In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial meth...In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial method using single-particle level schemes obtained from the CDFT,and the level densities are then obtained by considering collective effects such as vibration and rotation.Our results are compared with those of other NLD models,including phenomenological,microstatisti-cal and nonrelativistic Hartree–Fock–Bogoliubov combinatorial models.This comparison suggests that the general trends among these models are essentially the same,except for some deviations among the different NLD models.In addition,the NLDs obtained using the CDFT combinatorial method with normalization are compared with experimental data,including the observed cumulative number of levels at low excitation energies and the measured NLDs.The CDFT combinatorial method yields results that are in reasonable agreement with the existing experimental data.展开更多
We have examined the theoretical implications of combining two main and three auxiliary ligands to form several Ir(Ⅲ)complexes featuring a transition metal as their core atom to identify some appropriate organic ligh...We have examined the theoretical implications of combining two main and three auxiliary ligands to form several Ir(Ⅲ)complexes featuring a transition metal as their core atom to identify some appropriate organic lightemitting diode(OLED)materials.By utilizing electronic structure,frontier molecular orbitals,minimum single-line absorption,triplet excited states,and emission spectral data derived from the density functional theory,the usefulness of these Ir(Ⅲ)complexes,including(piq)_(2)Ir(acac),(piq)_(2)Ir(tmd),(piq)_(2)Ir(tpip),(fpiq)_(2)Ir(acac),(fpiq)_(2)Ir(tmd),and(fpiq)_(2)Ir(tpip),in OLEDs was examined,where piq=1-phenylisoquinoline,fpiq=1-(4-fluorophenyl)isoquinoline,acac=(3Z)-4-hydroxypent-3-en-2-one,tmd=(4Z)-5-hydroxy-2,2,6,6-tetramethylhept-4-en-3-one,and tpip=tetraphenylimido-diphosphonate.These complexes all have low-efficiency roll-off properties,especially(fpiq)_(2)Ir(tpip).Some researchers have successfully synthesized complexes extremely similar to(piq)_(2)Ir(acac)through the Suzuki-Miyaura coupling reaction.展开更多
By adopting stochastic density functional theory(SDFT)and mixed stochastic-deterministic density functional theory(MDFT)methods,we perform first-principles calculations to predict the shock Hugoniot curves of boron(pr...By adopting stochastic density functional theory(SDFT)and mixed stochastic-deterministic density functional theory(MDFT)methods,we perform first-principles calculations to predict the shock Hugoniot curves of boron(pressure P=7.9×10^(3)-1.6×10^(6) GPa and temperature T=25-2800 eV),silicon(P=2.6×10^(3)-7.9×10^(5) GPa and T=21.5-1393 eV),and aluminum(P=5.2×10^(3)-9.0×10^(5) GPa and T=25-1393 eV)over wide ranges of pressure and temperature.In particular,we systematically investigate the impact of different cutoff radii in norm-conserving pseudopotentials on the calculated properties at elevated temperatures,such as pressure,ionization energy,and equation of state.By comparing the SDFT and MDFT results with those of other first-principles methods,such as extended first-principles molecular dynamics and path integral Monte Carlo methods,we find that the SDFT and MDFT methods show satisfactory precision,which advances our understanding of first-principles methods when applied to studies of matter at extremely high pressures and temperatures.展开更多
Machine learning(ML)has demon-strated significant potential in en-hancing the predictive capabilities of density functional theory methods.In this study,we develop an ML model for correcting B3LYP-D,a density function...Machine learning(ML)has demon-strated significant potential in en-hancing the predictive capabilities of density functional theory methods.In this study,we develop an ML model for correcting B3LYP-D,a density functional approximation that incorporates dispersion correc-tions for non-covalent interactions.This model utilizes semilocal elec-tron density descriptors,and is trained with accurate reference data for both relative and ab-solute energies.Extensive benchmark tests reveal that the ML correction substantially en-hances the generalization ability of the B3LYP-D functional,improving the predictions of at-omization and dissociation energies for complex molecular systems.It retains the accuracy of B3LYP-D in predicting reaction barrier heights and non-covalent interactions while enabling efficient,fully self-consistent field calculations.This work signifies a promising advancement in the development of ML-corrected functionals that surpass the performance of traditional B3LYP-D.展开更多
Metal-organic framework(MOF) has been widely applied in photocatalysis, which is significant for addressing energy crises and environmental issues. Based on density functional theory calculations,the performances of C...Metal-organic framework(MOF) has been widely applied in photocatalysis, which is significant for addressing energy crises and environmental issues. Based on density functional theory calculations,the performances of Cu-BTC, a copper-based MOF, and its derivatives Cu TM-BTC via the substitution of transition metal(TM) elements at the Cu site for photocatalytic overall water splitting(POWS) have been studied. POWS of Cu-BTC suffers from the sluggish hydrogen evolution reaction due to the large overpotential of 2.02 V and limited solar utilization due to a wide HOMO-LUMO gap of 4.11 e V. Via TM substitution, the HOMO-LUMO gap narrows but still satisfies the redox potentials when taken 3d-TM of Cr, Fe, Co or Ni, 4d-TM of Rh or Pd, or 5d-TM of Re or Pt into consideration, benefiting for the light absorption. Furthermore, Cr and Re could serve as active sites for hydrogen evolution with remarkably lowered overpotentials of 0.79 V and 0.28 V, respectively;similarly, oxygen evolution activities could be enhanced by Fe, Co and Rh because of their reduced overpotentials which are less than 0.5 V. Therefore,our findings pave guidance for designing Cu-BTC derivatives in overall water splitting.展开更多
In this study,a framework for predicting the gas-sensitive properties of gas-sensitive materials by combining machine learning and density functional theory(DFT)has been proposed.The framework rapidly predicts the gas...In this study,a framework for predicting the gas-sensitive properties of gas-sensitive materials by combining machine learning and density functional theory(DFT)has been proposed.The framework rapidly predicts the gas response of materials by establishing relationships between multisource physical parameters and gas-sensitive properties.In order to prove its effectiveness,the perovskite Cs_(3)Cu_(2)I_(5) has been selected as the representative material.The physical parameters before and after the adsorption of various gases have been calculated using DFT,and then a machine learning model has been trained based on these parameters.Previous studies have shown that a single physical parameter alone is not enough to accurately predict the gas sensitivity of materials.Therefore,a variety of physical parameters have been selected for machine learning,and the final machine learning model achieved 92%accuracy in predicting gas sensitivity.It is important to note that although there have been no previous reports on the response of Cs_(3)Cu_(2)I_(5) to hydrogen sulfide,the resulting model predicts the gas response of H2S;it is subsequently confirmed experimentally.This method not only enhances the understanding of the gas sensing mechanism,but also has a universal nature,making it suitable for the development of various new gas-sensitive materials.展开更多
