期刊文献+
共找到41,523篇文章
< 1 2 250 >
每页显示 20 50 100
Autonomous sortie scheduling for carrier aircraft fleet under towing mode 被引量:1
1
作者 Zhilong Deng Xuanbo Liu +4 位作者 Yuqi Dou Xichao Su Haixu Li Lei Wang Xinwei Wang 《Defence Technology(防务技术)》 2025年第1期1-12,共12页
Safe and efficient sortie scheduling on the confined flight deck is crucial for maintaining high combat effectiveness of the aircraft carrier.The primary difficulty exactly lies in the spatiotemporal coordination,i.e.... Safe and efficient sortie scheduling on the confined flight deck is crucial for maintaining high combat effectiveness of the aircraft carrier.The primary difficulty exactly lies in the spatiotemporal coordination,i.e.,allocation of limited supporting resources and collision-avoidance between heterogeneous dispatch entities.In this paper,the problem is investigated in the perspective of hybrid flow-shop scheduling problem by synthesizing the precedence,space and resource constraints.Specifically,eight processing procedures are abstracted,where tractors,preparing spots,catapults,and launching are virtualized as machines.By analyzing the constraints in sortie scheduling,a mixed-integer planning model is constructed.In particular,the constraint on preparing spot occupancy is improved to further enhance the sortie efficiency.The basic trajectory library for each dispatch entity is generated and a delayed strategy is integrated to address the collision-avoidance issue.To efficiently solve the formulated HFSP,which is essentially a combinatorial problem with tightly coupled constraints,a chaos-initialized genetic algorithm is developed.The solution framework is validated by the simulation environment referring to the Fort-class carrier,exhibiting higher sortie efficiency when compared to existing strategies.And animation of the simulation results is available at www.bilibili.com/video/BV14t421A7Tt/.The study presents a promising supporting technique for autonomous flight deck operation in the foreseeable future,and can be easily extended to other supporting scenarios,e.g.,ammunition delivery and aircraft maintenance. 展开更多
关键词 Carrier aircraft Autonomous sortie scheduling Resource allocation Collision-avoidance Hybrid flow-shop scheduling problem
在线阅读 下载PDF
Integrated Optimization Scheduling Model for Ship Outfitting Production with Endogenous Uncertainties 被引量:1
2
作者 Lijun Liu Pu Cao +2 位作者 Yajing zhou Zhixin Long Zuhua Jiang 《哈尔滨工程大学学报(英文版)》 2025年第1期194-209,共16页
Ship outfitting is a key process in shipbuilding.Efficient and high-quality ship outfitting is a top priority for modern shipyards.These activities are conducted at different stations of shipyards.The outfitting plan ... Ship outfitting is a key process in shipbuilding.Efficient and high-quality ship outfitting is a top priority for modern shipyards.These activities are conducted at different stations of shipyards.The outfitting plan is one of the crucial issues in shipbuilding.In this paper,production scheduling and material ordering with endogenous uncertainty of the outfitting process are investigated.The uncertain factors in outfitting equipment production are usually decision-related,which leads to difficulties in addressing uncertainties in the outfitting production workshops before production is conducted according to plan.This uncertainty is regarded as endogenous uncertainty and can be treated as non-anticipativity constraints in the model.To address this problem,a stochastic two-stage programming model with endogenous uncertainty is established to optimize the outfitting job scheduling and raw material ordering process.A practical case of the shipyard of China Merchants Heavy Industry Co.,Ltd.is used to evaluate the performance of the proposed method.Satisfactory results are achieved at the lowest expected total cost as the complete kit rate of outfitting equipment is improved and emergency replenishment is reduced. 展开更多
关键词 Ship outfitting Production scheduling Purchase planning Endogenous uncertainty Multistage stochastic programming
在线阅读 下载PDF
Providing Robust and Low-Cost Edge Computing in Smart Grid:An Energy Harvesting Based Task Scheduling and Resource Management Framework 被引量:1
3
作者 Xie Zhigang Song Xin +1 位作者 Xu Siyang Cao Jing 《China Communications》 2025年第2期226-240,共15页
Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power sta... Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework. 展开更多
