Wireless local area networks (WLAN) localization based on received signal strength is becoming an important enabler of location based services. Limited efficiency and accuracy are disadvantages to the deterministic lo...Wireless local area networks (WLAN) localization based on received signal strength is becoming an important enabler of location based services. Limited efficiency and accuracy are disadvantages to the deterministic location estimation techniques. The probabilistic techniques show their good accuracy but cost more computation overhead. A Gaussian mixture model based on clustering technique was presented to improve location determination efficiency. The proposed clustering algorithm reduces the number of candidate locations from the whole area to a cluster. Within a cluster, an improved nearest neighbor algorithm was used to estimate user location using signal strength from more access points. Experiments show that the location estimation time is greatly decreased while high accuracy can still be achieved.展开更多
Three-dimensional(3D)mesostructures with distinct compressive deformation behaviors and tunable mechanical responses have gained increasing interest in recent years.3D cage-shaped mesostructures are representative fra...Three-dimensional(3D)mesostructures with distinct compressive deformation behaviors and tunable mechanical responses have gained increasing interest in recent years.3D cage-shaped mesostructures are representative framework structures widely exploited in 3D flexible electronics,owing to their unique cellular geometry and unusual mechanical responses.The snap-through behavior of cage-shaped mesostructures could potentially result in the performance degradation of electronics,while it could also be harnessed to design reconfigurable electronics.Due to the complicated deformation modes and random characteristics in experiments,the snap-through behavior of cage-shaped mesostructures remains largely unexplored,espe-cially in terms of probability-based analyses.In this work,we present a systematic study on the configuration evolution and snap-through of 3D cage-shaped mesostructures under out-of-plane compressions.Experimental and computational studies show the existence of two distinct deformation modes associated with the snap-through,which is controlled by the energy barrier based on the energetic analyses.Phase diagrams of the deformation modes decode how key geometric parameters and assembly strain affect the snap-through.Compressive experiments based on periodic arrays(10 × 10)of mesostructures provided a large amount of deformation data,allowing for statistical analyses of the snap-through behavior.These results provide new insights and useful guidelines for the design of 3D reconfigurable devices and multistable metamaterials based on 3D cage-shaped mesostructures.展开更多
The probability-based covering algorithm(PBCA) is a new algorithm based on probability distribution. It decides, by voting, the class of the tested samples on the border of the coverage area, based on the probability ...The probability-based covering algorithm(PBCA) is a new algorithm based on probability distribution. It decides, by voting, the class of the tested samples on the border of the coverage area, based on the probability of training samples. When using the original covering algorithm(CA), many tested samples that are located on the border of the coverage cannot be classified by the spherical neighborhood gained. The network structure of PBCA is a mixed structure composed of both a feed-forward network and a feedback network. By using this method of adding some heterogeneous samples and enlarging the coverage radius,it is possible to decrease the number of rejected samples and improve the rate of recognition accuracy. Relevant computer experiments indicate that the algorithm improves the study precision and achieves reasonably good results in text classification.展开更多
As multi-discipline coupling and components interference often affect the aircraft configuration decision-making and analysis during conceptual design process, this article presents an approach of multidimensional gam...As multi-discipline coupling and components interference often affect the aircraft configuration decision-making and analysis during conceptual design process, this article presents an approach of multidimensional game theory based on aircraft compo- nents to deal with this problem. The idea is that the configuration decision-making process is regarded as the game for different disciplines and technologies, and the aircraft components are players. The payoff function with highest total gain means that ac- cording to the game protocols and multidimensional theory, the optimal aircraft configuration within the strategy set will be cho- sen. The decision-making model is applied to conceptual design process of the high altitude long endurance (HALE) unmanned aerial vehicle (UAV) based on the assessment of technological risk. The obtained optimum configuration is quite consistent with the current HALE UAV development trends. Thus, taking into account the coupling and interference factors, the multidimensional gaming model based on aircraft components will be an effective analysis method in the decision-making process of aircraft optimum configuration.展开更多