The Dynamical Density Functional Theory(DDFT)algorithm,derived by associating classical Density Functional Theory(DFT)with the fundamental Smoluchowski dynamical equation,describes the evolution of inhomo-geneous flui...The Dynamical Density Functional Theory(DDFT)algorithm,derived by associating classical Density Functional Theory(DFT)with the fundamental Smoluchowski dynamical equation,describes the evolution of inhomo-geneous fluid density distributions over time.It plays a significant role in studying the evolution of density distributions over time in inhomogeneous systems.The Sunway Bluelight II supercomputer,as a new generation of China’s developed supercomputer,possesses powerful computational capabilities.Porting and optimizing industrial software on this platform holds significant importance.For the optimization of the DDFT algorithm,based on the Sunway Bluelight II supercomputer and the unique hardware architecture of the SW39000 processor,this work proposes three acceleration strategies to enhance computational efficiency and performance,including direct parallel optimization,local-memory constrained optimization for CPEs,and multi-core groups collaboration and communication optimization.This method combines the characteristics of the program’s algorithm with the unique hardware architecture of the Sunway Bluelight II supercomputer,optimizing the storage and transmission structures to achieve a closer integration of software and hardware.For the first time,this paper presents Sunway-Dynamical Density Functional Theory(SW-DDFT).Experimental results show that SW-DDFT achieves a speedup of 6.67 times within a single-core group compared to the original DDFT implementation,with six core groups(a total of 384 CPEs),the maximum speedup can reach 28.64 times,and parallel efficiency can reach 71%,demonstrating excellent acceleration performance.展开更多
A sparsely introduced basal intrinsic 2-type stacking fault(I_(2)-SF)with a dense segregation of clusters(cluster-arranged layer;CAL)inα-Mg exerts a sufficient strengthening effect with a reduced content of additive ...A sparsely introduced basal intrinsic 2-type stacking fault(I_(2)-SF)with a dense segregation of clusters(cluster-arranged layer;CAL)inα-Mg exerts a sufficient strengthening effect with a reduced content of additive elements.Moreover,the dynamic nucleation and growth of CALs during deformation largely improves the creep resistance.This paper analyzes the cosegregation behaviors of yttrium(Y)and zinc(Zn)atoms at an I_(2)-SF in bulk and at basal edge dislocations using density functional theory calculations.We also study the modification of the generalized stacking-fault energy(GSFE)curves associated with the cosegregation.The segregation energies of Y and Zn atoms in the I_(2)-SF are relatively small during the initial segregation of a cluster,but increases stepwise as the cluster grows.After introducing Y and Zn atoms in the I_(2)-SF in an energetically stable order,we obtain an L1_(2)-type cluster resembling that reported in the literature.Small structural changes driven by vacancy diffusion produce an exact L1_(2)-type cluster.Meanwhile,the core of the Shockley partial dislocation generates sufficient segregation energy for cluster nucleation.Migration of the Shockley partial dislocation and expansion of the I_(2)-SF part are observed at a specific cluster size.The migration is triggered by a large modification of the GSFE curve and destabilization of the hexagonal close-packed stacking(hcp)by the segregated atoms.At this point,the cluster has reached sufficient size and continues to follow the growth in the I_(2)-SF part.According to our findings,the CAL at elevated temperature is formed through repeated synchronized behavior of cluster nucleation at the Shockley partial dislocation,dislocation migration triggered by the destabilized hcp stacking,and following of cluster growth in the I_(2)-SF part of the dislocation.展开更多
This study explores the molecular design of sulfur-containing polymers with high refractive indices(RI)and optimized Abbe numbers for advanced optical applications.The high molar refraction and low dispersion of sulfu...This study explores the molecular design of sulfur-containing polymers with high refractive indices(RI)and optimized Abbe numbers for advanced optical applications.The high molar refraction and low dispersion of sulfur make it an ideal component for enhancing the optical properties of polymers.Density functional theory(DFT)calculations were employed to predict the RI and Abbe numbers for a range of sulfurbased polymers.To improve the accuracy of the theoretical predictions,a correction function was developed by comparing the calculated values with experimental data.The key polymer families investigated included sulfur-containing polycarbonates,heterocyclic optical resins,and cycloolefins,all modified to balance RI enhancement with dispersion control.The results demonstrate that increasing the sulfur content and introducing specific heterocycles and bridged rings can effectively increase the RI while maintaining desirable Abbe numbers.Polymers incorporating 1,4-dithiane and sulfur-bridged rings exhibit excellent optical clarity and minimal visible light absorption,making them suitable for lens and coating applications.The study also calculated the UV-visible spectra for the most promising polymers,confirming their high transparency.This work establishes a predictive framework for developing high-performance optical polymers and offers a systematic approach for balancing the refractive index and dispersion,thereby providing valuable insights for the design of next-generation optical materials.展开更多