关键词 edge computing energy harvesting energy storage unit renewable energy sampling average approximation task scheduling
在线阅读 下载PDF
A Latency-Aware and Fault-Tolerant Framework for Resource Scheduling and Data Management in Fog-Enabled Smart City Transportation Systems
4
作者 Ibrar Afzal Noor ul Amin +1 位作者 Zulfiqar Ahmad Abdulmohsen Algarni 《Computers, Materials & Continua》 SCIE EI 2025年第1期1377-1399,共23页
Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and ... Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem. 展开更多
关键词 Fog computing smart cities smart transportation data management fault tolerance resource scheduling
在线阅读 下载PDF
An Iterated Greedy Algorithm with Memory and Learning Mechanisms for the Distributed Permutation Flow Shop Scheduling Problem
5
作者 Binhui Wang Hongfeng Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期371-388,共18页
The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because o... The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling. 展开更多
关键词 Distributed permutation flow shop scheduling MAKESPAN iterated greedy algorithm memory mechanism cooperative reinforcement learning
在线阅读 下载PDF
Bilevel Optimal Scheduling of Island Integrated Energy System Considering Multifactor Pricing
6
作者 Xin Zhang Mingming Yao +3 位作者 Daiwen He Jihong Zhang Peihong Yang Xiaoming Zhang 《Energy Engineering》 EI 2025年第1期349-378,共30页
In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy sys... In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy system(IIES).The upper level represents the integrated energy operator,and the lower level is the electricity-heatgas load aggregator.Owing to the benefit conflict between the upper and lower levels of the IIES,a dynamic pricing mechanism for coordinating the interests of the upper and lower levels is proposed,combined with factors such as the carbon emissions of the IIES,as well as the lower load interruption power.The price of selling energy can be dynamically adjusted to the lower LA in the mechanism,according to the information on carbon emissions and load interruption power.Mutual benefits and win-win situations are achieved between the upper and lower multistakeholders.Finally,CPLEX is used to iteratively solve the bilevel optimization model.The optimal solution is selected according to the joint optimal discrimination mechanism.Thesimulation results indicate that the sourceload coordinate operation can reduce the upper and lower operation costs.Using the proposed pricingmechanism,the carbon emissions and load interruption power of IEO-LA are reduced by 9.78%and 70.19%,respectively,and the capture power of the carbon capture equipment is improved by 36.24%.The validity of the proposed model and method is verified. 展开更多
关键词 Bilevel optimal scheduling load aggregator integrated energy operator carbon emission dynamic pricing mechanism
在线阅读 下载PDF
A two-stage scheduling algorithm based on pointer network with attention mechanism for micro-nano Earth observation satellite constellation
7
作者 Hai LI Yuanhao LIU +5 位作者 Boyu DENG Yongjun LI Xin LI Yu LI Taijiang ZHANG Shanghong ZHAO 《Chinese Journal of Aeronautics》 2025年第8期433-448,共16页
Micro-nano Earth Observation Satellite(MEOS)constellation has the advantages of low construction cost,short revisit cycle,and high functional density,which is considered a promising solution for serving rapidly growin... Micro-nano Earth Observation Satellite(MEOS)constellation has the advantages of low construction cost,short revisit cycle,and high functional density,which is considered a promising solution for serving rapidly growing observation demands.The observation Scheduling Problem in the MEOS constellation(MEOSSP)is a challenging issue due to the large number of satellites and tasks,as well as complex observation constraints.To address the large-scale and complicated MEOSSP,we develop a Two-Stage Scheduling Algorithm based on the Pointer Network with Attention mechanism(TSSA-PNA).In TSSA-PNA,the MEOS observation scheduling is decomposed into a task allocation stage and a single-MEOS scheduling stage.In the task allocation stage,an adaptive task allocation algorithm with four problem-specific allocation operators is proposed to reallocate the unscheduled tasks to new MEOSs.Regarding the single-MEOS scheduling stage,we design a pointer network based on the encoder-decoder architecture to learn the optimal singleMEOS scheduling solution and introduce the attention mechanism