A distributed capacitance model for monolithic inductors is developed to predict the equivalently parasitical capacitances of the inductor.The ratio of the self-resonant frequency (f SR) of the differential-driven sym...A distributed capacitance model for monolithic inductors is developed to predict the equivalently parasitical capacitances of the inductor.The ratio of the self-resonant frequency (f SR) of the differential-driven symmetric inductor to the f SR of the single-ended driven inductor is firstly predicted and explained.Compared with a single-ended configuration,experimental data demonstrate that the differential inductor offers a 127% greater maximum quality factor and a broader range of operating frequencies.Two differential inductors with low parasitical capacitance are developed and validated.展开更多
The optimum pressure ratio distribution of a multistage reciprocating compressor is presented based on the assumption, i.e. the inter stage cooling is perfect and there are no pressure losses. The optimization of the...The optimum pressure ratio distribution of a multistage reciprocating compressor is presented based on the assumption, i.e. the inter stage cooling is perfect and there are no pressure losses. The optimization of the two or three stage pressure ratio is analyzed in two cases of constant heat transfer rate for the inter cooler or constant inter stage inlet temperature, based on the minimum of the sum of theoretical compression power at each stage about a multi stage reciprocating compressor. Furthermore, with an example of two stage compressor the influence on the sum of the power of each stage is analyzed when practical pressure ratio deviates from the optimum value. It is obtained that under different cooling conditions the optimum pressure ratio distribution of the multi stage compression is various, and the change of the optimum pressure ratio within a small range has little influence on the sum of the power each stage. For the two stage compression, this range can be represented as ε 1=(0 96~1 06)ε 1j .展开更多
[Objective] The paper was to study the effects of different ratios of N, P and K on yield of potato intercropped with sugarcane in Lateritic red earth area of Guangxi, and seek the best N, P and K ratio for nutrition ...[Objective] The paper was to study the effects of different ratios of N, P and K on yield of potato intercropped with sugarcane in Lateritic red earth area of Guangxi, and seek the best N, P and K ratio for nutrition model of potato inter- cropped with sugarcane. [Method]Two field experiments adopted the optimum com- pound design (311-A) were conducted in Long'an County of Guangxi Province in 2011 and 2012, respectively. The polynomial regression models of fertilizer applica- tion and quadratic of three factors were established by SAS statistical analysis soft- ware, and optimum nutrient simulation models of potato were obtained by computer processing. [Result] The combined application of low nitrogen and mid-high potassi- um and phosphorus fertilizer contributed to higher potato yield in experimental condi- tion. The regression model of potato yield (Yll and Y12) and dosage of N(X1), P (X2), K(X3) were established by using SAS statistical analysis software, in 2011 and 2012, respectively. They were Y11 =14 725.28 -415.39X1 +741.99X2 +607.83)(3-447.92X1X2- 144.09X1X3 -405.83X2X3 -267.82X1^2-795.67X2^2 -642.10X3^2, R =0.927 2; and Y12 =14 342.60 -896.25X1 +548.62X2 +925.51 X3 +67.81 X1X2 +531.60X1X3 -99.00X2X3 -904.00X1^2 - 1121.36X2^2-596.64X3^2,R=0.926 6. The regression mathematics model of potato yields preferably fit with actual situation in the locality, and have higher practical value, so it could be used for fertilizer decision and forecast. Using the computer to carry on the optimization, the N, P and K dosage of the best potato yield intercropped with sugarcane was obtained. The dosage of N, P2O5, K2O were 108.8-140.6, 172.5-204.4 and 285.9 kg/hm2, respectively. [Conclusion] The best N, P and K ratio of potato yield intercropped with sugarcane was 1:(1.23-1.68):(2.03-2.63).展开更多
Age is one of the factors which influnce foreign language learning, but not the most important one. Comparision on the effect of foreign language learning between adults and children cannot rely merely on age. So the ...Age is one of the factors which influnce foreign language learning, but not the most important one. Comparision on the effect of foreign language learning between adults and children cannot rely merely on age. So the question of an optimum age for foreign language learning is not a simple one which is only related to age. There are different optimum ages for different aims and demands of learning foreign language.展开更多
By the optimum theory, a new cutting analytical method of the membrane structure is developed. The B-spline curve is applied to make smooth the boundary of the membrane strip. By this method, the cutting accuracy is i...By the optimum theory, a new cutting analytical method of the membrane structure is developed. The B-spline curve is applied to make smooth the boundary of the membrane strip. By this method, the cutting accuracy is improved. Finally, a cutting analysis example of a tension membrane structure is given.展开更多
