve this problem. An error estimate for the a priori parameter choice between the exact solution and its regularized approximation is obtained. Moreover, an a posteriori parameter choice rule is proposed and a stable error estimate is also obtained. Numerical examples illustrate the validity and effectiveness of this method.展开更多
This paper is concerned with the Cauchy problem for the modified Helmholtz equation in an infinite strip domain 0<x≤1,y∈R.The Cauchy data at x = 0 is given and the solution is then sought for the interval 0<x...This paper is concerned with the Cauchy problem for the modified Helmholtz equation in an infinite strip domain 0<x≤1,y∈R.The Cauchy data at x = 0 is given and the solution is then sought for the interval 0<x≤1.This problem is highly ill-posed and the solution(if it exists) does not depend continuously on the given data. In this paper,we propose a fourth-order modified method to solve the Cauchy problem. Convergence estimates are presented under the suitable choices of regularization parameters and the a priori assumption on the bounds of the exact solution.Numerical implementation is considered and the numerical examples show that our proposed method is effective and stable.展开更多
In this paper, the author obtains an existence theorem of minimal and maximal solutions for the periodic boundary value problems of nonlinear impulsive integrodifferential equations of mixed type in Banach space by me...In this paper, the author obtains an existence theorem of minimal and maximal solutions for the periodic boundary value problems of nonlinear impulsive integrodifferential equations of mixed type in Banach space by means of the monotone iterative technique and cone theory based on a comparison result.展开更多
This paper is concerned with the solvability of a boundary value problem for a nonhomogeneous biharmonic equation. The boundary data is determined by a differential operator of fractional order in the Riemann-Liouvill...This paper is concerned with the solvability of a boundary value problem for a nonhomogeneous biharmonic equation. The boundary data is determined by a differential operator of fractional order in the Riemann-Liouville sense. The considered problem is a generalization of the known Dirichlet and Neumann problems.展开更多
In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal...In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal asymptotic solution by Lyuternik- Vishik 's method. Finally, by means of the energy estimates we obtain the bound of the remainder of the asymptotic solution.展开更多
In this paper, we study the initial-boundary value problem with rigid wall for the equations in combustion dynamics with largy parameter. Introducing variable scalar norms and two seminorms, making use of the vorticit...In this paper, we study the initial-boundary value problem with rigid wall for the equations in combustion dynamics with largy parameter. Introducing variable scalar norms and two seminorms, making use of the vorticity operator, overcome the difficulty from the large parameter. By energy estimation, the existence and unique theorems of local smooth solution is proved.展开更多
In this paper we study the singular perturbation of boundary value problems with perturbations both in the operator and in the interval ends. So as to prove the existence and uniqueness of solution of perturbed proble...In this paper we study the singular perturbation of boundary value problems with perturbations both in the operator and in the interval ends. So as to prove the existence and uniqueness of solution of perturbed problem, to establish the asymptotic expression involving three parameters. Thus, the iterative equation of finding the asymptotic solution is derived and the estimation of the remainder term is given out. We extend results of [l]-[5].展开更多
This paper is taken up for the following difference equation problem (Pe);where e is a small parameter, c1, c2,constants and functions of k and e . Firstly, the case with constant coefficients is considered. Secondly,...This paper is taken up for the following difference equation problem (Pe);where e is a small parameter, c1, c2,constants and functions of k and e . Firstly, the case with constant coefficients is considered. Secondly, a general method based on extended transformation is given to handle (P.) where the coefficients may be variable and uniform asymptotic expansions are obtained. Finally, a numerical example is provided to illustrate the proposed method.展开更多
In this paper, some misunderstam igs concerning the necessary conditions for resonance for ordinary differential equations with turning point have been corrected, and a recursive process for finding the sequence of ne...In this paper, some misunderstam igs concerning the necessary conditions for resonance for ordinary differential equations with turning point have been corrected, and a recursive process for finding the sequence of necessary conditions for resonance has beenoffered.展开更多
In this paper we consider the initial-boundary value problem for a second order hyperbolic equation with initial jump. The bounds on the derivatives of the exact solution are given. Then a difference scheme is constru...In this paper we consider the initial-boundary value problem for a second order hyperbolic equation with initial jump. The bounds on the derivatives of the exact solution are given. Then a difference scheme is constructed on a non-uniform grid. Finally, uniform convergence of the difference solution is proved in the sense of the discrete energy norm.展开更多
In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space whic...In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space which consists of functions with vector valued in a general Banach space, and then describe the solution of these abstract boundary value problem by the abstract linear integral operator of Volterra type. We call this process the integral operator solving process.展开更多
In this article, we first propose the Riemann-Hilbert problem for uniformly elliptic complex equations of first order and its well-posed-ness in multiply connected domains.Then we give the integral representation of s...In this article, we first propose the Riemann-Hilbert problem for uniformly elliptic complex equations of first order and its well-posed-ness in multiply connected domains.Then we give the integral representation of solutions for modified Riemann-Hilbert problem of the complex equations. Moreover we shall obtain a priori estimates of solutions of the modified Riemann-Hilbert problem and verify its solvability. Finally the solvability results of the original boundary value problem can be obtained.展开更多