Localized corrosion of 304 stainless steel being the significant parts of Starship rocket seriously threatens the long-term service of such aerospace equipment.Scanning electron microscopy,in situ instruments combinin...Localized corrosion of 304 stainless steel being the significant parts of Starship rocket seriously threatens the long-term service of such aerospace equipment.Scanning electron microscopy,in situ instruments combining electrochemical workstation and Raman spectroscopy,and Density Dunctional Theory(DFT)calculations were employed.The surface morphologies,alloying elements,molecular fingerprint Raman evidence and theoretical mechanism for the localized corrosion of 304 stainless steel during the electrochemical polarization in the mixture solutions containing 0.5 mol/L H_(2)SO_(4) and 2,2'-bipyridine(bipy)with concentrations of 0.001,0.010,0.100 mol/L were discussed.In comparison,the presence of bipy up to 0.100 mol/L in such mixture solutions displayed the neglectable effect on the Fe(Ⅱ)/Fe(Ⅲ)reaction in the polarization process.Raman vibrational frequency around 1492 cm^(-1)was the evidence of pink color appearance due to the formation of[Fe^(Ⅱ)(bipy)_(3)]^(2+).Raman and DFT indicated the yellow color emergence due to the presence ofμ-O-[Fe^(Ⅲ)(bipy)_(2)(H_(2)O)]_(2)^(4+)due to the oxidation reaction of[Fe^(Ⅱ)(bipy)_(3)]^(2+)with H_(2)O_(2) oxidant,and the dimerization of[Fe^(Ⅲ)(bipy)_(3)]^(3+),Furthermore,a quantitative model between[Fe^(Ⅱ)(bipy)_(3)]^(2+)concentration and Raman intensity at 1492 cm^(-1) has been built up.Two linear functions were revealed when[Fe^(Ⅱ)(bipy)_(3)]^(2+)concentrations were at 0-0.002 mol/L and 0.002-0.004 mol/L and a concentration error of less than 5%was evidenced in comparison with that investigated by the inductively coupled plasma.The proposed passivation mechanism and quantitative concentration model of 304 stainless steel have certain significance for its corrosion protection andcorrosionevaluation.展开更多
Ab initio modeling of dynamic structure factors(DSF)and related density response properties in the warm dense matter(WDM)regime is a challenging computational task.The DSF,convolved with a probing X-ray beam and instr...Ab initio modeling of dynamic structure factors(DSF)and related density response properties in the warm dense matter(WDM)regime is a challenging computational task.The DSF,convolved with a probing X-ray beam and instrument function,is measured in X-ray Thom-son scattering(XRTS)experiments,which allow the study of electronic structure properties at the microscopic level.Among the various ab initio methods,linear-response time-dependent density-functional theory(LR-TDDFT)is a key framework for simulating the DSF.The standard approach in LR-TDDFT for computing the DSF relies on the orbital representation.A significant drawback of this method is the unfavorable scaling of the number of required empty bands as the wavenumber increases,making LR-TDDFT impractical for modeling XRTS measurements over large energy scales,such as in backward scattering geometry.In this work,we consider and test an alternative approach to LR-TDDFT that employs the Liouville–Lanczos(LL)method for simulating the DSF of WDM.This approach does not require empty states and allows the DSF at large momentum transfer values and over a broad frequency range to be accessed.We compare the results obtained from the LL method with those from the solution of Dyson’s equation using the standard LR-TDDFT within the projector augmented-wave formalism for isochorically heated aluminum and warm dense hydrogen.Additionally,we utilize exact path integral Monte Carlo results for the imaginary-time density-density correlation function(ITCF)of warm dense hydrogen to rigorously benchmark the LL approach.We discuss the application of the LL method for calculating DSFs and ITCFs at different wavenumbers,the effects of pseudopotentials,and the role of Lorentzian smearing.The successful validation of the LL method under WDM conditions makes it a valuable addition to the ab initio simulation landscape,supporting experimental efforts and advancing WDM theory.展开更多
Understanding the thermodynamic behavior of complex fluids in confined environments is critical for various industrial and natural processes including but not limited to polymer flooding enhanced oil recovery(EOR).In ...Understanding the thermodynamic behavior of complex fluids in confined environments is critical for various industrial and natural processes including but not limited to polymer flooding enhanced oil recovery(EOR).In this work,we develop Atif-V2.0,an extended classical density functional theory(cDFT)framework that integrates the interfacial statistical associating fluid theory(iSAFT)to model multicomponent associating fluids composed of water-soluble polymers,alkanes,and water.Building on the original theoretical framework of Atif for modeling nanoconfined inhomogeneous fluids,Atif-V2.0 embeds explicit solvent and captures additional physical interactions-hydrogen bonding,which are critical in associating fluid systems.The other key feature of Atif-V2.0 is its ability to account for polymer topology.We demonstrate its capability by predicting the equilibrium structure and thermodynamic behavior of branched hydrolyzed polyacrylamide solutions near hard walls with various branching topologies,which provides a robust theoretical tool for the rational design of EOR polymers.展开更多
Adsorption of water on sulfide surfaces and natural floatability of sulfide minerals were studied using density functional theory (DFT) method. All computational models were built in a vacuum environment to eliminat...Adsorption of water on sulfide surfaces and natural floatability of sulfide minerals were studied using density functional theory (DFT) method. All computational models were built in a vacuum environment to eliminate the effects of oxygen and other factors. H2O molecule prefers to stay with pyrite and sphalerite surfaces rather than water, whereas for galena, chalcocite, stibnite, and molybdenite, H2O molecule prefers to stay with water rather than the mineral surfaces. On the other hand, pyrite surface favors N2 more than water, while sphalerite surface cannot adsorb N2. These results show that galena, stibnite, chalcocite, and molybdenite are hydrophobic, while sphalerite is hydrophilic. Although pyrite has certain hydrophilicity, it tends to be aerophilic because the reaction of pyrite with H2O is weaker than pyrite with N2. Thus, pyrite, galena, chalcocite, stibnite and molybdenite all have natural floatability.展开更多
The electronic property of pyrite supercell containing As,Se,Te,Co or Ni hetero atoms were calculated using density functional theory(DFT),and the reactivities of pyrite with oxygen and xanthate were discussed by fr...The electronic property of pyrite supercell containing As,Se,Te,Co or Ni hetero atoms were calculated using density functional theory(DFT),and the reactivities of pyrite with oxygen and xanthate were discussed by frontier orbital methods.The cell volume expands due to the presence of impurity.Co and Ni mainly affect the bands near Fermi levels,while As mainly affects the shallow and deep valence bands,and Se and Te mainly affect the deep valence bands.Electronic density analysis suggests that there exists a strong covalent interaction between hetero atom and its surrounding atoms.By frontier orbital calculation,it is suggested that As,Co and Ni have greater influence on the HOMO and LUMO of pyrite than Se and Te.In addition,pyrite containing As,Co or Ni is easier to oxidize by oxygen than pyrite containing Se or Te,and pyrite containing Co or Ni has greater interaction with collector.These are in agreement with the observed pyrite practice.展开更多