The impedance of a solid state active phased array antenna varing with frequency and beam scanning scanning angle be matched with the solid state active matching network (SSAMN). In order to adjust and measure the rad...The impedance of a solid state active phased array antenna varing with frequency and beam scanning scanning angle be matched with the solid state active matching network (SSAMN). In order to adjust and measure the radar conveniently and Securely, it is necessary for the impedance of the simulator of the phased array antennas to be optimized.Having selected the PIN dilde controlling circuits and the circuit parameters optimized,the simulator circuit is determined through numerical computation The experiment is given in support of the simulation.展开更多
Optimum design is a key approach to make full use of potential advantages of a parallel manipulator. The optimum design of multi-parameter parallel manipulators(more than three design parameters), such as Stewart ma...Optimum design is a key approach to make full use of potential advantages of a parallel manipulator. The optimum design of multi-parameter parallel manipulators(more than three design parameters), such as Stewart manipulator, relies on analysis based and algorithm based optimum design methods, which fall to be accurate or intuitive. To solve this problem and achieve both accurate and intuition, atlas based optimum design of a general Stewart parallel manipulator is established, with rational selection of design parameters. Based on the defined spherical usable workspace(SUW), primary kinematic performance indices of the Stewart manipulator involving workspace and condition number are introduced and analyzed. Then, corresponding performance atlases are drawn with the established non-dimensional design space, and impact of joint distribution angles on the manipulator performance is analyzed and illustrated. At last, an example on atlas based optimum design of the Stewart manipulator is accomplished to illustrate the optimum design process, considering the end-effector posture. Deduced atlases can be flexibly applied to both quantitative and qualitative analysis to get the desired optimal design for the Stewart manipulator with respect to related performance requirements. Besides, the established optimum design method can be further applied to other multi-parameter parallel manipulators.展开更多
In the process of concept design of offshore platforms, it is necessary to select the best from feasible alternatives through comparison and filter. The criterion set, used to evaluate and select the satisfying altern...In the process of concept design of offshore platforms, it is necessary to select the best from feasible alternatives through comparison and filter. The criterion set, used to evaluate and select the satisfying alternative, consists of many qualitative and quantitative factors. Therefore, the selection is a problem of multicriteria and semi-structural decision-making. Different from traditional methods in semi-structural decision-making, a new framework and methodology is presented in this paper for evaluation of offshore platform alternatives, First, the criterion set is established for the evaluation of alternatives. Next, the approach is studied to construct the relative membership degree matrix, in which both qualitative and quantitative factors are consistent with the uniform calculating standard. And then a new weight-assessing method is developed for calculation of the weights based on the relative membership degree matrix. Finally, a multi-hierarchy fuzzy optimum model is adopted to select the satisfying offshore platform alternative. A case study shows that the new framework and methodology are scientific, reasonable and easy to use in practice.展开更多
Traditional gear weight optimization methods consider gear tooth number, module, face width or other dimension parameters of gear as design variables. However, due to the complicated form and geometric features peculi...Traditional gear weight optimization methods consider gear tooth number, module, face width or other dimension parameters of gear as design variables. However, due to the complicated form and geometric features peculiar to the gear, there will be large amounts of design parameters in gear design, and the influences of gear parameters changing on gear trains, transmission system and the whole equipment have to be taken into account, which increases the complexity of optimization problem. This paper puts forward to apply functionally graded materials(FGMs) to gears and then conduct the optimization. According to the force situation of gears, the material distribution form of FGM gears is determined. Then based on the performance parameters analysis of FGMs and the practical working demands for gears, a multi-objective optimization model is formed. Finally by using the goal driven optimization(GDO) method, the optimal material distribution is achieved, which makes gear weight and the maximum deformation be minimum and the maximum bending stress do not exceed the allowable stress. As an example, the applying of FGM to automotive transmission gear is conducted to illustrate the optimization design process and the result shows that under the condition of keeping the normal working performance of gear, the method achieves in greatly reducing the gear weight. This research proposes a FGM gears design method that is able to largely reduce the weight of gears by optimizing the microscopic material parameters instead of changing the macroscopic dimension parameters of gears, which reduces the complexity of gear weight optimization problem.展开更多