into the encoder to improve the learning efficiency.The Pointer Network with Attention mechanism(PNA)can generate the single-MEOS scheduling solution quickly in an end-to-end manner.These two decomposed stages are performed iteratively to search for the solution with high profit.A greedy local search algorithm is developed to improve the profits further.The performance of the PNA and TSSA-PNA on singleMEOS and multi-MEOS scheduling problems are evaluated in the experiments.The experimental results demonstrate that PNA can obtain the approximate solution for the single-MEOS scheduling problem in a short time.Besides,the TSSA-PNA can achieve higher observation profits than the existing scheduling algorithms within the acceptable computational time for the large-scale MEOS scheduling problem. 展开更多
关键词 Micro-nano earth observation satellite Observation scheduling Large-scale scheduling Two-stage optimization Pointer network Attention mechanism
原文传递
Integrated Scheduling of Communication,Sensing,and Control for UAV-aided FSO Systems
8
作者 LU Dingshan YU Yinchang +1 位作者 SU Daopeng WANG Jinyuan 《电讯技术》 北大核心 2025年第6期892-902,共11页
Recently,unmanned aerial vehicle(UAV)-aided free-space optical(FSO)communication has attracted widespread attentions.However,most of the existing research focuses on communication performance only.The authors investig... Recently,unmanned aerial vehicle(UAV)-aided free-space optical(FSO)communication has attracted widespread attentions.However,most of the existing research focuses on communication performance only.The authors investigate the integrated scheduling of communication,sensing,and control for UAV-aided FSO communication systems.Initially,a sensing-control model is established via the control theory.Moreover,an FSO communication channel model is established by considering the effects of atmospheric loss,atmospheric turbulence,geometrical loss,and angle-of-arrival fluctuation.Then,the relationship between the motion control of the UAV and radial displacement is obtained to link the control aspect and communication aspect.Assuming that the base station has instantaneous channel state information(CSI)or statistical CSI,the thresholds of the sensing-control pattern activation are designed,respectively.Finally,an integrated scheduling scheme for performing communication,sensing,and control is proposed.Numerical results indicate that,compared with conventional time-triggered scheme,the proposed integrated scheduling scheme obtains comparable communication and control performance,but reduces the sensing consumed power by 52.46%. 展开更多
关键词 FSO communications integrated scheduling of communication sensing and control unmanned aerial vehicle(UAV)
在线阅读 下载PDF
Adaptive dwell scheduling based on Q-learning for multifunctional radar system
9
作者 HENG Siyu CHENG Ting +2 位作者 HE Zishu WANG Yuanqing LIU Luqing 《Journal of Systems Engineering and Electronics》 2025年第4期985-993,共9页
The dwell scheduling problem for a multifunctional radar system is led to the formation of corresponding optimiza-tion problem.In order to solve the resulting optimization prob-lem,the dwell scheduling process in a sc... The dwell scheduling problem for a multifunctional radar system is led to the formation of corresponding optimiza-tion problem.In order to solve the resulting optimization prob-lem,the dwell scheduling process in a scheduling interval(SI)is formulated as a Markov decision process(MDP),where the state,action,and reward are specified for this dwell scheduling problem.Specially,the action is defined as scheduling the task on the left side,right side or in the middle of the radar idle time-line,which reduces the action space effectively and accelerates the convergence of the training.Through the above process,a model-free reinforcement learning framework is established.Then,an adaptive dwell scheduling method based on Q-learn-ing is proposed,where the converged Q value table after train-ing is utilized to instruct the scheduling process.Simulation results demonstrate that compared with existing dwell schedul-ing algorithms,the proposed one can achieve better scheduling performance considering the urgency criterion,the importance criterion and the desired execution time criterion comprehen-sively.The average running time shows the proposed algorithm has real-time performance. 展开更多
关键词 multifunctional radar dwell scheduling reinforce-ment learning Q-learning.