Based on the parent tetrazole 2N-oxide, six series of novel carbon-linked ditetrazole 2N- oxides with different energetic substituent groups (-NH2, -Na, -NO2, NF2, -NHNO2) and energetic bridge groups (-CH2-, -CH2-C...Based on the parent tetrazole 2N-oxide, six series of novel carbon-linked ditetrazole 2N- oxides with different energetic substituent groups (-NH2, -Na, -NO2, NF2, -NHNO2) and energetic bridge groups (-CH2-, -CH2-CH2-, -NH-, -N=N-, -NH-NH-) were designed. The overall performance and the effects of different energetic substituent groups and energetic bridge groups on the performance were investigated by density functional theory and electrostatic potential methods. The results showed that most of designed compounds have oxygen balance around zero, high heats of formation, high density, high energy, and acceptable sensitivity, indicating that tetrazole N-oxide is a useful parent energetic compound employed for obtaining high energy compounds, even only combined with some very common energetic substituent groups and bridge groups. Comprehensively considering the effects on energy and sensitivity, the -NO2, -NF2, -NH- and-NH-NH- are appropriate substituent groups for combining tetrozale N-oxide to design new energetic compounds, while -NH2, -Na, -CH2-CH2-, and -N=N- are inappropriate.展开更多
Cobalt-doped gold clusters AunCo (n=1-7) are systematically investigated for the possible stable geometrical configurations and relative stabilities of the lowest-lying isomers using density-functional theory at B3L...Cobalt-doped gold clusters AunCo (n=1-7) are systematically investigated for the possible stable geometrical configurations and relative stabilities of the lowest-lying isomers using density-functional theory at B3LYP/LanL2DZ level. Several low-lying isomers were determined, and many of them are in electronic configurations with a high spin multiplicity. The results indicate that the ground-state AunCo(n=1-7) clusters adopt a planar structure except for n=7. The stability trend of the AunCo (n=1-7) clusters shows that the Au2Co clusters are magic cluster with high stability.展开更多
Designing and fabricating high-performance photovoltaic devices have remained a major challenge in organic solar cell technologies. In this work, the photovoltaic performances of BTBPD-PC61BM system were theoretically...Designing and fabricating high-performance photovoltaic devices have remained a major challenge in organic solar cell technologies. In this work, the photovoltaic performances of BTBPD-PC61BM system were theoretically investigated by means of density functional theory calculations coupled with the Marcus charge transfer model in order to seek novel photovoltaic systems. Moreover, the hole-transfer properties of BTBPD thin-film were also studied by an amorphous cell with 100 BTBPD molecules. Results revealed that the BTBPD- PC61BM system possessed a middle-sized open-circuit voltage of 0.70 V, large short-circuit current density of 16.874 mA/cm2, large fill factor of 0.846, and high power conversion effi- ciency of 10%. With the Marcus model, the charge-dissociation rate constant was predicted to be as fast as 3.079×10^13 s^-1 in the BTBPD-PC61BM interface, which was as 3-5 orders of magnitude large as the decay (radiative and non-radiative) rate constant (108-10^10 s^-1), indicating very high charge-dissociation efficiency (-100%) in the BTBPD-PC61BM system. Furthermore, by the molecular dynamics simulation, the hole mobility for BTBPD thin-film was predicted to be as high as 3.970× 10^-3 cm^2V^-1s^-1, which can be attributed to its tight packing in solid state.展开更多
We study the geometries, stabilities, electronic and magnetic properties of (MgO)n (n=2-10) clusters doped with a single Mn atom using the density functional theory with the gener- alized gradient approximation. T...We study the geometries, stabilities, electronic and magnetic properties of (MgO)n (n=2-10) clusters doped with a single Mn atom using the density functional theory with the gener- alized gradient approximation. The optimized geometries show that the impurity Mn atom prefers to replace the Mg atom which has low coordination number in all the lowest-energy MnMgn-1On (n=2-10) structures. The stability analysis clearly represents that the average binding energies of the doped clusters are larger than those of the corresponding pure (MgO)n clusters. Maximum peaks of the second order energy differences are observed for MnMg~_1On clusters at n=6, 9, implying that these clusters exhibit higher stability than their neighboring clusters. In addition, all the Mn-doped Mg clusters exhibit high total magnetic moments with the exception of MnMgO2 which has 3.00μB. Their magnetic behavior is attributed to the impurity Mn atom, the charge transfer modes, and the size of MnMgn- 1On clusters.展开更多
Based on density functional theory (DFT) calculations, we investigate the spin-related properties of spinless-hole injected organic molecule pentacene (Pc). DFT calculations reveal that there is spontaneous spin p...Based on density functional theory (DFT) calculations, we investigate the spin-related properties of spinless-hole injected organic molecule pentacene (Pc). DFT calculations reveal that there is spontaneous spin polarization in Pc when spinless-hole is injected. The chargeinduced magnetic moment of Pc increases linearly with the increasing of the extra hole charge amount and its maximum can be up to 1 μB per injected spinless-hole per Pc molecule. The magnetic moment is expected due to the injected unpaired charge. The injected hole will preferably ll the spin-splitted carbon pz orbitals, which makes the Pc molecule spin polarize.展开更多
The difference of energy and electronic structure of V, Nb, and Ta in different crystalline structures were investigated by different methods in density functional theory (DFT). Lattice constants, total energies, an...The difference of energy and electronic structure of V, Nb, and Ta in different crystalline structures were investigated by different methods in density functional theory (DFT). Lattice constants, total energies, and densities of states of these metals were calculated using the plane-wave pseudopotential method in DFT. Results were compared with those of projector augmented wave method, CALPHAD method, and experiments. Total energy and electronic structure analyses showed that valence electrons mostly transferred from s to p or d state, changing obviously with both the crystal structure and the elemental period number from V to Ta and leading to stronger cohesion, higher cohesive energy and more stable lattice of heavier metals.展开更多
基金supported by the Natural Science Foundation of Jilin Province(No.20220101017JC)National Natural Science Foundation of China(No.11675063)Key Laboratory of Nuclear Data Foundation(JCKY2020201C157).
