We let a set of beam splitters of vacuum mode with a chosen transmittance parameter η in interaction with a separable coherent states.This model induces the production of an attenuated quantum channels based on entan...We let a set of beam splitters of vacuum mode with a chosen transmittance parameter η in interaction with a separable coherent states.This model induces the production of an attenuated quantum channels based on entangled optical states.Indeed,the decoherence effect is exploited positively here to generate such kind of quantum channels.Next,the amplitude damping and the entanglement amount of these produced channels are enhanced thereafter by a probabilistic quasi amplification process using again a 50 : 50 beam splitter.展开更多
With the rapid development of location-based networks, point-of-interest(POI) recommendation has become an important means to help people discover interesting and attractive locations, especially when users travel o...With the rapid development of location-based networks, point-of-interest(POI) recommendation has become an important means to help people discover interesting and attractive locations, especially when users travel out of town. However, because users only check-in interaction is highly sparse, which creates a big challenge for POI recommendation. To tackle this challenge, we propose a joint probabilistic generative model called geographical temporal social content popularity(GTSCP) to imitate user check-in activities in a process of decision making, which effectively integrates the geographical influence, temporal effect, social correlation, content information and popularity impact factors to overcome the data sparsity, especially for out-of-town users. Our proposed the GTSCP supports two recommendation scenarios in a joint model, i.e., home-town recommendation and out-of-town recommendation. Experimental results show that GTSCP achieves significantly superior recommendation quality compared to other state-of-the-art POI recommendation techniques.展开更多
文摘We let a set of beam splitters of vacuum mode with a chosen transmittance parameter η in interaction with a separable coherent states.This model induces the production of an attenuated quantum channels based on entangled optical states.Indeed,the decoherence effect is exploited positively here to generate such kind of quantum channels.Next,the amplitude damping and the entanglement amount of these produced channels are enhanced thereafter by a probabilistic quasi amplification process using again a 50 : 50 beam splitter.
基金supported by the National Key Project of Scientific and Technical Supporting Programs of China(2014BAK15B01)
文摘With the rapid development of location-based networks, point-of-interest(POI) recommendation has become an important means to help people discover interesting and attractive locations, especially when users travel out of town. However, because users only check-in interaction is highly sparse, which creates a big challenge for POI recommendation. To tackle this challenge, we propose a joint probabilistic generative model called geographical temporal social content popularity(GTSCP) to imitate user check-in activities in a process of decision making, which effectively integrates the geographical influence, temporal effect, social correlation, content information and popularity impact factors to overcome the data sparsity, especially for out-of-town users. Our proposed the GTSCP supports two recommendation scenarios in a joint model, i.e., home-town recommendation and out-of-town recommendation. Experimental results show that GTSCP achieves significantly superior recommendation quality compared to other state-of-the-art POI recommendation techniques.