In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differenti...By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differential equation with a small parameter ε>0: where i=1, 2; a(?)(ε), β(ε) and γ(ε) are functions defined on (0, ε_o], while ε_o>0 is a constant.This paper is the continuation of our works [4, 6].展开更多
In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the a...In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the asymptotic solution are given. Then an exponentially fitted difference scheme is developed in an equidistant mesh. Finally, uniform convergence in small parameter is proved in the sense of discrete energy norm.展开更多
In this paper, we construct a class of difference schemes with fitted factors for a singular perturbation problem of a self-adjoint ordinary differential equation. Using a different method from [1], by analyzing the t...In this paper, we construct a class of difference schemes with fitted factors for a singular perturbation problem of a self-adjoint ordinary differential equation. Using a different method from [1], by analyzing the truncation errors of schemes, we give the sufficient conditions under which the solution of lite difference scheme converges uniformly to the solution of the differential equation. From this we propose several specific schemes under weaker conditions, and give much higher order of uniform convergence, and applying them to example, obtain the numerical results.展开更多
In this paper well-conditioning of boundary value problems for systems of second order difference equa-tions is studied.First,a sufficient condition for the existence of a unique bounded solution (for large enough num...In this paper well-conditioning of boundary value problems for systems of second order difference equa-tions is studied.First,a sufficient condition for the existence of a unique bounded solution (for large enough number of steps) of an associated homogeneous system is given.Finally,a sufficient condition for well-condi-tioning,intrinsically related to the problem data is proposed.展开更多
This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of suff...This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of sufficient regularity of boundary conditions and coefficients, as long as the angle is sufficiently small, the regularity of the solution to the mixed boundary value problem of the second-order elliptic equation can reach any order.展开更多
In this paper, the equation of axisymmetrical deformation problems for a general shell of revolution is derived in one complex variable under the usual Love-Kirchhoff assumption. In the case of circular ring shells, t...In this paper, the equation of axisymmetrical deformation problems for a general shell of revolution is derived in one complex variable under the usual Love-Kirchhoff assumption. In the case of circular ring shells, this equation may be simplified into the equation given by F.Tdlke(1938)[3]. R.A. Clark(1950 )[4] and V. V.Novozhilov(1951)[5]. When the horizontal radius of the shell of revolution is much larger than the average radius of curvature of meridian curve, this equation in complex variable may be simplified into the equation for slander ring shells. If the ring shell is circular in shape, then this equation can be reduced into the equation in complex variable for slander circular ring shells given by this author (1979)[6]. If the form of elliptic cross-section is near a circle, then the equation of slander ring shell with near-circle ellipitic cross-section may be reduced to the complex variable equation similar in form for circular slander ring shells.展开更多
基金supported by the National Natural Science Foundation of China(1117113611261032)+2 种基金the Distinguished Young Scholars Fund of Lan Zhou University of Technology(Q201015)the basic scientific research business expenses of Gansu province collegethe Natural Science Foundation of Gansu province(1310RJYA021)
文摘In this paper, we consider the Cauchy problem for the Laplace equation, which is severely ill-posed in the sense that the solution does not depend continuously on the data. A modified Tikhonov regularization method is proposed to solve this problem. An error estimate for the a priori parameter choice between the exact solution and its regularized approximation is obtained. Moreover, an a posteriori parameter choice rule is proposed and a stable error estimate is also obtained. Numerical examples illustrate the validity and effectiveness of this method.
基金supported by the NSF of China(10571079,10671085)and the program of NCET
文摘This paper is concerned with the Cauchy problem for the modified Helmholtz equation in an infinite strip domain 0<x≤1,y∈R.The Cauchy data at x = 0 is given and the solution is then sought for the interval 0<x≤1.This problem is highly ill-posed and the solution(if it exists) does not depend continuously on the given data. In this paper,we propose a fourth-order modified method to solve the Cauchy problem. Convergence estimates are presented under the suitable choices of regularization parameters and the a priori assumption on the bounds of the exact solution.Numerical implementation is considered and the numerical examples show that our proposed method is effective and stable.
文摘In this paper, the author obtains an existence theorem of minimal and maximal solutions for the periodic boundary value problems of nonlinear impulsive integrodifferential equations of mixed type in Banach space by means of the monotone iterative technique and cone theory based on a comparison result.
基金partially supportedby Ministerio de Ciencia e Innovacion-SPAINFEDER,project MTM2010-15314supported by the Ministry of Science and Education of the Republic of Kazakhstan through the Project No.0713 GF
文摘This paper is concerned with the solvability of a boundary value problem for a nonhomogeneous biharmonic equation. The boundary data is determined by a differential operator of fractional order in the Riemann-Liouville sense. The considered problem is a generalization of the known Dirichlet and Neumann problems.