文摘In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial method using single-particle level schemes obtained from the CDFT,and the level densities are then obtained by considering collective effects such as vibration and rotation.Our results are compared with those of other NLD models,including phenomenological,microstatisti-cal and nonrelativistic Hartree–Fock–Bogoliubov combinatorial models.This comparison suggests that the general trends among these models are essentially the same,except for some deviations among the different NLD models.In addition,the NLDs obtained using the CDFT combinatorial method with normalization are compared with experimental data,including the observed cumulative number of levels at low excitation energies and the measured NLDs.The CDFT combinatorial method yields results that are in reasonable agreement with the existing experimental data.
文摘We have examined the theoretical implications of combining two main and three auxiliary ligands to form several Ir(Ⅲ)complexes featuring a transition metal as their core atom to identify some appropriate organic lightemitting diode(OLED)materials.By utilizing electronic structure,frontier molecular orbitals,minimum single-line absorption,triplet excited states,and emission spectral data derived from the density functional theory,the usefulness of these Ir(Ⅲ)complexes,including(piq)_(2)Ir(acac),(piq)_(2)Ir(tmd),(piq)_(2)Ir(tpip),(fpiq)_(2)Ir(acac),(fpiq)_(2)Ir(tmd),and(fpiq)_(2)Ir(tpip),in OLEDs was examined,where piq=1-phenylisoquinoline,fpiq=1-(4-fluorophenyl)isoquinoline,acac=(3Z)-4-hydroxypent-3-en-2-one,tmd=(4Z)-5-hydroxy-2,2,6,6-tetramethylhept-4-en-3-one,and tpip=tetraphenylimido-diphosphonate.These complexes all have low-efficiency roll-off properties,especially(fpiq)_(2)Ir(tpip).Some researchers have successfully synthesized complexes extremely similar to(piq)_(2)Ir(acac)through the Suzuki-Miyaura coupling reaction.
基金supported by the National Key R&D Program of China under Grant No.2025YFB3003603the National Natural Science Foundation of China under Grant Nos.12135002 and 12105209.
文摘By adopting stochastic density functional theory(SDFT)and mixed stochastic-deterministic density functional theory(MDFT)methods,we perform first-principles calculations to predict the shock Hugoniot curves of boron(pressure P=7.9×10^(3)-1.6×10^(6) GPa and temperature T=25-2800 eV),silicon(P=2.6×10^(3)-7.9×10^(5) GPa and T=21.5-1393 eV),and aluminum(P=5.2×10^(3)-9.0×10^(5) GPa and T=25-1393 eV)over wide ranges of pressure and temperature.In particular,we systematically investigate the impact of different cutoff radii in norm-conserving pseudopotentials on the calculated properties at elevated temperatures,such as pressure,ionization energy,and equation of state.By comparing the SDFT and MDFT results with those of other first-principles methods,such as extended first-principles molecular dynamics and path integral Monte Carlo methods,we find that the SDFT and MDFT methods show satisfactory precision,which advances our understanding of first-principles methods when applied to studies of matter at extremely high pressures and temperatures.
基金supported by the National Natural Science Foundation of China(Nos.22393912,22425301,22373091,22173088)the AI for Science Foundation of Fudan University(No.Fudan X24AI023)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0450101).
文摘Machine learning(ML)has demon-strated significant potential in en-hancing the predictive capabilities of density functional theory methods.In this study,we develop an ML model for correcting B3LYP-D,a density functional approximation that incorporates dispersion correc-tions for non-covalent interactions.This model utilizes semilocal elec-tron density descriptors,and is trained with accurate reference data for both relative and ab-solute energies.Extensive benchmark tests reveal that the ML correction substantially en-hances the generalization ability of the B3LYP-D functional,improving the predictions of at-omization and dissociation energies for complex molecular systems.It retains the accuracy of B3LYP-D in predicting reaction barrier heights and non-covalent interactions while enabling efficient,fully self-consistent field calculations.This work signifies a promising advancement in the development of ML-corrected functionals that surpass the performance of traditional B3LYP-D.
基金the financial support from National Natural Science Foundation of China (No. 21503097)Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX23_3905)。
文摘Metal-organic framework(MOF) has been widely applied in photocatalysis, which is significant for addressing energy crises and environmental issues. Based on density functional theory calculations,the performances of Cu-BTC, a copper-based MOF, and its derivatives Cu TM-BTC via the substitution of transition metal(TM) elements at the Cu site for photocatalytic overall water splitting(POWS) have been studied. POWS of Cu-BTC suffers from the sluggish hydrogen evolution reaction due to the large overpotential of 2.02 V and limited solar utilization due to a wide HOMO-LUMO gap of 4.11 e V. Via TM substitution, the HOMO-LUMO gap narrows but still satisfies the redox potentials when taken 3d-TM of Cr, Fe, Co or Ni, 4d-TM of Rh or Pd, or 5d-TM of Re or Pt into consideration, benefiting for the light absorption. Furthermore, Cr and Re could serve as active sites for hydrogen evolution with remarkably lowered overpotentials of 0.79 V and 0.28 V, respectively;similarly, oxygen evolution activities could be enhanced by Fe, Co and Rh because of their reduced overpotentials which are less than 0.5 V. Therefore,our findings pave guidance for designing Cu-BTC derivatives in overall water splitting.
基金supported by Natural Science Foundation of Jiangsu Province(No.BK20210494)National Natural Science Foundation of China(No.52303356).