在线阅读 下载PDF
Research on Optimization of Hierarchical Quantum Circuit Scheduling Strategy
10
作者 Ziao Han Hui Li +2 位作者 Kai Lu Shujuan Liu Mingmei Ju 《Computers, Materials & Continua》 2025年第3期5097-5113,共17页
Traditional quantum circuit scheduling approaches underutilize the inherent parallelism of quantum computation in the Noisy Intermediate-Scale Quantum(NISQ)era,overlook the inter-layer operations can be further parall... Traditional quantum circuit scheduling approaches underutilize the inherent parallelism of quantum computation in the Noisy Intermediate-Scale Quantum(NISQ)era,overlook the inter-layer operations can be further parallelized.Based on this,two quantum circuit scheduling optimization approaches are designed and integrated into the quantum circuit compilation process.Firstly,we introduce the Layered Topology Scheduling Approach(LTSA),which employs a greedy algorithm and leverages the principles of topological sorting in graph theory.LTSA allocates quantum gates to a layered structure,maximizing the concurrent execution of quantum gate operations.Secondly,the Layerwise Conflict Resolution Approach(LCRA)is proposed.LCRA focuses on utilizing directly executable quantum gates within layers.Through the insertion of SWAP gates and conflict resolution checks,it minimizes conflicts and enhances parallelism,thereby optimizing the overall computational efficiency.Experimental findings indicate that LTSA and LCRA individually achieve a noteworthy reduction of 51.1%and 53.2%,respectively,in the number of inserted SWAP gates.Additionally,they contribute to a decrease in hardware gate overhead by 14.7%and 15%,respectively.Considering the intricate nature of quantum circuits and the temporal dependencies among different layers,the amalgamation of both approaches leads to a remarkable 51.6%reduction in inserted SWAP gates and a 14.8%decrease in hardware gate overhead.These results underscore the efficacy of the combined LTSA and LCRA in optimizing quantum circuit compilation. 展开更多
关键词 Quantum circuit scheduling layered topology scheduling approach(LTSA) layerwise conflict resolu-tion approach(LCRA) quantum computing quantum circuit compilation
在线阅读 下载PDF
Centralized-Distributed Scheduling Strategy of Distribution Network Based on Multi-Temporal Hierarchical Cooperative Game
11
作者 Guoqing Li Jianing Li +1 位作者 Kefei Yan Jing Bian 《Energy Engineering》 2025年第3期1113-1136,共24页
A centralized-distributed scheduling strategy for distribution networks based on multi-temporal and hierarchical cooperative game is proposed to address the issues of difficult operation control and energy optimizatio... A centralized-distributed scheduling strategy for distribution networks based on multi-temporal and hierarchical cooperative game is proposed to address the issues of difficult operation control and energy optimization interaction in distribution network transformer areas,as well as the problem of significant photovoltaic curtailment due to the inability to consume photovoltaic power locally.A scheduling architecture combiningmulti-temporal scales with a three-level decision-making hierarchy is established:the overall approach adopts a centralized-distributed method,analyzing the operational characteristics and interaction relationships of the distribution network center layer,cluster layer,and transformer area layer,providing a“spatial foundation”for subsequent optimization.The optimization process is divided into two stages on the temporal scale:in the first stage,based on forecasted electricity load and demand response characteristics,time-of-use electricity prices are utilized to formulate day-ahead optimization strategies;in the second stage,based on the charging and discharging characteristics of energy storage vehicles and multi-agent cooperative game relationships,rolling electricity prices and optimal interactive energy solutions are determined among clusters and transformer areas using the Nash bargaining theory.Finally,a distributed optimization algorithm using the bisection method is employed to solve the constructed model.Simulation results demonstrate that the proposed optimization strategy can facilitate photovoltaic consumption in the distribution network and enhance grid economy. 展开更多
关键词 Photovoltaic consumption distribution area optimal scheduling cooperative game
在线阅读 下载PDF
FS-DRL:Fine-Grained Scheduling of Autonomous Vehicles at Non-Signalized Intersections via Dual Reinforced Learning
12
作者 Ning Sun Weihao Wu +1 位作者 Guangbing Xiao Guodong Yin 《Chinese Journal of Mechanical Engineering》 2025年第3期377-392,共16页