Reinforcement of slopes using soil nailing can effectively improve slope stability, and it has been widely used in upgrading cut slopes. Based on the assumptions of stresses on the slip surface, a new method for analy...Reinforcement of slopes using soil nailing can effectively improve slope stability, and it has been widely used in upgrading cut slopes. Based on the assumptions of stresses on the slip surface, a new method for analyzing the stability of a slope reinforced with soil nails was established in the limit equilibrium theory framework, by considering that slope sliding occurs owing to shear failure of the slip surface, which subjects to Mohr–Coulomb(M–C) strength criterion. Meanwhile, in order to easily analyze the stability of a soil nailed slope in actual engineering and facilitate optimum design of parameters for soil nailing, factor of safety(FOS) contour curve charts were drawn on the basis of the established linear proportional relationship between the spacing of soil nails and slope height, and the length of soil nails and slope height. Then, by analyzing and verifying the results obtained from classic examples, some conclusions can be got as follows: 1) The results obtained from the current method are close to those obtained from the traditional limit equilibrium methods, and the current method can provide a strict solution for the slope FOS as it satisfies all the static equilibrium conditions of a sliding body, thus confirming the feasibility of the current method; 2) The slope FOS contour curve charts can be used not only to reliably analyze the stability of a soil nailed slope, but also to design optimally the parameters of soil nailing for the slope with a certain safety requirement.展开更多
Generally, the cooler life can determine the blast furnace life. Theslag-metal skull frozen on the cooler can separate the cooler from the hot gas flow in blastfurnace. The key problem is how to freeze liquid slag-met...Generally, the cooler life can determine the blast furnace life. Theslag-metal skull frozen on the cooler can separate the cooler from the hot gas flow in blastfurnace. The key problem is how to freeze liquid slag-metal on the cooler, and the main measure isto decrease the hot surface temperature of the cooler. The computational technology of heat transferwas practically used for long campaign blast furnace design. The optimum design of the cast ironstave, copper stave, plate-stave combined system and flange stave was given by the computingresults. According to the results, the optimum arrangement of different coolers (cast iron or copperstave, flange stave and plate-stave combined system) on different height of blast furnace wall canbe found through all these temperature fields.展开更多
In this study, through novel drift-based equations of motion in the frequency domain, optimum placement and characteristics of linear velocity-dependent dampers are investigated. In this study, the sum of the square o...In this study, through novel drift-based equations of motion in the frequency domain, optimum placement and characteristics of linear velocity-dependent dampers are investigated. In this study, the sum of the square of the absolute values of transfer matrix elements for interstory drifts is considered as the optimization index. Optimum placement and characteristics of dampers are simultaneously obtained by minimizing the optimization index through an incremental procedure. In each step of the procedure, a predefined value is considered as the damper characteristic. The optimum story for this increment is selected such that it leads to a minimum value for the optimization index. The procedure is repeated for the next increments until the optimization index meets its target value, which is obtained according to the desired damping ratio for the overall structure. In other words, the desired overall damping ratio is the input to the proposed procedure, and the optimal placement and characteristics of the dampers are its output. It is observed that the optimal placement of a velocitydependent damper depends on the damping coefficient of the added damper, frequency of the excitation, and distribution of the mass, stiffness, and inherent damping of the main structure.展开更多