文摘In this study,a framework for predicting the gas-sensitive properties of gas-sensitive materials by combining machine learning and density functional theory(DFT)has been proposed.The framework rapidly predicts the gas response of materials by establishing relationships between multisource physical parameters and gas-sensitive properties.In order to prove its effectiveness,the perovskite Cs_(3)Cu_(2)I_(5) has been selected as the representative material.The physical parameters before and after the adsorption of various gases have been calculated using DFT,and then a machine learning model has been trained based on these parameters.Previous studies have shown that a single physical parameter alone is not enough to accurately predict the gas sensitivity of materials.Therefore,a variety of physical parameters have been selected for machine learning,and the final machine learning model achieved 92%accuracy in predicting gas sensitivity.It is important to note that although there have been no previous reports on the response of Cs_(3)Cu_(2)I_(5) to hydrogen sulfide,the resulting model predicts the gas response of H2S;it is subsequently confirmed experimentally.This method not only enhances the understanding of the gas sensing mechanism,but also has a universal nature,making it suitable for the development of various new gas-sensitive materials.
基金supported by National Key Research and Development Program of China under Grant 2024YFE0210800National Natural Science Foundation of China under Grant 62495062Beijing Natural Science Foundation under Grant L242017.
文摘The Dynamical Density Functional Theory(DDFT)algorithm,derived by associating classical Density Functional Theory(DFT)with the fundamental Smoluchowski dynamical equation,describes the evolution of inhomo-geneous fluid density distributions over time.It plays a significant role in studying the evolution of density distributions over time in inhomogeneous systems.The Sunway Bluelight II supercomputer,as a new generation of China’s developed supercomputer,possesses powerful computational capabilities.Porting and optimizing industrial software on this platform holds significant importance.For the optimization of the DDFT algorithm,based on the Sunway Bluelight II supercomputer and the unique hardware architecture of the SW39000 processor,this work proposes three acceleration strategies to enhance computational efficiency and performance,including direct parallel optimization,local-memory constrained optimization for CPEs,and multi-core groups collaboration and communication optimization.This method combines the characteristics of the program’s algorithm with the unique hardware architecture of the Sunway Bluelight II supercomputer,optimizing the storage and transmission structures to achieve a closer integration of software and hardware.For the first time,this paper presents Sunway-Dynamical Density Functional Theory(SW-DDFT).Experimental results show that SW-DDFT achieves a speedup of 6.67 times within a single-core group compared to the original DDFT implementation,with six core groups(a total of 384 CPEs),the maximum speedup can reach 28.64 times,and parallel efficiency can reach 71%,demonstrating excellent acceleration performance.
基金supported by the Japan Science and Technology Agency(JST),CREST(grant number JapanJPR2094)。
文摘A sparsely introduced basal intrinsic 2-type stacking fault(I_(2)-SF)with a dense segregation of clusters(cluster-arranged layer;CAL)inα-Mg exerts a sufficient strengthening effect with a reduced content of additive elements.Moreover,the dynamic nucleation and growth of CALs during deformation largely improves the creep resistance.This paper analyzes the cosegregation behaviors of yttrium(Y)and zinc(Zn)atoms at an I_(2)-SF in bulk and at basal edge dislocations using density functional theory calculations.We also study the modification of the generalized stacking-fault energy(GSFE)curves associated with the cosegregation.The segregation energies of Y and Zn atoms in the I_(2)-SF are relatively small during the initial segregation of a cluster,but increases stepwise as the cluster grows.After introducing Y and Zn atoms in the I_(2)-SF in an energetically stable order,we obtain an L1_(2)-type cluster resembling that reported in the literature.Small structural changes driven by vacancy diffusion produce an exact L1_(2)-type cluster.Meanwhile,the core of the Shockley partial dislocation generates sufficient segregation energy for cluster nucleation.Migration of the Shockley partial dislocation and expansion of the I_(2)-SF part are observed at a specific cluster size.The migration is triggered by a large modification of the GSFE curve and destabilization of the hexagonal close-packed stacking(hcp)by the segregated atoms.At this point,the cluster has reached sufficient size and continues to follow the growth in the I_(2)-SF part.According to our findings,the CAL at elevated temperature is formed through repeated synchronized behavior of cluster nucleation at the Shockley partial dislocation,dislocation migration triggered by the destabilized hcp stacking,and following of cluster growth in the I_(2)-SF part of the dislocation.
基金supported by the Project of Shenzhen Science and Technology(Nos.JCYJ20210324095210028 and JSGGZD20220822095201003)the Shenzhen University 2035Program for Excellent Research(No.000003011002)the National Natural Science Foundation of China(No.U21A2087)。
文摘This study explores the molecular design of sulfur-containing polymers with high refractive indices(RI)and optimized Abbe numbers for advanced optical applications.The high molar refraction and low dispersion of sulfur make it an ideal component for enhancing the optical properties of polymers.Density functional theory(DFT)calculations were employed to predict the RI and Abbe numbers for a range of sulfurbased polymers.To improve the accuracy of the theoretical predictions,a correction function was developed by comparing the calculated values with experimental data.The key polymer families investigated included sulfur-containing polycarbonates,heterocyclic optical resins,and cycloolefins,all modified to balance RI enhancement with dispersion control.The results demonstrate that increasing the sulfur content and introducing specific heterocycles and bridged rings can effectively increase the RI while maintaining desirable Abbe numbers.Polymers incorporating 1,4-dithiane and sulfur-bridged rings exhibit excellent optical clarity and minimal visible light absorption,making them suitable for lens and coating applications.The study also calculated the UV-visible spectra for the most promising polymers,confirming their high transparency.This work establishes a predictive framework for developing high-performance optical polymers and offers a systematic approach for balancing the refractive index and dispersion,thereby providing valuable insights for the design of next-generation optical materials.
基金supported by the National Natural Science Foundation of China(No.51701239)the University-Industry Collaborative Education Program of MOEinChina(No.BINTECH-KJZX-20220831-35)the Basic-Scientific-Research-Business-Fee Supporting Project of Henan Province,China(Nos.2023KY35,2023KY40).
