期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of Dispex A40 on Rheology and Filter Pressing Behaviours of Concentrated Alumina Suspensions
1
作者 Renjie ZENGt Dept. of Materials Science & Engineering, University of Xiamen, Xiamen 361005, China B.Rand Dept. of Process, Environment & Materials Engineering, University of Leeds, Leeds LS2 9JT, UK 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第6期664-666,共3页
Variation of plastic viscosity and extrapolated shear yield stress with the concentration of Dispex A40 for the concentrated Alcoa A16 alpha -Al2O3 suspensions at 0.27 powder volume fraction was investigated at 294 K.... Variation of plastic viscosity and extrapolated shear yield stress with the concentration of Dispex A40 for the concentrated Alcoa A16 alpha -Al2O3 suspensions at 0.27 powder volume fraction was investigated at 294 K. An optimum level of Dispex A40 for full deflocculation is found to be at 0.18% mass fraction of the powder, at which the rheological behaviour shows little different to that of adjusting the pH to 4 to obtain full deflocculation. It is demonstrated that the shear stress drop can roughly work as an index for the thixotropy in particular fixed conditions, and consequently an index for the deflocculation as the shear stress drop becomes larger when the level of the flocculation increases, and vice versa. It is also found that the addition of Dispex A40 can prevent the filter cakes from cracking, whereas the cakes at various pH values with polyvinyl alcohol as a sole polymer normally develop cracking during drying. 展开更多
关键词 rate effects of Dispex A40 on Rheology and Filter Pressing Behaviours of Concentrated Alumina Suspensions
在线阅读 下载PDF
Bearing Capacity of Mixed Pile with Stiffness Core 被引量:3
2
作者 岳建伟 姜忻良 凌光荣 《Transactions of Tianjin University》 EI CAS 2006年第3期204-208,共5页
To study load transfer mechanism and bearing capacity of a mixed pile with stiffness core (MPSC), which is formed by inserting a precast reinforced concrete pile (PRCP), in-situ tests involving MPSCs with differen... To study load transfer mechanism and bearing capacity of a mixed pile with stiffness core (MPSC), which is formed by inserting a precast reinforced concrete pile (PRCP), in-situ tests involving MPSCs with different lengths, diameters, water cement ratios and PRCPs, cement mixed piles, and drilling hole piles, were carried out. Limit bearing capacities, load-settlement curves and stress distribution of MPSCs and mixed piles were obtained. The load transfer between cement soil and PRCP was analyzed by finite element method (FEM). Test results and FEM analysis show that an MPSC has fully utilized the big friction from a cement mixed pile and the high compressive strength from a PRCP which transfers outer top load into the inner cement soil, and that inserting a PRCP into a mixed pile changes the stress distribution of a mixed pile and improves frictional resistance between a mixed pile and soil. The length and the section area on PRCP of an MPSC both have an optimum value. Adopting MPSC is effective in improving the bearing capacity of soft soil ground. 展开更多
关键词 mixed pile mixed pile with stiffness core (MPSC) pressing soil effect
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部