Human beings’ intellection is the characteristic of a distinct hierarchy and can be taken to construct a heuristic in the shortest path algorithms.It is detailed in this paper how to utilize the hierarchical reasonin...Human beings’ intellection is the characteristic of a distinct hierarchy and can be taken to construct a heuristic in the shortest path algorithms.It is detailed in this paper how to utilize the hierarchical reasoning on the basis of greedy and directional strategy to establish a spatial heuristic,so as to improve running efficiency and suitability of shortest path algorithm for traffic network.The authors divide urban traffic network into three hierarchies and set forward a new node hierarchy division rule to avoid the unreliable solution of shortest path.It is argued that the shortest path,no matter distance shortest or time shortest,is usually not the favorite of drivers in practice.Some factors difficult to expect or quantify influence the drivers’ choice greatly.It makes the drivers prefer choosing a less shortest,but more reliable or flexible path to travel on.The presented optimum path algorithm,in addition to the improvement of the running efficiency of shortest path algorithms up to several times,reduces the emergence of those factors,conforms to the intellection characteristic of human beings,and is more easily accepted by drivers.Moreover,it does not require the completeness of networks in the lowest hierarchy and the applicability and fault tolerance of the algorithm have improved.The experiment result shows the advantages of the presented algorithm.The authors argued that the algorithm has great potential application for navigation systems of large_scale traffic networks.展开更多
基金the Shanghai Commission of Science and Technology Grant (No. 05SN07114)
文摘Wireless local area networks (WLAN) localization based on received signal strength is becoming an important enabler of location based services. Limited efficiency and accuracy are disadvantages to the deterministic location estimation techniques. The probabilistic techniques show their good accuracy but cost more computation overhead. A Gaussian mixture model based on clustering technique was presented to improve location determination efficiency. The proposed clustering algorithm reduces the number of candidate locations from the whole area to a cluster. Within a cluster, an improved nearest neighbor algorithm was used to estimate user location using signal strength from more access points. Experiments show that the location estimation time is greatly decreased while high accuracy can still be achieved.
基金National Natural Science Foundation of China,12225206,Yihui Zhang,12050004,Yihui Zhang,11921002,Yihui Zhangthe Tsinghua National Laboratory for Information Science and Technology,the Henry Fok Education Foundation,171003,Yihui Zhangthe Institute for Guo Qiang,Tsinghua University,2019GQG1012,Yihui Zhang.
文摘Three-dimensional(3D)mesostructures with distinct compressive deformation behaviors and tunable mechanical responses have gained increasing interest in recent years.3D cage-shaped mesostructures are representative framework structures widely exploited in 3D flexible electronics,owing to their unique cellular geometry and unusual mechanical responses.The snap-through behavior of cage-shaped mesostructures could potentially result in the performance degradation of electronics,while it could also be harnessed to design reconfigurable electronics.Due to the complicated deformation modes and random characteristics in experiments,the snap-through behavior of cage-shaped mesostructures remains largely unexplored,espe-cially in terms of probability-based analyses.In this work,we present a systematic study on the configuration evolution and snap-through of 3D cage-shaped mesostructures under out-of-plane compressions.Experimental and computational studies show the existence of two distinct deformation modes associated with the snap-through,which is controlled by the energy barrier based on the energetic analyses.Phase diagrams of the deformation modes decode how key geometric parameters and assembly strain affect the snap-through.Compressive experiments based on periodic arrays(10 × 10)of mesostructures provided a large amount of deformation data,allowing for statistical analyses of the snap-through behavior.These results provide new insights and useful guidelines for the design of 3D reconfigurable devices and multistable metamaterials based on 3D cage-shaped mesostructures.
基金supported by the Fund for Philosophy and Social Science of Anhui Provincethe Fund for Human and Art Social Science of the Education Department of Anhui Province(Grant Nos.AHSKF0708D13 and 2009sk038)
文摘The probability-based covering algorithm(PBCA) is a new algorithm based on probability distribution. It decides, by voting, the class of the tested samples on the border of the coverage area, based on the probability of training samples. When using the original covering algorithm(CA), many tested samples that are located on the border of the coverage cannot be classified by the spherical neighborhood gained. The network structure of PBCA is a mixed structure composed of both a feed-forward network and a feedback network. By using this method of adding some heterogeneous samples and enlarging the coverage radius,it is possible to decrease the number of rejected samples and improve the rate of recognition accuracy. Relevant computer experiments indicate that the algorithm improves the study precision and achieves reasonably good results in text classification.