文摘Localized corrosion of 304 stainless steel being the significant parts of Starship rocket seriously threatens the long-term service of such aerospace equipment.Scanning electron microscopy,in situ instruments combining electrochemical workstation and Raman spectroscopy,and Density Dunctional Theory(DFT)calculations were employed.The surface morphologies,alloying elements,molecular fingerprint Raman evidence and theoretical mechanism for the localized corrosion of 304 stainless steel during the electrochemical polarization in the mixture solutions containing 0.5 mol/L H_(2)SO_(4) and 2,2'-bipyridine(bipy)with concentrations of 0.001,0.010,0.100 mol/L were discussed.In comparison,the presence of bipy up to 0.100 mol/L in such mixture solutions displayed the neglectable effect on the Fe(Ⅱ)/Fe(Ⅲ)reaction in the polarization process.Raman vibrational frequency around 1492 cm^(-1)was the evidence of pink color appearance due to the formation of[Fe^(Ⅱ)(bipy)_(3)]^(2+).Raman and DFT indicated the yellow color emergence due to the presence ofμ-O-[Fe^(Ⅲ)(bipy)_(2)(H_(2)O)]_(2)^(4+)due to the oxidation reaction of[Fe^(Ⅱ)(bipy)_(3)]^(2+)with H_(2)O_(2) oxidant,and the dimerization of[Fe^(Ⅲ)(bipy)_(3)]^(3+),Furthermore,a quantitative model between[Fe^(Ⅱ)(bipy)_(3)]^(2+)concentration and Raman intensity at 1492 cm^(-1) has been built up.Two linear functions were revealed when[Fe^(Ⅱ)(bipy)_(3)]^(2+)concentrations were at 0-0.002 mol/L and 0.002-0.004 mol/L and a concentration error of less than 5%was evidenced in comparison with that investigated by the inductively coupled plasma.The proposed passivation mechanism and quantitative concentration model of 304 stainless steel have certain significance for its corrosion protection andcorrosionevaluation.
基金supported by the Center for Advanced Systems Understanding(CASUS),financed by Germany’s Federal Ministry of Education and Research(BMBF)and the Saxon State Government out of the State Budget approved by the Saxon State Parliamentfunding from the European Research Council(ERC)under the European Union’s Horizon 2022 research and innovation programme(Grant Agreement No.101076233,“PREXTREME”)funding from the European Union’s Just Transition Fund(JTF)within the project Röntgenlaser-Optimierung der Laserfusion(ROLF),Contract No.5086999001,co-financed by the Saxon State Government out of the State Budget approved by the Saxon State Parliament.
文摘Ab initio modeling of dynamic structure factors(DSF)and related density response properties in the warm dense matter(WDM)regime is a challenging computational task.The DSF,convolved with a probing X-ray beam and instrument function,is measured in X-ray Thom-son scattering(XRTS)experiments,which allow the study of electronic structure properties at the microscopic level.Among the various ab initio methods,linear-response time-dependent density-functional theory(LR-TDDFT)is a key framework for simulating the DSF.The standard approach in LR-TDDFT for computing the DSF relies on the orbital representation.A significant drawback of this method is the unfavorable scaling of the number of required empty bands as the wavenumber increases,making LR-TDDFT impractical for modeling XRTS measurements over large energy scales,such as in backward scattering geometry.In this work,we consider and test an alternative approach to LR-TDDFT that employs the Liouville–Lanczos(LL)method for simulating the DSF of WDM.This approach does not require empty states and allows the DSF at large momentum transfer values and over a broad frequency range to be accessed.We compare the results obtained from the LL method with those from the solution of Dyson’s equation using the standard LR-TDDFT within the projector augmented-wave formalism for isochorically heated aluminum and warm dense hydrogen.Additionally,we utilize exact path integral Monte Carlo results for the imaginary-time density-density correlation function(ITCF)of warm dense hydrogen to rigorously benchmark the LL approach.We discuss the application of the LL method for calculating DSFs and ITCFs at different wavenumbers,the effects of pseudopotentials,and the role of Lorentzian smearing.The successful validation of the LL method under WDM conditions makes it a valuable addition to the ab initio simulation landscape,supporting experimental efforts and advancing WDM theory.
基金financially supported by the Key Technologies R&D Program of China National Offshore Oil Corporation(No.KJGG2021-0504)。
文摘Understanding the thermodynamic behavior of complex fluids in confined environments is critical for various industrial and natural processes including but not limited to polymer flooding enhanced oil recovery(EOR).In this work,we develop Atif-V2.0,an extended classical density functional theory(cDFT)framework that integrates the interfacial statistical associating fluid theory(iSAFT)to model multicomponent associating fluids composed of water-soluble polymers,alkanes,and water.Building on the original theoretical framework of Atif for modeling nanoconfined inhomogeneous fluids,Atif-V2.0 embeds explicit solvent and captures additional physical interactions-hydrogen bonding,which are critical in associating fluid systems.The other key feature of Atif-V2.0 is its ability to account for polymer topology.We demonstrate its capability by predicting the equilibrium structure and thermodynamic behavior of branched hydrolyzed polyacrylamide solutions near hard walls with various branching topologies,which provides a robust theoretical tool for the rational design of EOR polymers.
基金Project(51164001)supported by the National Natural Science Foundation of ChinaProject(NCET-11-0925)supported by New Century Excellent Talents in University,China
文摘Adsorption of water on sulfide surfaces and natural floatability of sulfide minerals were studied using density functional theory (DFT) method. All computational models were built in a vacuum environment to eliminate the effects of oxygen and other factors. H2O molecule prefers to stay with pyrite and sphalerite surfaces rather than water, whereas for galena, chalcocite, stibnite, and molybdenite, H2O molecule prefers to stay with water rather than the mineral surfaces. On the other hand, pyrite surface favors N2 more than water, while sphalerite surface cannot adsorb N2. These results show that galena, stibnite, chalcocite, and molybdenite are hydrophobic, while sphalerite is hydrophilic. Although pyrite has certain hydrophilicity, it tends to be aerophilic because the reaction of pyrite with H2O is weaker than pyrite with N2. Thus, pyrite, galena, chalcocite, stibnite and molybdenite all have natural floatability.
基金Project (50864001) supported by the National Natural Science Foundation of China
文摘The electronic property of pyrite supercell containing As,Se,Te,Co or Ni hetero atoms were calculated using density functional theory(DFT),and the reactivities of pyrite with oxygen and xanthate were discussed by frontier orbital methods.The cell volume expands due to the presence of impurity.Co and Ni mainly affect the bands near Fermi levels,while As mainly affects the shallow and deep valence bands,and Se and Te mainly affect the deep valence bands.Electronic density analysis suggests that there exists a strong covalent interaction between hetero atom and its surrounding atoms.By frontier orbital calculation,it is suggested that As,Co and Ni have greater influence on the HOMO and LUMO of pyrite than Se and Te.In addition,pyrite containing As,Co or Ni is easier to oxidize by oxygen than pyrite containing Se or Te,and pyrite containing Co or Ni has greater interaction with collector.These are in agreement with the observed pyrite practice.