Complex road conditions without signalized intersections when the traffic flow is nearly saturated result in high traffic congestion and accidents,reducing the traffic efficiency of intelligent vehicles.The complex ro... Complex road conditions without signalized intersections when the traffic flow is nearly saturated result in high traffic congestion and accidents,reducing the traffic efficiency of intelligent vehicles.The complex road traffic environment of smart vehicles and other vehicles frequently experiences conflicting start and stop motion.The fine-grained scheduling of autonomous vehicles(AVs)at non-signalized intersections,which is a promising technique for exploring optimal driving paths for both assisted driving nowadays and driverless cars in the near future,has attracted significant attention owing to its high potential for improving road safety and traffic efficiency.Fine-grained scheduling primarily focuses on signalized intersection scenarios,as applying it directly to non-signalized intersections is challenging because each AV can move freely without traffic signal control.This may cause frequent driving collisions and low road traffic efficiency.Therefore,this study proposes a novel algorithm to address this issue.Our work focuses on the fine-grained scheduling of automated vehicles at non-signal intersections via dual reinforced training(FS-DRL).For FS-DRL,we first use a grid to describe the non-signalized intersection and propose a convolutional neural network(CNN)-based fast decision model that can rapidly yield a coarse-grained scheduling decision for each AV in a distributed manner.We then load these coarse-grained scheduling decisions onto a deep Q-learning network(DQN)for further evaluation.We use an adaptive learning rate to maximize the reward function and employ parameterεto tradeoff the fast speed of coarse-grained scheduling in the CNN and optimal fine-grained scheduling in the DQN.In addition,we prove that using this adaptive learning rate leads to a converged loss rate with an extremely small number of training loops.The simulation results show that compared with Dijkstra,RNN,and ant colony-based scheduling,FS-DRL yields a high accuracy of 96.5%on the sample,with improved performance of approximately 61.54%-85.37%in terms of the average conflict and traffic efficiency. 展开更多
关键词 Autonomous vehicles scheduling CNN DQN Adaptive learning rate
在线阅读 下载PDF
Quantum-Enhanced Edge Offloading and Resource Scheduling with Privacy-Preserving Machine Learning
13
作者 Junjie Cao Zhiyong Yu +2 位作者 Xiaotao Xu Baohong Zhu Jian Yang 《Computers, Materials & Continua》 2025年第6期5235-5257,共23页
This paper introduces a quantum-enhanced edge computing framework that synergizes quantuminspired algorithms with advanced machine learning techniques to optimize real-time task offloading in edge computing environmen... This paper introduces a quantum-enhanced edge computing framework that synergizes quantuminspired algorithms with advanced machine learning techniques to optimize real-time task offloading in edge computing environments.This innovative approach not only significantly improves the system’s real-time responsiveness and resource utilization efficiency but also addresses critical challenges in Internet of Things(IoT)ecosystems—such as high demand variability,resource allocation uncertainties,and data privacy concerns—through practical solutions.Initially,the framework employs an adaptive adjustment mechanism to dynamically manage task and resource states,complemented by online learning models for precise predictive analytics.Secondly,it accelerates the search for optimal solutions using Grover’s algorithm while efficiently evaluating complex constraints through multi-controlled Toffoli gates,thereby markedly enhancing the practicality and robustness of the proposed solution.Furthermore,to bolster the system’s adaptability and response speed in dynamic environments,an efficientmonitoring mechanism and event-driven architecture are incorporated,ensuring timely responses to environmental changes and maintaining synchronization between internal and external systems.Experimental evaluations confirm that the proposed algorithm demonstrates superior performance in complex application scenarios,characterized by faster convergence,enhanced stability,and superior data privacy protection,alongside notable reductions in latency and optimized resource utilization.This research paves the way for transformative advancements in edge computing and IoT technologies,driving smart edge computing towards unprecedented levels of intelligence and automation. 展开更多
关键词 Edge offloading resource scheduling machine learning privacy protection
在线阅读 下载PDF
Scheduling Optimization and Adaptive Decision-Making Method for Self-organizing Manufacturing Systems Considering Dynamic Disturbances
14
作者 ZHANG Yi QIAO Senyu +2 位作者 YIN Leilei SUN Quan XIE Fupeng 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第3期297-309,共13页