文摘As multi-discipline coupling and components interference often affect the aircraft configuration decision-making and analysis during conceptual design process, this article presents an approach of multidimensional game theory based on aircraft compo- nents to deal with this problem. The idea is that the configuration decision-making process is regarded as the game for different disciplines and technologies, and the aircraft components are players. The payoff function with highest total gain means that ac- cording to the game protocols and multidimensional theory, the optimal aircraft configuration within the strategy set will be cho- sen. The decision-making model is applied to conceptual design process of the high altitude long endurance (HALE) unmanned aerial vehicle (UAV) based on the assessment of technological risk. The obtained optimum configuration is quite consistent with the current HALE UAV development trends. Thus, taking into account the coupling and interference factors, the multidimensional gaming model based on aircraft components will be an effective analysis method in the decision-making process of aircraft optimum configuration.
文摘A distributed capacitance model for monolithic inductors is developed to predict the equivalently parasitical capacitances of the inductor.The ratio of the self-resonant frequency (f SR) of the differential-driven symmetric inductor to the f SR of the single-ended driven inductor is firstly predicted and explained.Compared with a single-ended configuration,experimental data demonstrate that the differential inductor offers a 127% greater maximum quality factor and a broader range of operating frequencies.Two differential inductors with low parasitical capacitance are developed and validated.
文摘The optimum pressure ratio distribution of a multistage reciprocating compressor is presented based on the assumption, i.e. the inter stage cooling is perfect and there are no pressure losses. The optimization of the two or three stage pressure ratio is analyzed in two cases of constant heat transfer rate for the inter cooler or constant inter stage inlet temperature, based on the minimum of the sum of theoretical compression power at each stage about a multi stage reciprocating compressor. Furthermore, with an example of two stage compressor the influence on the sum of the power of each stage is analyzed when practical pressure ratio deviates from the optimum value. It is obtained that under different cooling conditions the optimum pressure ratio distribution of the multi stage compression is various, and the change of the optimum pressure ratio within a small range has little influence on the sum of the power each stage. For the two stage compression, this range can be represented as ε 1=(0 96~1 06)ε 1j .
基金Supported by Guangxi Science and Technology Research Projects (GKG10100004-10)The Earmarked Fund for China Agriculture Research System (CARS-20-3-5)Science and Technology Development Fund Project of Guangxi Academy of Agricultural Science (GNK 2011jz07)~~
文摘[Objective] The paper was to study the effects of different ratios of N, P and K on yield of potato intercropped with sugarcane in Lateritic red earth area of Guangxi, and seek the best N, P and K ratio for nutrition model of potato inter- cropped with sugarcane. [Method]Two field experiments adopted the optimum com- pound design (311-A) were conducted in Long'an County of Guangxi Province in 2011 and 2012, respectively. The polynomial regression models of fertilizer applica- tion and quadratic of three factors were established by SAS statistical analysis soft- ware, and optimum nutrient simulation models of potato were obtained by computer processing. [Result] The combined application of low nitrogen and mid-high potassi- um and phosphorus fertilizer contributed to higher potato yield in experimental condi- tion. The regression model of potato yield (Yll and Y12) and dosage of N(X1), P (X2), K(X3) were established by using SAS statistical analysis software, in 2011 and 2012, respectively. They were Y11 =14 725.28 -415.39X1 +741.99X2 +607.83)(3-447.92X1X2- 144.09X1X3 -405.83X2X3 -267.82X1^2-795.67X2^2 -642.10X3^2, R =0.927 2; and Y12 =14 342.60 -896.25X1 +548.62X2 +925.51 X3 +67.81 X1X2 +531.60X1X3 -99.00X2X3 -904.00X1^2 - 1121.36X2^2-596.64X3^2,R=0.926 6. The regression mathematics model of potato yields preferably fit with actual situation in the locality, and have higher practical value, so it could be used for fertilizer decision and forecast. Using the computer to carry on the optimization, the N, P and K dosage of the best potato yield intercropped with sugarcane was obtained. The dosage of N, P2O5, K2O were 108.8-140.6, 172.5-204.4 and 285.9 kg/hm2, respectively. [Conclusion] The best N, P and K ratio of potato yield intercropped with sugarcane was 1:(1.23-1.68):(2.03-2.63).
文摘Age is one of the factors which influnce foreign language learning, but not the most important one. Comparision on the effect of foreign language learning between adults and children cannot rely merely on age. So the question of an optimum age for foreign language learning is not a simple one which is only related to age. There are different optimum ages for different aims and demands of learning foreign language.