基金This work was supported by the Natural Science Foundation of Nanjing Institute of Technology (YKJ201507, CKJA201603) and the Youth Natural Sci- ence Foundation of Jiangsu Province (BK20160774), and Outstanding Scientific and Technological Innovation Team in Colleges and Universities of Jiangsu Province.
文摘Based on the parent tetrazole 2N-oxide, six series of novel carbon-linked ditetrazole 2N- oxides with different energetic substituent groups (-NH2, -Na, -NO2, NF2, -NHNO2) and energetic bridge groups (-CH2-, -CH2-CH2-, -NH-, -N=N-, -NH-NH-) were designed. The overall performance and the effects of different energetic substituent groups and energetic bridge groups on the performance were investigated by density functional theory and electrostatic potential methods. The results showed that most of designed compounds have oxygen balance around zero, high heats of formation, high density, high energy, and acceptable sensitivity, indicating that tetrazole N-oxide is a useful parent energetic compound employed for obtaining high energy compounds, even only combined with some very common energetic substituent groups and bridge groups. Comprehensively considering the effects on energy and sensitivity, the -NO2, -NF2, -NH- and-NH-NH- are appropriate substituent groups for combining tetrozale N-oxide to design new energetic compounds, while -NH2, -Na, -CH2-CH2-, and -N=N- are inappropriate.
文摘Cobalt-doped gold clusters AunCo (n=1-7) are systematically investigated for the possible stable geometrical configurations and relative stabilities of the lowest-lying isomers using density-functional theory at B3LYP/LanL2DZ level. Several low-lying isomers were determined, and many of them are in electronic configurations with a high spin multiplicity. The results indicate that the ground-state AunCo(n=1-7) clusters adopt a planar structure except for n=7. The stability trend of the AunCo (n=1-7) clusters shows that the Au2Co clusters are magic cluster with high stability.
基金This work was supported by the National Natural Science Foundation of China (No.21373132, No.21502109, No.21603133), the Education Department of Shmunxi Provincial Government Research Projects (No.16JK1142, No.16JK1134), and the Scientific Research Foundation of Shaanxi University of Technology for Recruited Talents (No.SLGKYQD2-13, No.SLGKYQD2-10, No.SLGQD14-10).
文摘Designing and fabricating high-performance photovoltaic devices have remained a major challenge in organic solar cell technologies. In this work, the photovoltaic performances of BTBPD-PC61BM system were theoretically investigated by means of density functional theory calculations coupled with the Marcus charge transfer model in order to seek novel photovoltaic systems. Moreover, the hole-transfer properties of BTBPD thin-film were also studied by an amorphous cell with 100 BTBPD molecules. Results revealed that the BTBPD- PC61BM system possessed a middle-sized open-circuit voltage of 0.70 V, large short-circuit current density of 16.874 mA/cm2, large fill factor of 0.846, and high power conversion effi- ciency of 10%. With the Marcus model, the charge-dissociation rate constant was predicted to be as fast as 3.079×10^13 s^-1 in the BTBPD-PC61BM interface, which was as 3-5 orders of magnitude large as the decay (radiative and non-radiative) rate constant (108-10^10 s^-1), indicating very high charge-dissociation efficiency (-100%) in the BTBPD-PC61BM system. Furthermore, by the molecular dynamics simulation, the hole mobility for BTBPD thin-film was predicted to be as high as 3.970× 10^-3 cm^2V^-1s^-1, which can be attributed to its tight packing in solid state.
文摘We study the geometries, stabilities, electronic and magnetic properties of (MgO)n (n=2-10) clusters doped with a single Mn atom using the density functional theory with the gener- alized gradient approximation. The optimized geometries show that the impurity Mn atom prefers to replace the Mg atom which has low coordination number in all the lowest-energy MnMgn-1On (n=2-10) structures. The stability analysis clearly represents that the average binding energies of the doped clusters are larger than those of the corresponding pure (MgO)n clusters. Maximum peaks of the second order energy differences are observed for MnMg~_1On clusters at n=6, 9, implying that these clusters exhibit higher stability than their neighboring clusters. In addition, all the Mn-doped Mg clusters exhibit high total magnetic moments with the exception of MnMgO2 which has 3.00μB. Their magnetic behavior is attributed to the impurity Mn atom, the charge transfer modes, and the size of MnMgn- 1On clusters.
文摘Based on density functional theory (DFT) calculations, we investigate the spin-related properties of spinless-hole injected organic molecule pentacene (Pc). DFT calculations reveal that there is spontaneous spin polarization in Pc when spinless-hole is injected. The chargeinduced magnetic moment of Pc increases linearly with the increasing of the extra hole charge amount and its maximum can be up to 1 μB per injected spinless-hole per Pc molecule. The magnetic moment is expected due to the injected unpaired charge. The injected hole will preferably ll the spin-splitted carbon pz orbitals, which makes the Pc molecule spin polarize.
基金ACKNOWLEDGMENTS This work was supported by the Doctoral Discipline Foundation of the Ministry of Education of China (No.20070533118) and the National Natural Science Foundation of China (No.50871124). The authors acknowledge Dr. Y. Z. Nie for his useful discussion in calculations.
文摘The difference of energy and electronic structure of V, Nb, and Ta in different crystalline structures were investigated by different methods in density functional theory (DFT). Lattice constants, total energies, and densities of states of these metals were calculated using the plane-wave pseudopotential method in DFT. Results were compared with those of projector augmented wave method, CALPHAD method, and experiments. Total energy and electronic structure analyses showed that valence electrons mostly transferred from s to p or d state, changing obviously with both the crystal structure and the elemental period number from V to Ta and leading to stronger cohesion, higher cohesive energy and more stable lattice of heavier metals.