The production mode of manufacturing industry presents characteristics of multiple varieties,small-batch and personalization,leading to frequent disturbances in workshop.Traditional centralized scheduling methods are ... The production mode of manufacturing industry presents characteristics of multiple varieties,small-batch and personalization,leading to frequent disturbances in workshop.Traditional centralized scheduling methods are difficult to achieve efficient and real-time production management under dynamic disturbance.In order to improve the intelligence and adaptability of production scheduler,a novel distributed scheduling architecture is proposed,which has the ability to autonomously allocate tasks and handle disturbances.All production tasks are scheduled through autonomous collaboration and decision-making between intelligent machines.Firstly,the multi-agent technology is applied to build a self-organizing manufacturing system,enabling each machine to be equipped with the ability of active information interaction and joint-action execution.Secondly,various self-organizing collaboration strategies are designed to effectively facilitate cooperation and competition among multiple agents,thereby flexibly achieving global perception of environmental state.To ensure the adaptability and superiority of production decisions in dynamic environment,deep reinforcement learning is applied to build a smart production scheduler:Based on the perceived environment state,the scheduler intelligently generates the optimal production strategy to guide the task allocation and resource configuration.The feasibility and effectiveness of the proposed method are verified through three experimental scenarios using a discrete manufacturing workshop as the test bed.Compared to heuristic dispatching rules,the proposed method achieves an average performance improvement of 34.0%in three scenarios in terms of order tardiness.The proposed system can provide a new reference for the design of smart manufacturing systems. 展开更多
关键词 intlligent manufacturing adaptive scheduling self-organizing manufacturing system reinforcement learning
在线阅读 下载PDF
A Survey of Spark Scheduling Strategy Optimization Techniques and Development Trends
15
作者 Chuan Li Xuanlin Wen 《Computers, Materials & Continua》 2025年第6期3843-3875,共33页
Spark performs excellently in large-scale data-parallel computing and iterative processing.However,with the increase in data size and program complexity,the default scheduling strategy has difficultymeeting the demand... Spark performs excellently in large-scale data-parallel computing and iterative processing.However,with the increase in data size and program complexity,the default scheduling strategy has difficultymeeting the demands of resource utilization and performance optimization.Scheduling strategy optimization,as a key direction for improving Spark’s execution efficiency,has attracted widespread attention.This paper first introduces the basic theories of Spark,compares several default scheduling strategies,and discusses common scheduling performance evaluation indicators and factors affecting scheduling efficiency.Subsequently,existing scheduling optimization schemes are summarized based on three scheduling modes:load characteristics,cluster characteristics,and matching of both,and representative algorithms are analyzed in terms of performance indicators and applicable scenarios,comparing the advantages and disadvantages of different scheduling modes.The article also explores in detail the integration of Spark scheduling strategies with specific application scenarios and the challenges in production environments.Finally,the limitations of the existing schemes are analyzed,and prospects are envisioned. 展开更多
关键词 SPARK scheduling optimization load balancing resource utilization distributed computing
在线阅读 下载PDF
A Bioinspired Method for Optimal Task Scheduling in Fog-Cloud Environment
16
作者 Ferzat Anka Ghanshyam G.Tejani +1 位作者 Sunil Kumar Sharma Mohammed Baljon 《Computer Modeling in Engineering & Sciences》 2025年第3期2691-2724,共34页
Due to the intense data flow in expanding Internet of Things(IoT)applications,a heavy processing cost and workload on the fog-cloud side become inevitable.One of the most critical challenges is optimal task scheduling... Due to the intense data flow in expanding Internet of Things(IoT)applications,a heavy processing cost and workload on the fog-cloud side become inevitable.One of the most critical challenges is optimal task scheduling.Since this is an NP-hard problem type,a metaheuristic approach can be a good option.This study introduces a novel enhancement to the Artificial Rabbits Optimization(ARO)algorithm by integrating Chaotic maps and Levy flight strategies(CLARO).This dual approach addresses the limitations of standard ARO in terms of population diversity and convergence speed.It is designed for task scheduling in fog-cloud environments,optimizing energy consumption,makespan,and execution time simultaneously three critical parameters often treated individually in prior works.Unlike conventional single-objective methods,the proposed approach incorporates a multi-objective fitness function that dynamically adjusts the weight of each parameter,resulting in better resource allocation and load balancing.In analysis,a