文摘By the optimum theory, a new cutting analytical method of the membrane structure is developed. The B-spline curve is applied to make smooth the boundary of the membrane strip. By this method, the cutting accuracy is improved. Finally, a cutting analysis example of a tension membrane structure is given.
文摘The impedance of a solid state active phased array antenna varing with frequency and beam scanning scanning angle be matched with the solid state active matching network (SSAMN). In order to adjust and measure the radar conveniently and Securely, it is necessary for the impedance of the simulator of the phased array antennas to be optimized.Having selected the PIN dilde controlling circuits and the circuit parameters optimized,the simulator circuit is determined through numerical computation The experiment is given in support of the simulation.
基金Supported by National Natural Science Foundation of China(Grant Nos.51205224,51475252)National Outstanding Youth Science Foundation of China(Grant No.51225503)
文摘Optimum design is a key approach to make full use of potential advantages of a parallel manipulator. The optimum design of multi-parameter parallel manipulators(more than three design parameters), such as Stewart manipulator, relies on analysis based and algorithm based optimum design methods, which fall to be accurate or intuitive. To solve this problem and achieve both accurate and intuition, atlas based optimum design of a general Stewart parallel manipulator is established, with rational selection of design parameters. Based on the defined spherical usable workspace(SUW), primary kinematic performance indices of the Stewart manipulator involving workspace and condition number are introduced and analyzed. Then, corresponding performance atlases are drawn with the established non-dimensional design space, and impact of joint distribution angles on the manipulator performance is analyzed and illustrated. At last, an example on atlas based optimum design of the Stewart manipulator is accomplished to illustrate the optimum design process, considering the end-effector posture. Deduced atlases can be flexibly applied to both quantitative and qualitative analysis to get the desired optimal design for the Stewart manipulator with respect to related performance requirements. Besides, the established optimum design method can be further applied to other multi-parameter parallel manipulators.
基金The work was financially supported by the National Natural Science Foundation of China (Grant No. 59179376)
文摘In the process of concept design of offshore platforms, it is necessary to select the best from feasible alternatives through comparison and filter. The criterion set, used to evaluate and select the satisfying alternative, consists of many qualitative and quantitative factors. Therefore, the selection is a problem of multicriteria and semi-structural decision-making. Different from traditional methods in semi-structural decision-making, a new framework and methodology is presented in this paper for evaluation of offshore platform alternatives, First, the criterion set is established for the evaluation of alternatives. Next, the approach is studied to construct the relative membership degree matrix, in which both qualitative and quantitative factors are consistent with the uniform calculating standard. And then a new weight-assessing method is developed for calculation of the weights based on the relative membership degree matrix. Finally, a multi-hierarchy fuzzy optimum model is adopted to select the satisfying offshore platform alternative. A case study shows that the new framework and methodology are scientific, reasonable and easy to use in practice.
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2015AA042505)
文摘Traditional gear weight optimization methods consider gear tooth number, module, face width or other dimension parameters of gear as design variables. However, due to the complicated form and geometric features peculiar to the gear, there will be large amounts of design parameters in gear design, and the influences of gear parameters changing on gear trains, transmission system and the whole equipment have to be taken into account, which increases the complexity of optimization problem. This paper puts forward to apply functionally graded materials(FGMs) to gears and then conduct the optimization. According to the force situation of gears, the material distribution form of FGM gears is determined. Then based on the performance parameters analysis of FGMs and the practical working demands for gears, a multi-objective optimization model is formed. Finally by using the goal driven optimization(GDO) method, the optimal material distribution is achieved, which makes gear weight and the maximum deformation be minimum and the maximum bending stress do not exceed the allowable stress. As an example, the applying of FGM to automotive transmission gear is conducted to illustrate the optimization design process and the result shows that under the condition of keeping the normal working performance of gear, the method achieves in greatly reducing the gear weight. This research proposes a FGM gears design method that is able to largely reduce the weight of gears by optimizing the microscopic material parameters instead of changing the macroscopic dimension parameters of gears, which reduces the complexity of gear weight optimization problem.