文摘In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal asymptotic solution by Lyuternik- Vishik 's method. Finally, by means of the energy estimates we obtain the bound of the remainder of the asymptotic solution.
文摘In this paper, we study the initial-boundary value problem with rigid wall for the equations in combustion dynamics with largy parameter. Introducing variable scalar norms and two seminorms, making use of the vorticity operator, overcome the difficulty from the large parameter. By energy estimation, the existence and unique theorems of local smooth solution is proved.
基金This research was supported by Fujian Science Foundation.
文摘In this paper we study the singular perturbation of boundary value problems with perturbations both in the operator and in the interval ends. So as to prove the existence and uniqueness of solution of perturbed problem, to establish the asymptotic expression involving three parameters. Thus, the iterative equation of finding the asymptotic solution is derived and the estimation of the remainder term is given out. We extend results of [l]-[5].
文摘This paper is taken up for the following difference equation problem (Pe);where e is a small parameter, c1, c2,constants and functions of k and e . Firstly, the case with constant coefficients is considered. Secondly, a general method based on extended transformation is given to handle (P.) where the coefficients may be variable and uniform asymptotic expansions are obtained. Finally, a numerical example is provided to illustrate the proposed method.
基金Projects Supported by the Science Fund of the Chinese Academy of Sciences
文摘In this paper, some misunderstam igs concerning the necessary conditions for resonance for ordinary differential equations with turning point have been corrected, and a recursive process for finding the sequence of necessary conditions for resonance has beenoffered.
文摘In this paper we consider the initial-boundary value problem for a second order hyperbolic equation with initial jump. The bounds on the derivatives of the exact solution are given. Then a difference scheme is constructed on a non-uniform grid. Finally, uniform convergence of the difference solution is proved in the sense of the discrete energy norm.
文摘In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space which consists of functions with vector valued in a general Banach space, and then describe the solution of these abstract boundary value problem by the abstract linear integral operator of Volterra type. We call this process the integral operator solving process.
基金Supported by the National Natural Science Foundation of China(Grant No.11171349)the Science Foundation of Hebei Province(Grant No.A2010000346)
文摘In this article, we first propose the Riemann-Hilbert problem for uniformly elliptic complex equations of first order and its well-posed-ness in multiply connected domains.Then we give the integral representation of solutions for modified Riemann-Hilbert problem of the complex equations. Moreover we shall obtain a priori estimates of solutions of the modified Riemann-Hilbert problem and verify its solvability. Finally the solvability results of the original boundary value problem can be obtained.
文摘In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
基金Project supported by the National Natural Science Foundation of China.
文摘By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differential equation with a small parameter ε>0: where i=1, 2; a(?)(ε), β(ε) and γ(ε) are functions defined on (0, ε_o], while ε_o>0 is a constant.This paper is the continuation of our works [4, 6].
文摘In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the asymptotic solution are given. Then an exponentially fitted difference scheme is developed in an equidistant mesh. Finally, uniform convergence in small parameter is proved in the sense of discrete energy norm.
文摘In this paper, we construct a class of difference schemes with fitted factors for a singular perturbation problem of a self-adjoint ordinary differential equation. Using a different method from [1], by analyzing the truncation errors of schemes, we give the sufficient conditions under which the solution of lite difference scheme converges uniformly to the solution of the differential equation. From this we propose several specific schemes under weaker conditions, and give much higher order of uniform convergence, and applying them to example, obtain the numerical results.
基金This work has been partially supported by the "Generalitat Valenciana" grant GV1118/93the Spanish D. G. I. C. Y.T. grant PB93-0381
文摘In this paper well-conditioning of boundary value problems for systems of second order difference equa-tions is studied.First,a sufficient condition for the existence of a unique bounded solution (for large enough number of steps) of an associated homogeneous system is given.Finally,a sufficient condition for well-condi-tioning,intrinsically related to the problem data is proposed.
文摘This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of sufficient regularity of boundary conditions and coefficients, as long as the angle is sufficiently small, the regularity of the solution to the mixed boundary value problem of the second-order elliptic equation can reach any order.
文摘In this paper, the equation of axisymmetrical deformation problems for a general shell of revolution is derived in one complex variable under the usual Love-Kirchhoff assumption. In the case of circular ring shells, this equation may be simplified into the equation given by F.Tdlke(1938)[3]. R.A. Clark(1950 )[4] and V. V.Novozhilov(1951)[5]. When the horizontal radius of the shell of revolution is much larger than the average radius of curvature of meridian curve, this equation in complex variable may be simplified into the equation for slander ring shells. If the ring shell is circular in shape, then this equation can be reduced into the equation in complex variable for slander circular ring shells given by this author (1979)[6]. If the form of elliptic cross-section is near a circle, then the equation of slander ring shell with near-circle ellipitic cross-section may be reduced to the complex variable equation similar in form for circular slander ring shells.