real-world dataset,the Open-source Google Cloud Jobs Dataset(GoCJ_Dataset),is used for performance measurement,and analyses are performed on three considered parameters.Comparisons are applied with well-known algorithms:GWO,SCSO,PSO,WOA,and ARO to indicate the reliability of the proposed method.In this regard,performance evaluation is performed by assigning these tasks to Virtual Machines(VMs)in the resource pool.Simulations are performed on 90 base cases and 30 scenarios for each evaluation parameter.The results indicated that the proposed algorithm achieved the best makespan performance in 80% of cases,ranked first in execution time in 61%of cases,and performed best in the final parameter in 69% of cases.In addition,according to the obtained results based on the defined fitness function,the proposed method(CLARO)is 2.52%better than ARO,3.95%better than SCSO,5.06%better than GWO,8.15%better than PSO,and 9.41%better than WOA. 展开更多
关键词 Improved ARO fog computing task scheduling GoCJ_Dataset chaotic map levy flight
在线阅读 下载PDF
Pathfinder:Deep Reinforcement Learning-Based Scheduling for Multi-Robot Systems in Smart Factories with Mass Customization
17
作者 Chenxi Lyu Chen Dong +3 位作者 Qiancheng Xiong Yuzhong Chen Qian Weng Zhenyi Chen 《Computers, Materials & Continua》 2025年第8期3371-3391,共21页
The rapid advancement of Industry 4.0 has revolutionized manufacturing,shifting production from centralized control to decentralized,intelligent systems.Smart factories are now expected to achieve high adaptability an... The rapid advancement of Industry 4.0 has revolutionized manufacturing,shifting production from centralized control to decentralized,intelligent systems.Smart factories are now expected to achieve high adaptability and resource efficiency,particularly in mass customization scenarios where production schedules must accommodate dynamic and personalized demands.To address the challenges of dynamic task allocation,uncertainty,and realtime decision-making,this paper proposes Pathfinder,a deep reinforcement learning-based scheduling framework.Pathfinder models scheduling data through three key matrices:execution time(the time required for a job to complete),completion time(the actual time at which a job is finished),and efficiency(the performance of executing a single job).By leveraging neural networks,Pathfinder extracts essential features from these matrices,enabling intelligent decision-making in dynamic production environments.Unlike traditional approaches with fixed scheduling rules,Pathfinder dynamically selects from ten diverse scheduling rules,optimizing decisions based on real-time environmental conditions.To further enhance scheduling efficiency,a specialized reward function is designed to support dynamic task allocation and real-time adjustments.This function helps Pathfinder continuously refine its scheduling strategy,improving machine utilization and minimizing job completion times.Through reinforcement learning,Pathfinder adapts to evolving production demands,ensuring robust performance in real-world applications.Experimental results demonstrate that Pathfinder outperforms traditional scheduling approaches,offering improved coordination and efficiency in smart factories.By integrating deep reinforcement learning,adaptable scheduling strategies,and an innovative reward function,Pathfinder provides an effective solution to the growing challenges of multi-robot job scheduling in mass customization environments. 展开更多
关键词 Smart factory CUSTOMIZATION deep reinforcement learning production scheduling multi-robot system task allocation
在线阅读 下载PDF
DRL-AMIR: Intelligent Flow Scheduling for Software-Defined Zero Trust Networks
18
作者 Wenlong Ke Zilong Li +5 位作者 Peiyu Chen Benfeng Chen Jinglin Lv Qiang Wang Ziyi Jia Shigen Shen 《Computers, Materials & Continua》 2025年第8期3305-3319,共15页
Zero Trust Network(ZTN)enhances network security through strict authentication and access control.However,in the ZTN,optimizing flow control to improve the quality of service is still facing challenges.Software Define... Zero Trust Network(ZTN)enhances network security through strict authentication and access control.However,in the ZTN,optimizing flow control to improve the quality of service is still facing challenges.Software Defined Network(SDN)provides solutions through centralized control and dynamic resource allocation,but the existing scheduling methods based on Deep Reinforcement Learning(DRL)are insufficient in terms of convergence speed and dynamic optimization capability.To solve these problems,this paper proposes DRL-AMIR,which is an efficient flow scheduling method for software defined ZTN.This method constructs a flow scheduling optimization model that comprehensively considers service delay,bandwidth occupation,and path hops.Additionally,it balances the differentiated requirements of delay-critical K-flows,bandwidth-intensive D-flows,and background B-flows through adaptiveweighting.Theproposed