基金Project(2015M580702)supported by the Postdoctoral Science Foundation of ChinaProject(51608541)supported by the National Natural Science Foundation of ChinaProject(2014122066)supported by the Guizhou Provincial Department of Transportation Foundation,China
文摘Reinforcement of slopes using soil nailing can effectively improve slope stability, and it has been widely used in upgrading cut slopes. Based on the assumptions of stresses on the slip surface, a new method for analyzing the stability of a slope reinforced with soil nails was established in the limit equilibrium theory framework, by considering that slope sliding occurs owing to shear failure of the slip surface, which subjects to Mohr–Coulomb(M–C) strength criterion. Meanwhile, in order to easily analyze the stability of a soil nailed slope in actual engineering and facilitate optimum design of parameters for soil nailing, factor of safety(FOS) contour curve charts were drawn on the basis of the established linear proportional relationship between the spacing of soil nails and slope height, and the length of soil nails and slope height. Then, by analyzing and verifying the results obtained from classic examples, some conclusions can be got as follows: 1) The results obtained from the current method are close to those obtained from the traditional limit equilibrium methods, and the current method can provide a strict solution for the slope FOS as it satisfies all the static equilibrium conditions of a sliding body, thus confirming the feasibility of the current method; 2) The slope FOS contour curve charts can be used not only to reliably analyze the stability of a soil nailed slope, but also to design optimally the parameters of soil nailing for the slope with a certain safety requirement.
文摘Generally, the cooler life can determine the blast furnace life. Theslag-metal skull frozen on the cooler can separate the cooler from the hot gas flow in blastfurnace. The key problem is how to freeze liquid slag-metal on the cooler, and the main measure isto decrease the hot surface temperature of the cooler. The computational technology of heat transferwas practically used for long campaign blast furnace design. The optimum design of the cast ironstave, copper stave, plate-stave combined system and flange stave was given by the computingresults. According to the results, the optimum arrangement of different coolers (cast iron or copperstave, flange stave and plate-stave combined system) on different height of blast furnace wall canbe found through all these temperature fields.
基金National Natural Science Foundation of China Under Grant No.50638010the Foundation of Ministry of Education for Innovation Group Under Grant No.IRT0518
文摘In this study, through novel drift-based equations of motion in the frequency domain, optimum placement and characteristics of linear velocity-dependent dampers are investigated. In this study, the sum of the square of the absolute values of transfer matrix elements for interstory drifts is considered as the optimization index. Optimum placement and characteristics of dampers are simultaneously obtained by minimizing the optimization index through an incremental procedure. In each step of the procedure, a predefined value is considered as the damper characteristic. The optimum story for this increment is selected such that it leads to a minimum value for the optimization index. The procedure is repeated for the next increments until the optimization index meets its target value, which is obtained according to the desired damping ratio for the overall structure. In other words, the desired overall damping ratio is the input to the proposed procedure, and the optimal placement and characteristics of the dampers are its output. It is observed that the optimal placement of a velocitydependent damper depends on the damping coefficient of the added damper, frequency of the excitation, and distribution of the mass, stiffness, and inherent damping of the main structure.
文摘Human beings’ intellection is the characteristic of a distinct hierarchy and can be taken to construct a heuristic in the shortest path algorithms.It is detailed in this paper how to utilize the hierarchical reasoning on the basis of greedy and directional strategy to establish a spatial heuristic,so as to improve running efficiency and suitability of shortest path algorithm for traffic network.The authors divide urban traffic network into three hierarchies and set forward a new node hierarchy division rule to avoid the unreliable solution of shortest path.It is argued that the shortest path,no matter distance shortest or time shortest,is usually not the favorite of drivers in practice.Some factors difficult to expect or quantify influence the drivers’ choice greatly.It makes the drivers prefer choosing a less shortest,but more reliable or flexible path to travel on.The presented optimum path algorithm,in addition to the improvement of the running efficiency of shortest path algorithms up to several times,reduces the emergence of those factors,conforms to the intellection characteristic of human beings,and is more easily accepted by drivers.Moreover,it does not require the completeness of networks in the lowest hierarchy and the applicability and fault tolerance of the algorithm have improved.The experiment result shows the advantages of the presented algorithm.The authors argued that the algorithm has great potential application for navigation systems of large_scale traffic networks.