framework employs a customized state space comprising node labels,link bandwidth,delaymetrics,and path length.It incorporates an action space derived fromnode weights and a hybrid reward function that integrates both single-step and multi-step excitation mechanisms.Based on these components,a hierarchical architecture is designed,effectively integrating the data plane,control plane,and knowledge plane.In particular,the adaptive expert mechanism is introduced,which triggers the shortest path algorithm in the training process to accelerate convergence,reduce trial and error costs,and maintain stability.Experiments across diverse real-world network topologies demonstrate that DRL-AMIR achieves a 15–20%reduction in K-flow transmission delays,a 10–15%improvement in link bandwidth utilization compared to SPR,QoSR,and DRSIR,and a 30%faster convergence speed via adaptive expert mechanisms. 展开更多
关键词 Zero trust network software-defined networking deep reinforcement learning flow scheduling
在线阅读 下载PDF
Review on Multi-objective Dynamic Scheduling Methods for Flexible Job Shops and Application in Aviation Manufacturing
19
作者 MA Yajie JIANG Bin +3 位作者 GUAN Li CHEN Lijun HUANG Binda CHEN Zhi 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第1期1-24,共24页
Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of in... Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of intelligent factories,constantly face dynamic disturbances during the production process,including machine failures and urgent orders.This paper discusses the basic models and research methods of job shop scheduling,emphasizing the important role of dynamic job shop scheduling and its response schemes in future research.A multi-objective flexible job shop dynamic scheduling mathematical model is established,highlighting its complex and multi-constraint characteristics under different interferences.A classification discussion is conducted on the dynamic response methods and optimization objectives under machine failures,emergency orders,fuzzy completion times,and mixed dynamic events.The development process of traditional scheduling rules and intelligent methods in dynamic scheduling are also analyzed.Finally,based on the current development status of job shop scheduling and the requirements of intelligent manufacturing,the future development trends of dynamic scheduling in flexible job shops are proposed. 展开更多
关键词 flexible job shop dynamic scheduling machine breakdown job insertion multi-objective optimization
在线阅读 下载PDF
An Adaptive Firefly Algorithm for Dependent Task Scheduling in IoT-Fog Computing
20
作者 Adil Yousif 《Computer Modeling in Engineering & Sciences》 2025年第3期2869-2892,共24页
The Internet of Things(IoT)has emerged as an important future technology.IoT-Fog is a new computing paradigm that processes IoT data on servers close to the source of the data.In IoT-Fog computing,resource allocation ... The Internet of Things(IoT)has emerged as an important future technology.IoT-Fog is a new computing paradigm that processes IoT data on servers close to the source of the data.In IoT-Fog computing,resource allocation and independent task scheduling aim to deliver short response time services demanded by the IoT devices and performed by fog servers.The heterogeneity of the IoT-Fog resources and the huge amount of data that needs to be processed by the IoT-Fog tasks make scheduling fog computing tasks a challenging problem.This study proposes an Adaptive Firefly Algorithm(AFA)for dependent task scheduling in IoT-Fog computing.The proposed AFA is a modified version of the standard Firefly Algorithm(FA),considering the execution times of the submitted tasks,the impact of synchronization requirements,and the communication time between dependent tasks.As IoT-Fog computing depends mainly on distributed fog node servers that receive tasks in a dynamic manner,tackling the communications and synchronization issues between dependent tasks is becoming a challenging problem.The proposed AFA aims to address the dynamic nature of IoT-Fog computing environments.The proposed AFA mechanism considers a dynamic light absorption coefficient to control the decrease in attractiveness over iterations.The proposed AFA mechanism performance was benchmarked against the standard Firefly Algorithm(FA),Puma Optimizer(PO),Genetic Algorithm(GA),and Ant Colony Optimization(ACO)through simulations under light,typical,and heavy workload scenarios.In heavy workloads,the proposed AFA mechanism obtained the shortest average execution time,968.98 ms compared to 970.96,1352.87,1247.28,and 1773.62 of FA,PO,GA,and ACO,respectively.The simulation results demonstrate the proposed AFA’s ability to rapidly converge to optimal solutions,emphasizing its adaptability and efficiency in typical and heavy workloads. 展开更多
关键词 Fog computing scheduling resource management firefly algorithm genetic algorithm ant colony optimization
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部